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It is known that a camphor particle at a water surface exhibits self-propulsion since it
releases camphor molecules at the surface and reduces the surface tension, and the
gradient of surface tension drives the camphor particle itself. Such a motion is considered
to be driven by the concentration field of the chemicals emitted by the particle itself. It is
also known that the shape of the particle seriously affects the mode of motion. In order to
understand the universal mechanism on the effect of the shape on such a self-propelled
motion, we theoretically investigated the bifurcation structure of the motion of the camphor
float with n-fold rotational symmetry, which comprises n camphor disks attached to a rigid
light circular plate along a periphery with an equivalent spacing. Here, we mainly studied
the cases with n = 2 and 3. We found that the camphor float with n = 2 moves in the
direction perpendicular to the line connecting the two camphor disks, while that with n = 3
changes its direction of motion depending on the size of the camphor float.

Keywords: camphor, self-propelled motion, reaction-diffusion system, surface tension, Marangoni effect,
spontaneous symmetry breaking

1 INTRODUCTION

Self-propelled particles, which can transduce free energy into kinetic energy under nonequilibrium
conditions, have been investigated for last decades since they can be a model for the motion of living
organisms [1–6]. The relationship between the self-propelled motion and the shape of the particle has
attracted much attention, and both experimental and theoretical studies have been intensively reported
[7–11].When we discuss themechanism of the self-propelled motion, we have to keep inmind that the
conservation ofmomentum should hold rigourously. For example, a self-propelled liquid droplet in the
other immisible liquid can be discussed based on the momentum exchange in hydrodynamics. There
have been many papers on such self-propelled motions, most of which are considered in the regime of
low-Reynolds number [4, 12–15]. In contrast, some systems, such as a self-propelled particle at a liquid
surface, a self-propelled droplet on a solid surface, and a living cell on a substrate, can apparently break
the momentum conservation [16–18]. It is sure that they exchange momentum with the environment
but the momentum conservation is not treated explicitly in their model.

The self-propelled motion of a camphor disk at a water surface is one of the most studied self-
propelled motion [19–26]. The camphor disk releases the camphor molecules at a water surface, and
the concentration gradient of the camphor molecules induces the surface tension gradient, which
drives the disk. Such a camphor disk motion can be discussed based on the hydrodynamics [27–29],
but it has also been discussed from the viewpoint of the coupling between the reaction-diffusion field
and the disk motion [9, 22, 30, 31]. Based on the latter approach, we have studied the self-propelled
motion of a camphor particle with the shape other than a circle, and have discussed the relation
between the camphor particle shape and the direction of motion [6, 9, 32–35]. For example, we show
that an elliptic camphor particle moves in the dircetion of its minor axis [9, 33–35]. As for a
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triangular-shaped camphor particle, the direction of motion
depends on the size of the particle; a smaller particle moves in
the direction of a corner, while a larger particle moves in the
direction of a side [35]. These studies clarify that the symmetric
property of the shape is important for determining the preferable
direction of the self-propelled motion.

Motivated by these previous studies, here we propose the
simpler system with which the relation between the direction of
self-propelled motion and symmetric property can be discussed; a
camphor float with n-fold rotational symmetry, which comprises a
rigid light circular plate attaching n camphor disks along a
periphery with an equivalent spacing. From the viewpoint of
rotational symmetry, an elliptic camphor particle corresponds to
the camphor float with n = 2, while the triangular camphor particle
corresponds to that with n = 3; we mainly discuss these two cases.
By considering these camphor floats, we discuss the direction of the
self-propelled motion affected by the symmetric properties. In the
present paper, we first formulate themathematical model for them,
and then analytically discuss the preferable direction of the self-
propelled motion. Finally, we check the validity of the analytical
results by numerical simulations.

2 MODEL

We construct a mathematical model that describes the self-
propelled motion of the camphor float with n-fold rotational
symmetry, which is floating at a water surface. The float
comprises a rigid light circular plate attaching n camphor
disks along a periphery with an equivalent spacing. We
consider the concentration field of camphor molecules u(r, t)
on a two-dimensional plane corresponding to the water surface.
As for the motion of the camphor float, the position and
configureation can be described by the center of mass of the
camphor float rc and the characteristic angle θc. For the camphor
float with n-fold rotational symmetry, the center position of the
k-th camphor disk (k = 0, 1, . . ., n − 1) is set as

rk � rc + ℓe θc + 2πk
n

( ), (1)

where e(θ) is the unit vector defined as

e θ( ) � cos θex + sin θey. (2)
Here, ex and ey are the unit vectors in x- and y-directions,
respectively. The schematic illustrations for the camphor floats
with n = 2 and 3 are shown in Figure 1.

Each camphor disk has a radius of R and supplys the camphor
molecules to the water surface at the rate of S0. The dynamics of
u(r, t) is described as

zu

zt
� D∇2u − au + S0

πR2
∑n−1
k�0

Θ R − r − rk| |( ). (3)

The first, second, and third terms in the righthand side
correspond to the diffusion, sublimation, and supply of the
camphor molecules. Here, D is the effiective diffusion
coefficient [36, 37], a is the sublimation rate, and Θ(·) is the

Heaviside’s step function. It should be noted that the effective
diffusion coefficient is introduced to include the effect by the
hydrodynamic transport due to the Marangoni effect. The
effective diffusion coefficient is estimated from the
concentration profile with a resting camphor particle based on
the reaction-diffusion-advection equation. Thus, this
approxiation works well when the velocity is small.

As for the motion of the camphor float, we consider the
equation of motion for the k-th camphor disk as

m
d2rk
dt2

� −ηdrk
dt

+ F conc( )
k + F int( )

k , (4)

wherem is the mass, and η is the viscous friction coefficient of the
camphor disk. We assume that they are both proportional to the
area of the camphor disk as m = πρR2 and η = πκR2. F(conc)

k is the
force originating from the surface tension gradient due to the
camphor concentration field described as

F conc( )
k � ∮

zΩk

γ u r′( )( )n r′( ) dℓ′ (5)

� ∫∫
Ωk

∇′γ u r′( )( )( ) dA′. (6)

Here, Ωk is the region of the k-th camphor disk, which is
defined as

Ωk � r| r − rk| |≤R{ }, (7)
and zΩk is the periphery of Ωk. dℓ′ is the line element along the
periphery, n(r′) is the outward unit normal vector at the
periphery, ∇′ is the nabla operator with respect to r′, and dA′
is the area element in the region Ωk. Here, the relation between
the surface tension and camphor concentration is assumed to be

γ � Γ0 − Γu, (8)
where Γ0 is the surface tension of pure water, and Γ is a positive
constant connecting the camphor concentration and surface
tension [37–39]. Using this relationship, the force F(conc)

k is
described as

F conc( )
k � −Γ∮

zΩk

u r′( )n r′( )dℓ′ (9)

� −Γ∫∫
Ωk

∇′u r′( )( )dA′. (10)

FIGURE 1 | Schematic illustration for the camphor float with n-fold
rotational symmetry. (A) n = 2. (B) n = 3.
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F(int)
k is the internal force that maintains the configuration of the

camphor float. It can be described as the summation of the
internal force, fk,j, from the j-th disk as

F int( )
k � ∑n−1

j�0
f k,j, (11)

where

f k,j � −f j,k, (12)
and

f k,j ∝ rk − rj. (13)
Here, it should be noted that fk,k = 0.

By summing up the equations of motion for n disks, we obtain
the evolution equation for rc as

ρπR2n
d2rc
dt2

� −κπR2n
drc
dt

+∑n−1
k�0

F conc( )
k

� −κπR2n
drc
dt

+ πR2F n( ),

(14)

where F (n) is the force per unit area exerting on the camphor
float with n-fold rotational symmetry. By calculating the vector
product of the equations of motion with rk − rc and then
summing up for n disks, we obtain the evolution equation
for θc as

ρπR2
ℓ
2n

d2θc
dt2

� −κπR2
ℓ
2n

dθc
dt

+∑n−1
k�0

rk − rc( ) × F conc( )
k

� −κπR2
ℓ
2n

dθc
dt

+ πR2N n( ),

(15)

where N (n) is the torque per unit area exerting on the
camphor float with n-fold rotational symmetry. Here, the
operator “×” is defined so that a ×b = axby − aybx for a = axex +
ayey and b = bxex + byey. It should be noted that the obtained
time evolution equations for rc and θc in Eqs 14, 15 does not
explicitly include the terms originating from the
internal force.

Finally, we derive the dimensionless version of our model. The
dimensionless variables are defined as

~r � r				
D/a

√ , ~rk � rk				
D/a

√ , ~rc � rc				
D/a

√ , ~R � R				
D/a

√ , ~ℓ � ℓ				
D/a

√ ,

~t � at, ~u � u

S0/D, ~ρ � ρDa

ΓS0
, ~κ � ηD

ΓS0
,

~F
conc( )

k � F conc( )
k

ΓS0/ 			
Da

√ , ~F n( ) � F n( )

ΓS0
		
a

√ / D
		
D

√( ), ~N n( ) � N n( )

ΓS0/D,

(16)
and our model with dimensionless variables is summarized as

z~u

z~t
� ~∇

2
~u − ~u +∑n−1

k�0

1

π ~R
2 Θ ~R − ~r − r̃k| |( ), (17)

~ρ
d2~rc
d~t

2 � −~κ d~rc
d~t

+ 1

nπ ~R
2 ∑n−1

k�0
~F

conc( )
k

� −~κ d~rc
d~t

+ 1
n
~F n( )

,

(18)

~ρ
d2θc

d~t
2 � −~κ dθc

d~t
+ 1

nπ ~R
2~ℓ

2 ∑n−1
k�0

~rk − ~rc( ) × ~F
conc( )
k

� −~κ dθc
d~t

+ 1

n~ℓ
2
~N n( )

,

(19)

~rk � ~rc + ~ℓe θc + 2πk
n

( ), (20)

~F
conc( )
k � −∮

z~Ωk

~u ~r′( )n ~r′( )d~ℓ′ (21)

� −∫∫
~Ωk

~∇′~u ~r′( )( )d ~A′. (22)

~Ωk � ~r| ~r − ~rk| |≤ ~R{ }. (23)
Hereafter, we adopt this dimensionless model with the tildes
omitted.

3 ANALYSIS

In this section, we analyze our model on the camphor float with
n-fold rotational symmetry, derived in the previous section. To
enable us to analyze our model, we assume that the camphor disk
radius R is sufficiently small and that the concentration field of
camphor molecules are described as the function of the positions
and velocities of the comprising n camphor disks. In this section,
we first obtain the expression of the concentration field under the
above assumptions, and then calculate the force F (n) and torque
N (n) originating from the concentration field. Based on the
ordinary differential equations obtained under the
assumptions, we perform the linear stability anaysis. Finally,
we discuss the motion of the camphor float by calculating the
force and torque in the case that the camphor float is moving at a
constant velocity with a constant characteristic angle θc.

3.1 Simplification of the Model
Under the assumption that R → + 0, the evolution equation for
the concentration field in Eq. 17 is described as

zu

zt
� ∇2u − u +∑n−1

k�0
δ r − rk( ), (24)

where δ(·) is the Dirac’s delta function.
The concentration field u is expressed as the summation of the

concentration field generated by each camphor disk due to the
linearity of the evolution equation for the concentration field. By
assuming that the concentration field generated by the k-th camphor
disk is expressed as a function of rk and vk, u(r) is expressed as

u r( ) � ∑n−1
k�0

U r − rk, vk( ), (25)
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where U(r, v) is the stationary concentration field in the
comoving frame with the camphor disk whose velocity is fixed
to v. Thus, U(r, v) should satisfy the following equation:

−v · ∇U � ∇2U − U + δ r( ), (26)
and is explicitly described as [9]

U r, v( ) � 1
2π

K0

						
1 + v| |2

4

√
r| |⎛⎝ ⎞⎠ exp −1

2
r · v( ), (27)

where K](·) is the second-kind modified Bessel function of the
α-th order.

The force F(conc)
k which exerts on the k-th camphor disk

originating from the camphor concentration field is
represented as the summation of the forces F(conc)

k,j originating
from the camphor concentration field released from the j-th
camphor disk as

F conc( )
k � ∑n−1

j�0
F conc( )
k,j . (28)

As for F(conc)
k,j (k ≠ j), the limit of F(conc)

k,j /(πR2) with R→ + 0 is
expressed as

lim
R→+0

F conc( )
k,j

πR2 � lim
R→+0

1

πR2∫∫
Ωk

∇U r, vj( )∣∣∣∣∣r�rk−rjdA′
� −∇U r, vj( )∣∣∣∣∣r�rk−rj.

(29)

For the linear stability analysis, the concentration field U(r, v)
is expanded with respect to v as [40]

U r, v( ) � 1
2π

K0 r| |( ) − 1
4π

K0 r| |( )r · v +O v| |2( ), (30)

and therefore the force F(conc)
k,j /(πR2) (k ≠ j) is also described as

the expansion with respect to vj as

F conc( )
k,j

πR2 � 1
2π

K1 rk − rj
∣∣∣∣ ∣∣∣∣( ) rk − rj

rk − rj
∣∣∣∣ ∣∣∣∣ + 1

4π
K0 rk − rj

∣∣∣∣ ∣∣∣∣( )vj
− 1
4π

K1 rk − rj
∣∣∣∣ ∣∣∣∣( ) rk − rj( ) · vj[ ] rk − rj

rk − rj
∣∣∣∣ ∣∣∣∣ +O R, vj

∣∣∣∣ ∣∣∣∣2( ).
(31)

As for the force F(conc)
k,k , it cannot be calculated from the

concentration field under the assumption of R → + 0 since
the concentration field is not differentiable at r = rk. Thus we
calculate the force working on the disk with a finite small radius,
and then consider the limit of R→ + 0. The force working on the
camphor disk originating from the camphor concentration field
generated by itself is calculated as

F conc( )
k,k

πR2 � − 1

πR2 ∫2π
0

U rk + Re θ( ), vk( )Re θ( )dθ

� 1
πR

K0

							
1 + vk| |2

4

√
R⎛⎝ ⎞⎠I 1

R vk| |
2

( ) vk
vk| |.

(32)

By considering the limit of R→ + 0 and expanding the expression
with respect to vk, we obtain

F conc( )
k,k

πR2
� 1
4π

ln
2
R

( ) − γEuler( )vk − 1
32π

vk| |2vk + 1
256π

vk| |4vk
+O R, vk| |7( ),

(33)
where γEuler ≃ 0.577 21. . . is the Euler’s constant. The coefficient
of vk in the first term of the righthand side diverges for R → + 0,
but it exhibits the logarithmic divergence. Therefore, we
introduce an arbitrary positive constant F0, and consider that
Fk,k/(πR

2) is described as the expansion with respect to vk as

F conc( )
k,k

πR2
� F0vk − 1

32π
vk| |2vk + 1

256π
vk| |4vk +O vk| |7( ). (34)

3.2 Linear Stability Analysis
We first consider the motion of a single camphor disk in order to
discuss the motion of the camphor float by comparing with the
single disk motion. For a single disk system, the equation of
motion should be

ρ
dvc
dt

� −κvc + F0vc − 1
32π

vc| |2vc + 1
256π

vc| |4vc +O vc| |7( ),
(35)

where vc = drc/dt. Note that the characteristic angle θc cannot be
defined for a single disk system. This system exhibits a
supercritical pitchfork bifurcation at κ = F0. In other words,
the camphor disk does not move for κ > F0, while it moves at a
constant speed for κ < F0. In the latter case, the camphor disk
moves at the speed of

										
32π(F0 − κ)√

under the situation close to
the bifurcation point [9, 40, 41].

In the case of n = 2, the equations of motion for the camphor
float up to the first orders of vc and ωc(= dθc/dt) are obtained as

ρ
dvc
dt

� −κvc + F0vc + 1
4π

K0 2ℓ( )vc

− 1
2π

K1 2ℓ( )ℓ vc · e θc( )( )e θc( ). (36)

ρ
dωc

dt
� −κωc + F0ωc − 1

4π
K0 2ℓ( )ωc. (37)

Note that the representation of the torque is the same for the
camphor rotor whose center is fixed [40, 42]. It is obvious that the
system has a stationary solution vc = 0 and ωc = 0, which
corresponds to the resting camphor float. From the symmetric
property of the system, the system should be neutrally stable on
the perturbation on the position rc and characteristic angle θc.
Thus, we perform the linear stability anaysis around the
stationary solution with rc = 0 and θc = 0, without losing
generality. The linaraized equation is obtained by setting vc =
δvxex + δvyey and ωc = δω as

d

dt

δvx
δvy
δω

⎛⎜⎝ ⎞⎟⎠ �
−κ + κ2,‖ 0 0

0 −κ + κ2,⊥ 0
0 0 −κ + κ2,r

⎛⎜⎝ ⎞⎟⎠ δvx
δvy
δω

⎛⎜⎝ ⎞⎟⎠, (38)
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where

κ2,‖ � F0 + 1
4π

K0 2ℓ( ) − 1
2π

ℓK1 2ℓ( ), (39)

κ2,⊥ � F0 + 1
4π

K0 2ℓ( ), (40)

κ2,r � F0 − 1
4π

K0 2ℓ( ). (41)

Eqs 38–41 mean that the bifurcation points for the
translational motion in the direction parallel to the line
connecting the two camphor disks, that pependicular to it,
and that for the rotational motion are κ = κ2,‖, κ2,⊥, and κ2,r,
respectively. κ2,‖, κ2,⊥, and κ2,r are expressed as the summation of
the bifurcation point for a single camphor disk F0 and the terms
that decay to 0 for ℓ → + ∞. Since κ2,‖ < κ2,⊥ and κ2,r < κ2,⊥ hold
for any ℓ > 0, the translational motion in the direction
perpendicular to the line firstly bifurcates from the stationary
state, and thus such a motion tends to be realized.

In the case of n = 3, the equations of motion up to the first
orders on vc and ωc are given as

ρ
dvc
dt

� −κvc + F0vc + 1
2π

K0

	
3

√
ℓ( )vc − 	

3
√
4π

K1

	
3

√
ℓ( )ℓvc. (42)

ρ
dωc

dt
� −κωc + F0ωc − 1

4π
K0

	
3

√
ℓ( )ωc −

	
3

√
8π

K1

	
3

√
ℓ( )ℓωc.

(43)
Also in this case, the stationary solution with vc = 0 and ωc = 0

exists, which corresponds to the resting camphor float, and we
arbitrarily set rc = 0 and θc = 0 arbitrarily owing to the system
symmetry. The linearized equation around this solution is obtained as

d

dt

δvx
δvy
δω

⎛⎜⎝ ⎞⎟⎠ �
−κ + κ3,t 0 0

0 −κ + κ3,t 0
0 0 −κ + κ3,r

⎛⎜⎝ ⎞⎟⎠ δvx
δvy
δω

⎛⎜⎝ ⎞⎟⎠, (44)

where

κ3,t � F0 + 1
2π

K0

	
3

√
ℓ( ) − 	

3
√
4π

ℓK1

	
3

√
ℓ( ), (45)

κ3,r � F0 − 1
4π

K0

	
3

√
ℓ( ) − 	

3
√
8π

ℓK1

	
3

√
ℓ( ). (46)

Eqs 44–46 mean that the bifurcation points for the
translational and rotational motions are κ = κ3,t and κ3,r,
respectively. Considering that the bifurcation point is
independent of the direction of translational motion, which is
different from the case with n = 2, we cannot discuss the
preferable direction for the translational motion based on the
linear stability analysis for n = 3. Note that the bifurcation point
for the translational motion in every direction is the same for each
n ≥ 3. κ3,t and κ3,r are also expressed as the summation of the
bifurcation point for a single camphor disk F0 and the terms that
decay to 0 for ℓ→ +∞. The sign of κ3,t − κ3,r changes at ℓ = ℓ3,tr ≃
3.186 63. . . , which satisfies

ℓ3,trK1

	
3

√
ℓ3,tr( )

K0

	
3

√
ℓ3,tr( ) � 2

	
3

√
. (47)

This means that the translational and rotational motions tend to
occur for ℓ < ℓ3,tr and ℓ > ℓ3,tr, respectively, though the difference
between κ3,t and κ3,r is so small that such tendency may not be
clear for ℓ > ℓ3,tr.

3.3 Preferable Direction of Motion
The linear stability analysis indicates the preferable direction for
the translational motion for n = 2, but it does not work for n = 3.
In order to discuss the preferable direction of the translational
motion of the camphor float with n-fold symmetry, we calculate
the force and torque exerting on the camphor float with constant
θc when it is moving at a constant velocity in a certain direction
[35]. Considering the symmetry of the system, the generality is
not lost if we set vc =Vex (V > 0). Under this assumption, the force
F (n) and torque N (n) working on the camphor float are
calculated as a function of the characteristic angle θc and the
velocity V based on Eq. 19.

For n = 2, the force F (2)(θc) and the torque N (2)(θc) are
calculated as

F 2( ) θc( ) � 2F0 + 1
2π

K0 2ℓ

						
1 + V2

4

√⎛⎝ ⎞⎠cosh ℓV cos θc( )⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦Vex
−1
π

						
1 + V2

4

√
K1 2ℓ

						
1 + V2

4

√⎛⎝ ⎞⎠sinh ℓV cos θc( )e θc( ),

(48)
and

N 2( ) θc( ) � Vℓ

2π
K0 2ℓ

						
1 + V2

4

√( )sin θc sinh ℓV cos θc( ), (49)

respectively. For sufficiently small V, Eqs 48, 49 are expanded
with respect to V as

F 2( ) θc( ) � 2F0 + 1
2π

K0 2ℓ( ) − 1
2π

ℓK1 2ℓ( ) − 1
2π

ℓK1 2ℓ( ) cos 2θc( )[ ]Vex
− 1

2π
ℓK1 2ℓ( ) sin 2θc( )[ ]Vey +O V2( ),

(50)

N 2( ) θc( ) � ℓ
2

4π
K0 2ℓ( )V2 sin 2θc( ) +O V3( ). (51)

The force works in the negative y-direction for 0 < θc < π/2 and
in the positive y-direction for − π/2 < θc < 0 from Eq. 50, while the
torque works counterclockwise for 0 < θc < π/2, and clockwise for
− π/2 < θc < 0 from Eq. 51. These expressions indicate that both
the force and the torque work on the camphor float so that the
characteristic angle should approach θc = ±π/2. This agrees with
the results by the linear stability analysis. Therefore, the camphor
float with 2-fold symmetry moves in the direction perpendicular
to the line connecting the two camphor disks.

As for n = 3, the force F (3)(θc) is explicitly expressed as

F 3( ) θc( ) � 3F0ex + g θc( ) + g θc + π

3
( ) + g θc + 2π

3
( )

+g θc + π( ) + g θc − 2π
3

( ) + g θc − π

3
( ), (52)

where
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g θ( ) � 1
4π

VK0

	
3

√
ℓ

						
1 + V2

4

√⎛⎝ ⎞⎠ exp

	
3

√
2

ℓ sin θ( )⎡⎢⎢⎢⎣
−2

						
1 + V2

4

√
K1

	
3

√
ℓ

						
1 + V2

4

√⎛⎝ ⎞⎠ exp

	
3

√
2

ℓV sin θ( )sin θ⎤⎥⎥⎥⎦ex
+ 1
2π

						
1 + V2

4

√
K1

	
3

√
ℓ

						
1 + V2

4

√⎛⎝ ⎞⎠ exp

	
3

√
2

ℓV sin θ( )cos θ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ey.
(53)

Note that F (3)(θc) has a period of π/3 since

F 3( ) θc( ) � F 3( ) θc + π

3
( ) (54)

is derived from Eqs 52, 53. For sufficiently smallV, the expression
in Eqs 52, 53 is expanded with respect to V as

F 3( ) θc( )
� 3 F0 + 1

2π
K0

	
3

√
ℓ( ) − 	

3
√
4π

ℓK1

	
3

√
ℓ( )[ ]Vex

− 3
128π

4 − 24ℓ2K0

	
3

√
ℓ( ) + 	

3
√

ℓ 8 + 3ℓ2( )K1

	
3

√
ℓ( )[ ]V3ex

+ 3
40 960π

160 + 60ℓ2 8 + 9ℓ2( )K0

	
3

√
ℓ( )[

+ 	
3

√
ℓ 320 − 720ℓ2 − 30ℓ4 + 3ℓ4 cos 6θc( )( )]V5ex

+ 9
	
3

√
40 960π

ℓ
5K1

	
3

√
ℓ( )sin 6θc( )[ ]V5ey +O V7( ). (55)

This means that the configurations with both θc = 0 and π/3
are stable for the camphor float with 3-fold rotational symmetry
moving in the positive x-direction from the consideration of the
force exerting on it. It should be noted thtat the above-mentioned
force is on the order of V5, which should be sufficiently weak
close to the bifurcation point.

The torque N (3)(θc) is obtained as

N 3( ) θc( ) � h θc( ) + h θc + 2π
3

( ) + h θc − 2π
3

( ), (56)
where

h θ( ) � − ℓ

2π

						
1 + V2

4

√
K1

	
3

√
						
1 + V2

4

√
ℓ⎛⎝ ⎞⎠ sinh

	
3

√
2

ℓV sin θ( )
−Vℓ
2π

K0

	
3

√
						
1 + V2

4

√
ℓ⎛⎝ ⎞⎠exp −3

4
ℓV cos θ( ) cosh 	

3
√
4

ℓV sin θ( )sin θ.
(57)

Eqs 56, 57 shows thatN (3)(θc) obviously has a period of 2π/3
since

N 3( ) θc( ) � N 3( ) θc + 2π
3

( ). (58)

For sufficiently smallV, Eq. 56 is also expanded with respect to
V as

N 3( ) θc( ) � 3ℓ3

128π
−3K0

	
3

√
ℓ( ) + 	

3
√

ℓK1

	
3

√
ℓ( )[ ]V3 sin 3θc( )

+O V5( ).
(59)

The torque at the order of V3 works on the camphor float as a
leading term. Comparing the orders between F (3) and N (3) that
affect the rotation of the camphor float, the effect of N (3) should
govern the dynamics for small V, which corresponds to the
system close to the pitchfork bifurcation point. As for the case
with high velocity, the other effects can be important, and we
cannot discuss the selected mode of motion based on the above
analysis. Thus, hereafter we consider the case with small V.

The sign of the proportionality coefficient of sin 3θc in Eq. 59 is
important for the stable direction of the camphor float motion; If
the proportionality coefficient is negative, the torque works
clockwise for 0 < θc < π/3 and it works counterclockwise for −
π/3 < θc < 0. This indicates that the camphor float rotates so that
θc approaches 0 or ± 2π/3. In contrast, if the proportionality
coefficient is positive, the torque works in the opposite directions,
which indicates that θc approaches π or ± π/3. According to our
analytical result in Eq. 59, the sign of the proportionality
coefficient is negative and positive for ℓ < ℓ3,t and ℓ > ℓ3,t,
respectively. Here, ℓ3,t ≃ 1.464 58. . . , which satisfies

ℓ3,tK1

	
3

√
ℓ3,t( )

K0

	
3

√
ℓ3,t( ) � 	

3
√

. (60)

This means that, as far as the camphor float is moving slowly,
the small camphor float with ℓ < ℓ3,t rotates so that it moves with
one camphor disk at the front, while the large camphor float with
ℓ > ℓ3,t rotates so that it moves with one camphor disk at the rear.

4 NUMERICAL CALCULATION

In order to confirm the analytical results, we perform the
numerical calculation. We used the dimensionless model in
Eqs 17–23. For the numerical calculation, we used the
smoothed function; the source part and the force are changed as

zu

zt
� ∇2u − u +∑n−1

k�0

1
πR2

G r − rk| |( ), (61)

F conc( )
k � −∫∫

R2

∇′u r′( )( )G r′ − rk
∣∣∣∣ ∣∣∣∣( )dA′. (62)

where

G r( ) � 1
2

1 + tanh
R − r

δ
( )[ ]. (63)

It should be noted that G(r) converges to Θ(R − r) for the limit of
δ → + 0.

Numerical calculation was performed with the explicit method
with the time step Δt = 0.000 5, and the spatial mesh Δx = 0.05.
The calculation area for the concentration field is set to 20 × 20
with periodic boundary conditions. The parameters are fixed as ρ
= 0.01, R = 0.2, and δ = 0.05, and κ and ℓ were varied as
parameters. The initial condition for the concentration was
u = 0 in the whole region. The initial conditions for the
velocity, characterisitic angle, and angular velocity were set as
vc = 0.5ex + 0.01ey, θc = 0.5, and ωc = 0.01. Since the initial
condition was set so that the camphor float has a high velocity and
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low angular velocity, the float was easy to converge to the
translational motion.

In Figure 2A, we first plot the stationary translational velocity
against κ for a single camphor disk. In this case, we could only
consider the translational motion but not the rotational motion.
Thus, the initial condition for the velocity was set as vc = 0.5ex +
0.01ey. We confirmed that the motion of the single camprhor
disk converged to a translational motion with a constant velocity

at t = 100, even when the initial condition was changed. Thus, we
plotted |vc| at t = 100 for the stationary translational velocity. The
stationary translational velocity was finite for the smaller κ, while
it was almost zero for the larger κ. The bifurcation point with
respect to the bifurcation parameter κ for the translational motion
was slightly greater than 0.12, where the bifurcation was supposed
to be classified into a supercritical pitchfork bifurcation.

We also calculated the cases with n = 2 and 3. In Figures 2B,C,
we plotted the stationary translational velocity for various ℓ. Also
in these cases, the velocity at t = 100 was adopted as the stationary
translational velocity, at which we confirmed that the velocity was
converged. For the camphor float with n = 2, the bifurcation point
was greater for the smaller ℓ as shown in Figure 2B. This agrees
with the theoretical results in Eq. 40. For the camphor float with
n = 3, the bifurcation point had a minimum value at a certain ℓ

around 1.5 as shown in Figure 2C. This also corresponds to the
theoretical result in Eq. 45, which indicates that the bifuracation
point has the minimum value at ℓ = 1.377 98. . . .

In Figure 3, the time series of the velocity |vc|, angular velocity
ωc, and the angle difference ψ between the direction of velocity
and the characteristic angle θc are plotted for the camphor float
with n = 2. The angle difference ψ is defined as

ψ � ϕ − θc, (64)
where ϕ is defined as vc � |vc|(cosϕex + sin ϕey). We set κ = 0.12
since we wanted to discuss the behavior close to the bifurcation
point for the translational motion of a single camphor disk. The
convergence to the stationary translational motion was faster for
small ℓ, whereas the system almost reached the stationary states
around t = 30 even in the case of ℓ = 2. The angular velocity
decayed to zero and the angle difference ψ approached π/2, which
corresponds to the translational motion in the direction
perpendicular to the line connecting the two camphor disks.

As for the camphor float with n = 3, the time series are shown in
Figure 4. It should be noted that the time range in Figure 4 is ten
times as long as that in Figure 3, since the convergence of the angle
difference ψ was much slower than the case with n = 2, though the
convergence of the velocity and angular velocity was as fast as that in
the case with n = 2. The angle difference ψ converged to zero for ℓ =
0.25, 0.5, 0.75, and 1.0, while it converged to − π/3 for ℓ = 2.0. This
agrees with the analytical results in Eqs 59, 60. These results show

FIGURE 2 |Numerical results on the stationary translational velocity of the camphor float. (A) A single camphor disk. (B) The camphor float with two camphor disks.
(C) The camphor float with three camphor disks. For the cases (B,C), the results for various ℓ were represented in different colors.

FIGURE 3 | Numerical results on the time series of (A) velocity, (B)
angular velocity, and (C) angle difference between the velocity and
characteristic angle θc for the camphor float with n = 2. κwas fixed to 0.12. The
results for various ℓ were represented in different colors. It should be
noted that ψ has a periodicity of π.
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that the smaller camphor float with n = 3 moved with one disk at its
front, while the larger camphor float moved with one disk at its rear,
which agrees with the analytical results. In the case with ℓ = 1.5, the
convergence of ψ was very slow, which can be understood from the
fact that ℓ = 1.5 is close to the threshold value ℓ3,t ≃ 1.464 58. . . .

Considering that 1.5 > ℓ3,t, the angle difference should converge to ±
π/3 but it appeared to approach 0. We consider that the difference
between the theoretical and analytical results owes the slight
difference in the setting; e.g. the finite size of the camphor disk, etc.

In Figure 5, the snapshots of the camphor concentration u
together with the camphor disk positions are shown for the cases of
the camphor float with n = 2 and 3 for ℓ = 0.5. Considering that the
camphor concentration profile has a tail in the opposite direction of
the traveling direction, the obtained concentration field also
indicated that the angle difference ψ between the velocity and the
characteristic angle was π/2 for the case with n = 2, and 0 for the case
with n = 3.

FIGURE 4 | Numerical results on the time series of (A) velocity, (B)
angular velocity, and (C) angle difference between the velocity and
characteristic angle θc for the camphor float with n = 3. κwas fixed to 0.12. The
results for various ℓ were represented in different colors. It should be
noted that ψ has a periodicity of 2π/3.

FIGURE 5 | Snapshots of the camphor concentration around the
camphor floats. (A)Camphor float with n = 2 at t = 100. (B)Camphor float with
n = 3 at t = 100. κwas set to 0.12, and ℓ was set to 0.5. Corresponding videos
are avialable as Supplementary Video S1, S2.

FIGURE 6 | Numerical results on the time series of (A) velocity |vc|, (B)
angular velocity ωc, and (C) angle difference between the velocity and
characteristic angle θc for the camphor float with n = 2. κwas fixed to 0.08 and
ℓ was fixed to 1.5. The results from various initial conditions were
represented in different colors. Angle difference was plotted only for the case
that |vc| was converged to a non-zero value. It should be noted that ψ has a
periodicity of π. (D) Snapshots at t = 100 from each initial condition indicated in
the same color. The initial conditions were (red) vc = 0.5ex + 0.01ey, ωc = 0.01,
and (blue) vc = 0.02ex + 0.01ey, ωc = 0.1.
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5 DISCUSSION

In the analysis in Section 3, we assume that the system is close to the
bifurcation point. In such a situation, our analytical results match the
results by numerical calculation; i.e., the camphor float with n = 2
moves in the perpendicular direction to the line connecting the two
camphor disks. For the case with n = 3, the smaller camphor float
moves with one disk at its front, while the larger camphor float moves
with one disk at its rear. However, in the condition far from the
bifurcation point, the system often becomes multistable and one of
several modes of motions is selected depending on the initial
condition. Actually, the numerical results that exhibit multistability
are shown inFigures 6, 7 for n= 2 and 3, respectively. The parameters

were set as κ = 0.08 and ℓ = 1.5. In the case with n = 2 shown in
Figure 6, the translational motion and spinning motion were
observed depending on the initial conditions. The direction of
the translational motion was always perpendicular to the line
connecting the two disks. In the case with n = 3, the two types
of translational motions, i.e., the motion with one disk at its front
and that with one disk at its rear, and the spinning motion were
observed depending on the initial conditions. Such multistability
could be observed in the wider parameter regions for the larger ℓ,
but the system was often monostable for the smaller ℓ.

In our model, the concentration field around one camphor disk
has the leading term described by the second-kind modified Bessel
function as far as the traveling velocity is low. This means that the
concentration field decays exponentially. Taking this into
consideration, the coupling between the direction of motion
and the camphor float configuration should be stronger for the
smaller camphor float. Thus, the smaller camphor float can easily
change the moving direction and quickly takes the preferable
direction. In contrast, for the larger camphor float, the
interaction is so small that it takes much time for the camphor
float to take the preferable direction. Moreover, the system can
often show the multistability for the larger camphor float as
discussed in the previous paragraph. Threfore, the present
discussion can be adequately adopted for the smaller
camphor float.

The analytical results for the cases with n = 2 and n = 3 are
essentially different; the bifurcation point for the translational
motion depends on the moving direction for n = 2, while it is
equivalent for any direction for n = 3. Moreover, we calculated the
force and torque exerting on the camphor float which is moving at a
constant velocity V without rotation. For n = 2, the leading terms of
the force and torque which depend on the direction of the motion
are at the order of V and V2, respectively. In contrast, for n = 3, they
are at the order of V5 and V3, respectively. This reflects that the
linear stability analysis can lead to the nontrivial results for n = 2 but
not for n = 3. Considering the orders of V in the force and torque,
the configuration and the velocity of the camphor float are more
strongly coupled with each other for n = 2 than for n = 3 near the
bifurcation point as shown in Figures 3, 4. In addition, the force is
more greatly affected to the dynamics than the torque for n = 2, and
thus the preferable configuration is achieved by changing the
velocity direction. In contrast, the torque is more greatly affected
to the dynamics than the force for n = 3, and thus the preferable
direction is achieved by changing the configuration by spinning. For
the camphor float with n ≥ 4, we can perform the similar approach.
However, for greater n, the effect of the configuration on the
translational motion becomes smaller. Therefore, the analysis for
the case with smaller n is more important, and here we especially
discuss on the cases with n = 2 and n = 3.

We believe that the present theoretical results can be
confirmed by the experiments. In the dimensionless model,
the length and time are scaled by the diffusion length

				
D/a

√
and the characteristic sublimation time 1/a, respectively. From
the previous results [37], they correspond to ca. 100 mm and ca.
50 s. Using these scale units, the typical size of the camphor float
corresponds to ca. 100 mm in the actual system, since the
dimensionless size of the camphor float adopted in this study

FIGURE 7 | Numerical results on the time series of (A) velocity |vc|, (B)
angular velocity ωc, and (C) angle difference between the velocity and
characteristic angle θc for the camphor float with n = 3. κ was fixed to 0.08 and ℓ

was fixed to 1.5. The results from various initial conditions were represented
in different colors. Angle difference was plotted only for the case that |vc| was
converged to a non-zero value. It should be noted that ψ has a periodicity of 2π/3.
(D) Snapshots at t = 100 from each initial condition indicated in the same color.
The initial conditions were (red) vc = 0.5ex + 0.01ey, ωc = 0.01, and (blue) vc =
0.02ex + 0.01ey, ωc = 0.1, and (green) vc = 0.4ex + 0.15ey, ωc = 0.01.
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is on the order of 1. As for the velocity, the obtained dimensionless
value is on the order of 1 fromFigures 2–7, which corresponds to ca.
2 mm/s. This value is rather slower than the typical velocity observed
in experiments, ca. 10 mm/s, but these values are of the same order.
Considering that the size of the camphor float is difficult to exceed
100mm, the scale available in the experimental setup should be less
than 1. Moreover, as discussed in the previous paragraph, the
coupling between the configuration and the translational motion
is stronger for the small camphor float. Therefore, we suppose that
the experimental confirmation is possible only for the camphor float
with small ℓ. Considering that the effect of the shape is stronger for
n = 2, we suppose that the shape effect due to the 2-fold rotational
symmetry can be easily confirmed, but that the effect for n = 3 or
higher is more difficult to confirm.

In our previous work, we showed that an elliptic camphor
particle moves in its minor-axis direction in theoretical analysis,
numerical calculation, and experiments [9, 33, 34]. The
symmetric property of the distribution of the mass and the
camphor molecule source for an elliptic camphor particle is
similar to that of the camphor float with 2-fold rotational
symmetry discussed in the present study. In our result, it
moves in the direction perpendicular to the line connecting
the two camphors. Thus, the present results and our previous
results show good correspondence. As for the camphor float with
3-fold rotational symmetry, it corresponds to the triangular
camphor particle discussed in our previous study [35] from
the viewpoint of the symmetric property. In our previous work,
we concluded that the smaller triangular camphor particle moves
in the direction of the corner for the smaller particle, while it moves
in the direction of the side for the larger particle. The present results
correspond to our previous ones in that the preferable direction
changes depending on the size by considering the deviation of the
mass and camphor molecule source. Taking the present analytical
results into consideration, we suggest that the low-wave-number
modulation from a symmetric circular shape most effectively
affects the self-propelled motion, and the high-wave-number
modulation is not so important.

6 CONCLUSION

In the present study, we theoretically investigated the self-propulsion
of a camphor float with n-fold rotational symmetry, which
comprises a rigid light circular plate attached with n camphor
disks along a periphery with an equivalent spacing. We
constructed a mathematical model for the camphor float, and
analyzed it under the assumptions that the camphor disk radius
is negligibly small and that the camphor concentration only depends
on the positions and velocities of the camphor disks. From the linear
stability analysis and the calculation of the force and torque for the
situation that a camphor float is moving at a constant velocity with a
certain characteristic angle, we concluded that the camphor float
with 2-fold rotational symmetry moves in the direction
perpendicular to the line connecting the two camphor disks. As
for the camphor float with 3-fold rotational symmetry, the smaller
float moves with one camphor disk at the front, while the larger float
moves with one camphor disk at the rear.

As the extensions of the present study, we consider the particles
with an asymmetric configuration. By considering such particles, we
can generally discuss themanner of coupling between themotion and
the symmtric featrures of self-propelled particles. We are also
interested in the collective motion of the particles with n-fold
rotational symmetry. In such systems, we expect some interesting
structures with a nematic order and/or a hexagonal order can be
realized. The symmetric properties embedded in the external
condition such as the system boundary and the spatial modulation
of the parameters also seem to be interesting. We hope the present
results will provide the fundamental knowledge to understand the
above-mentioned more complex systems, and moreover, will help
understanding the universal mechanism on the shape effect on self-
propelled motions driven by the self-generated concentration field.
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