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We propose a restricted class of tensor network state, built from number-state

preserving tensors, for supervised learning tasks. This class of tensor network is

argued to be a natural choice for classifiers as 1) they map classical data to

classical data, and thus preserve the interpretability of data under tensor

transformations, 2) they can be efficiently trained to maximize their scalar

product against classical data sets, and 3) they seem to be as powerful as

generic (unrestricted) tensor networks in this task. Our proposal is

demonstrated using a variety of benchmark classification problems, where

number-state preserving versions of commonly used networks (including

MPS, TTN and MERA) are trained as effective classifiers. This work opens the

path for powerful tensor network methods such as MERA, which were

previously computationally intractable as classifiers, to be employed for

difficult tasks such as image recognition.
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1 Introduction

Ideas and methods from the field of machine learning are currently having a

significant impact in many areas of physics research [1]. Machine learning offers

powerful new tools for classifying phases of matter [2–7], for processing experimental

results [8, 9], and for modeling quantum many-body systems [10–12], to name but a few

of the plethora of applications. With this crossing of fields has come the intriguing

realization that the neural networks [13, 14] used in machine learning share extensive

similarities with the tensor networks [15] used in modeling quantum many-body systems

[16]. These connections are perhaps not so surprising since both types of network have the

primary function of encoding large sets of correlated data: neural networks encode

ensembles of training data, while tensor networks encode superpositions of quantum

states. Currently there is great interest in exploring the potential applications of this

relation, both from the directions of 1) using ideas from neural networks and machine

learning to improve methods for modeling quantum wave-functions [17–20] and 2)

examining tensor networks as a new approach for tasks in machine learning [21–31].

In this manuscript we focus on the second direction (ii), and explore the use of tensor

networks as classifiers for supervised learning problems. Research in this area has already
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produced encouraging early results, with examples where tensor

networks have been trained to produce relatively competitive

classifiers in both supervised and unsupervised learning tasks [21,

25–27, 30, 31]. However there are some significant issues with

respect to the use of tensor networks as classifiers. One such issue

is that of interpretability. Usually, when applying a tensor

network as a classifier, each sample from the (classical)

dataset is associated to a product state. However, under

generic tensor transformations, product states can be mapped

to entangled quantum states, which can no longer be re-

interpreted classically. One can understand this as a problem

of generic tensor networks being overly-broad when used as

classifiers: they are designed to carry information about phases

and/or signs between superposition states, which are necessary

for describing wave-functions but seem to be extraneous from the

perspective of characterizing classical datasets. A second issue is

that of computational efficiency. Most previous studies have

utilized only relatively simple classes of tensor networks, such

as matrix product states [32, 33] (MPS) and tree tensor networks

[34, 35] (TTN), as classifiers. The more formidable weapons in

the arsenal of tensor networks, such as the multi-scale

entanglement renormalization ansatz [36–39] (MERA), which

are seen as the direct analogues to the high successful

convolutional neural networks [40–42] (CNNs), have yet to be

deployed in earnest for challenging problems. The primary

reason being that, in order for a tensor network to be of use

as a classifier, ones needs to be able to compute scalar products

between the network and product states (representing the

training data); this can be done efficiently for simple networks

such as MPS and TTN, but is generally computationally

intractable for more sophisticated networks like MERA.

The main motivation for this manuscript is to help resolve

the two issues discussed above. In particular, we propose to use

networks built from a restricted class of tensor, those which act to

preserve number-states, as classifiers for supervised learning

tasks. Such number-state preserving networks automatically

resolve the issue of interpretability, provided that each sample

of the training data is encoded as a number state. Moreover, the

restriction to number-state preserving tensors endows networks

with a causal cone structure when contracted against number

states, similar to the causal cone structure present in isometric

networks when contracted against themselves. This property

allows for a broad class of number-state preserving networks,

including versions of MERA, to be efficiently trained as classifiers

for supervised learning problems. Furthermore, we demonstrate

numerically that networks built from this restricted class of

number-state preserving tensor perform well for several

example classification problems. The above considerations

indicate that number-state preserving tensors are a natural

restriction to impose when applying tensor methods to learn

from sets of classical data.

This manuscript is organized as follows. Firstly in Section

2, we characterize number-state preserving tensors and some

of their properties, then in Section 3 we formulate how

problems in supervised learning can be approached using

tensor networks. In Section 4 we propose an algorithm for

training number-state preserving tensor networks to correctly

classify a labeled dataset, while Section 5 we describe how

single tensor environments can be efficiently evaluated, a key

ingredient in the proposed training algorithm. Benchmark

numerical results for number-state preserving versions of

MPS, TTN and MERA applied to example classification

problems are presented in Section 6, and conclusions are

presented in Section 7.

2 Number-state preserving networks

Let L be a lattice of sites, with each site described by a local

Hilbert space of some dimension d. We label the basis states for

each site by integers, |z〉 ∈ {|0〉, |1〉, . . ., |d − 1〉}, which are

interpreted as particle number and are represented as unit

vectors,

0| 〉 �

1
0
0
0
..
.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, 1| 〉 �

0
1
0
0
..
.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, 2| 〉 �

0
0
1
0
..
.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, . . . (1)

A number state |ZL〉 (or, equivalently, a Fock state) on lattice
L is a product state with well-defined particle number,

ZL∣∣∣∣ 〉 � |z0〉|z1〉|z2〉 . . . , (2)

where superscripts are here used to denote lattice position.
Alternatively, if one is thinking in terms of spin degrees of
freedom, a number state can be defined as a product state
with a well-defined z-component of spin.

We now turn our considerations to transformations of

number-states implemented by certain types of oriented

tensor: these are tensors where each index has been fixed as

either incoming or outgoing. Any oriented tensor can be

interpreted as a mapping between states defined on an input

lattice L, whose sites match the incoming tensor indices, to states

on an output lattice L′, whose sites match the outgoing tensor

indices. We define an oriented tensor as number-state preserving

if it maps any number state defined onL to another number state

on L′. Several examples of number-state preserving tensors are

given in Figure 1. Let uklij be a four index tensor, with subscripts

denoting incoming indices and superscripts denoting outgoing

indices, as depicted in Figure 1b. Consider the reshape of u into

an input-output matrix, i.e., where the rows of the matrix

enumerate over the tensor product (i ⊗ j) of incoming indices

and columns enumerate over the tensor product of the outgoing

indices (k ⊗ l). It is easily understood that the property of u being

number-state preserving is equivalent to the property that each

row of the corresponding input-output matrix must have at most
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a single non-zero entry. Note that we also include in the

definition of number-state preserving tensors those where the

input-output matrix has rows with only zero entries; equivalently

these are tensors which can map some number states to the null

(or norm-zero) state. An important property of number-state

preserving tensors is that networks formed from their

composition, where outputs from one tensor are properly

matched with inputs to other tensors, are also number-state

preserving, as depicted in Figure 2A. This allows us to form

number-state preserving versions of commonly used tensor

networks, such as MERA, as shown in Figure 2B. However, it

is vital to realize that number-state preserving tensors do not

necessarily remain number-state preserving if the orientation of

their indices is reversed (i.e., the incoming and outgoing indices

are switched); thus number-state preserving networks can still

generate interesting superpositions and entangled states when

“run” in reverse.

For the main text of this paper we shall further restrict our

consideration to unital number-state preserving tensors, where

each tensor entry must be either a zero or a one, and each row of

the corresponding input-output matrix is required to have a

single non-zero entry. Note that this class of tensor maps

incoming number-states to outgoing number-states of the

same normalization and phase. The restriction to unital

tensors will be useful in simplifying their application to

supervised learning problems, although the formalism and

optimization algorithms that we present are still general for all

number-state preserving networks. There are many reasons why

one may also wish to consider networks comprised of non-unital

number-state preserving tensors, where entries can take any real

or complex value, and thus change the normalization of states

and introduce phases; the interested reader is directed to

Supplementary Appendix SA for further discussion.

Given that number-state preserving networks represent a

severely restricted class of tensor network states it may be

interesting to consider how much of their power has been

lost, for instance, in describing ground states of quantum

many-body systems. Although this remains to be explored, it

seems likely that majority of many-body systems will not have

ground-states that can be well-approximated by number-state

preserving tensor networks. However, there does exist several

examples of non-trivial quantum many-body systems related to

Motzkin paths [43], whose ground states possess interesting

entanglement and yet can be exactly represented by number-

state preserving networks [44, 45]. Investigation of the ability of

number-state preserving networks to describe general quantum

ground states remains an intriguing direction for future research.

3 Supervised learning in a tensor
product space

In this section we discuss how the task of supervised learning

can be formulated in terms of tensor networks. We consider

problems where each training sample �Z is represented as a length

N vector, with the ith component zi an element of Zd (the set of

integers modulo d), i.e., such that

�Zk � z0k, z
1
k, z

2
k, . . . , z

N−1
k[ ], (3)

where k is a label over the set of training samples. Every training

sample is assumed to be paired with a corresponding label

y ∈ Zc, where c represents the number of distinct categories

for the classification problem. The goal of the supervised learning

problem is to construct a function f that maps each sample of the

training set to its correct label,

f: �Zk ↦ yk. (4)

Although classifiers based on linear functions f have some

considerable utility [46], many non-trivial classification

problems require non-linear functions f in order to achieve

good accuracy.

We now describe how a tensor network can be implemented

as the classifying function in Eq. 4. At this point, one could be

tempted to believe that tensor networks would have limited

utility as classifiers as, given that tensors simply are extensions

FIGURE 1
(a) An example of a number-state preserving tensor that w
maps a number state 〈z0|〈z1| on its input indices to a number state
〈~z| on its output index. The tensor w can be equivalently
represented as (ii) an explicit mapping between number
states or (iii) as a matrix (after forming the product of input indices).
(b) An example of a number-state preserving tensor u between
two input and two output indices. (c) An example of a number-
state preserving tensor v between one input and two output
indices. Note that the three examples of number-state preserving
tensors from (a-c) are also unital, in that all of their non-zero
entries are the unit element.
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of matrices to higher dimensions, they are inherently linear

constructs. However, in order to recast the supervised learning

problem into a problem amenable to tensor networks, we first

(non-linearly) embed the training data into a higher dimensional

space, similar to a kernel method [47]. By using an appropriate

non-linear embedding, a linear classifier acting the higher

dimension space can reproduce the classifying power of non-

linear functions in the original space; thus it remains possible that

tensor network approaches could be competitive with classifiers

based on (non-linear) neural networks. Indeed, as will be argued

later in this manuscript, it can be understood that a tensor

network of sufficiently large bond dimension χ can, in

principle, obtain perfect accuracy for any training set of a

supervised learning problem as formulated above.

Let us recast each training sample �Zk as a number state,

denoted |Zk〉, defined in a vector space of total dimension dN.

Specifically, we associate each integer z ∈ Zd with a number state

|z〉 in a d-dimensional Hilbert space, represented as per Eq. 1,

such that the full state vector |Zk〉 is given as the tensor product

of the single site states,

Zk| 〉 � z0k
∣∣∣∣ 〉 z1k

∣∣∣∣ 〉 z2k
∣∣∣∣ 〉 . . . zN−1

k

∣∣∣∣ 〉. (5)

Similarly the data labels yk are recast as number states |yk〉 in
a c-dimensional space. The diagrammatic tensor notation for

these states is presented in Figure 3. Given this embedding of our

training data, a classifier can be represented as tensor network T
that maps states 〈Zin

k | from the lattice ofN sites of dimension d to

states 〈Zout
k | on a single site of dimension c,

〈Zin
k |T � 〈Zout

k |, (6)

see also Figure 2B for an explicit example.

In general, the accuracy of T as a classifier could be

quantified by evaluating the scalar products of the output

states with the label states, 〈Zout
k |yk〉, where a large scalar

product would indicate good classification. However, in the

particular case of unital number-preserving networks T , the

norm of states is preserved such that all scalar products

〈Zout
k |yk〉 either evaluate to unity (indicating correct

classification of the data sample with label yk) or to zero

(indicating incorrect classification of the data sample). Thus,

the number of correctly classified samples Ncorrect simply

evaluates as the sum over all the scalar products,

Ncorrect � ∑
k

〈Zin
k

∣∣∣∣T yk

∣∣∣∣ 〉. (7)

The diagrammatic tensor notation for Eq. 7, in the particular

case that T is a binary MERA, is presented in Figure 4. It follows

we should use Eq. 7 as the cost function for training the tensor

network T for the supervised learning problem: the tensors

contained within T should be optimized as to maximize

FIGURE 2
(A) A number-state preserving network is formed through composition of number-state preserving tensors u andw, which maps input number
state 〈Z| to output 〈 ~Z|. (B) A binary MERA tensor network T , assumed to be composed of number-state preserving tensors, maps an input number
state 〈Z in| on a lattice of 24 sites to an output number state, 〈Zin|T ↦〈Zout|, on a single site.
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Ncorrect. Methods for achieving this are discussed in the following

section of this manuscript.

Before moving on, we remark that the formalism we

described (or similar formalisms consider previously [21, 23,

26–28, 31]) for addressing supervised learning problems using

tensor networks could, in principle, employ arbitrary tensor

networks T as classifiers (not only those built from number-

state preserving tensor networks). However, it is only for certain

types of network, such as MPS and TTN, that scalar products of

the form 〈Zin
k |T |yk〉 can be efficiently evaluated. The cost of

(exactly) evaluating the overlap of a product state with a more

sophisticated tensor network state, such as a MERA, typically

does not scale efficiently with system size. Thus, one would

expect that a general MERA network would only be

computationally feasible as a classifier for problems with a

small number of sites (or variables). In contrast the output

state 〈Zout
k | of Eq. 6 can be efficiently evaluated for any

number-state preserving tensor network, with cost that scales

only linearly in the number of tensors in T . Nonetheless, the

result that a scalar product 〈Zin
k |T |yk〉 is efficient to evaluate

does not in itself imply that the network T can be efficiently

trained. In Section 5 we formulate additional requirements for

network T that are sufficient to allow for efficient training.

4 Single tensor updates

In this section we propose a method to optimize the tensors

of a network T to maximize the number Ncorrect of correctly

identified training samples in a supervised learning problem, as

formulated in Eq. 7. We follow the same strategy of single tensor

updates developed in the context optimizing MERA [48], where

only a single tensor in the network is changed at any time while

all other tensors in the network are held fixed. These single tensor

updates can then be organized into “sweeps,” in which all tensors

in the network are optimized in turn, and the sweeps iterated

until the entire network is sufficiently converged.

FIGURE 3
(A) The kth training sample �Zk is given as a lengthN vector of integers zk (modulo some specified base d), and is accompanied by label yk. (B) The
training sample �Zk can alternatively be expressed as a unit vector |Zk〉 in the tensor product space of dimension dN formed frommapping each base-
d integer to a number-state |zk〉, see Eq. 1. (C) Diagrammatic tensor representation of training sample |Zk〉.

FIGURE 4
(A) The total number correctly classified samples Ncorrect is
given as the inner product of the labels |yk〉 against the network T
applied to the training data 〈Z in

k |, summing over all training
samples k. (B) Diagrammatic representation of the equation
from (A) which evaluates to Ncorrect. (C) For any chosen tensor,
such as the shaded tensor u in (B), the network for Ncorrect can be
factorized into a product of the tensor with its environment Γu,
formed from contracting the entirety of the network sans u. The
environment Γu allows the optimal tensor u that maximizesNcorrect

(with the other tensors in T held fixed) to be identified.
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Key to this optimization strategy is the notion of a tensor

environment, which can be understood as the derivative of the

network with respect to a single tensor. Specifically, given a

network that evaluates to a scalar such as that from Figure 4B, the

environment Γu of a tensor u results from contracting the entire

network sans the particular tensor u under consideration. It

follows that the number of correctly classified samples Ncorrect

from Eq. 7 can always be expressed as the scalar product of a

tensor u ∈ T with its environment Γu,

Ncorrect � tr u · Γ†u( ), (8)

where, for notational simplicity, we have recast u and Γu into

input-output matrices, see Figure 4C. We relegate a description

of the general method for computing environments Γu to Section
5 of the manuscript, and proceed here assuming Γu is already

known.

Let us now turn to the problem of finding the optimal

number-state preserving tensor uopt.,

uopt. ≡ argmax
u

tr u · Γ†u( )[ ] (9)

which maximizes the number of correctly identified samples

Ncorrect of Eq. 8, given a known environment Γu. Here it is easy to

see that uopt. can be built by simply identifying the location of the

maximal element in each row of Γu and then placing the unit

element at the corresponding location in each row of uopt., with

all other entries zero. Note that if the maximal element in a row of

Γu is degenerate then uopt. is not uniquely defined; one can still

obtain an optimal solution by simply selecting one of the

maximal elements in that row of Γu. Let us consider a

concrete example: imagine we are updating a tensor u with a

4 × 4 input-output matrix of the form given in Figure 1b-iii, and

assume that the environment has been evaluated as

Γu �
10 12 9 8
5 6 9 2
21 18 7 22
12 15 13 14

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (10)

Then the (unital and number-state preserving) 4 × 4 matrix

uopt. that maximizes Eq. 8 is given as

uopt. �
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (11)

and the number of correctly classified training samples after this

optimal update is given asNcorrect = (12 + 9 + 22 + 15) = 58. Some

remarks are in order regarding this optimization strategy. Firstly,

we notice that unlike many commonly used algorithms for

training neural networks, our approach is not based upon a

gradient descent. Instead we can directly “hop” to the true

maximum for any single tensor (given that the other tensors

in the network are held remain fixed), provided the environment

is exactly known. While this strategy has some advantages over

gradient based methods with respect to avoiding local maxima,

getting stuck in a solution that is not globally optimal can still

remain a possibility depending on the problem until

consideration.

We now discuss methods to introduce some randomness into

the optimization, in order to reduce the possibility of getting

trapped in a local maxima. One approach could be to employ a

similar strategy as used in the stochastic gradient descent

methods [49], where randomness is introduced by using only

select “batch” of training samples for each update. Instead, here

we advocate a different strategy inspired by Monte Carlo

methods [50] used in sampling many-body systems. Rather

than updating to the optimal tensor uopt. at each step, we

propose to allow updates to sub-optimal solutions of Eq. 8,

with a probability diminishes exponentially in relation to how

far the solution is from the optimal solution. For this purpose we

first introduce the difference matrixΩ, given by subtracting from

each row of Γ the maximal element within the row,

Ωij � Γij −max
j

Γij( ). (12)

For the example environment Γu given in Eq. 10 the

corresponding difference matrix is

Ω � −
2 0 3 4
4 3 0 7
1 4 15 0
3 0 2 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (13)

We then use the difference matrix to generate a matrix ptrans.

of transition probabilities, defined element-wise as

ptrans.
ij � exp Ωij/α( )

∑
j
exp Ωij/α( ) (14)

where α is a tunable parameter that sets the amount of

randomness. For the example difference matrix Ω of Eq. 13

and setting α = 2 we get the transition matrix

ptrans. �
0.21 0.58 0.13 0.08
0.10 0.16 0.72 0.02
0.35 0.08 0.00 0.57
0.10 0.45 0.17 0.28

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (15)

The transition matrix is then used to perform a stochastic

update of the tensor u under consideration: values in each row

of ptrans. set the probability for the unit element in the equivalent row

of the updated u to be placed at that particular location (note that Eq.

14 has been defined such that each row of ptrans sums to unit

probability). Notice that in the limit α→ 0 the matrix ptrans. tends to

uopt. (provided Γ had no degeneracies in its maximal row values),

since all non-optimal transitions are fully suppressed. Conversely, in

limit α → ∞ all probabilities in ptrans. tend to the same value,

representing completely random transition probabilities.
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5 Evaluation of tensor environments

Here we describe evaluation of tensor environments, crucial

to the optimization algorithm discussed in the previous section.

For simplicity, we describe this evaluation assuming the tensor

network T under consideration is a binary MERA, although the

same methodology can be employed for arbitrary (number-state

preserving) tensor networks.

Rather than tackling the problem of computing tensor

environments Γ directly, we first introduce the concept of

configuration spaces |ϕ〉. Proper use of configuration spaces

|ϕ〉, which play an analogous role to the local reduced density

matrices ρ used to optimize tensor networks in the context of

quantum many-body systems, will greatly simplify the

subsequent evaluation of environments. Let us assume that

the output index of the tensor network T under consideration

has been fixed in some specified label state |y〉, and that the lattice
on which it is defined has been partitioned into a region A and its

compliment B. Then, given a number state |ZA〉 on region A, we

define the configuration space |ϕB〉 as

ϕB
∣∣∣∣ 〉 � ∑

configs: σ

ZB
σ

∣∣∣∣ 〉, (16)

where the sum runs over all valid configurations σ of number

states |ZB
σ 〉 defined on region B such that the combined number

state |ZA〉|ZB
σ〉 is classified by T into the correct category |y〉,

i.e., such that

〈ZA
∣∣∣∣〈ZB

σ

∣∣∣∣( )T y
∣∣∣∣ 〉 � 1. (17)

An example of a network that could be contracted to evaluate

a configuration space |ϕB〉 is depicted in Figure 5A. It is seen that

this network can be simplified, as shown Figure 5B, by lifting the

input number state |ZA〉 through tensors in T where-ever

possible (i.e., where-ever a tensor has a number state available

on all of its incoming indices), using the number-state preserving

tensor properties as outlined in Figure 1. It is convenient to define

the configuration causal cone C(B) associated to region B as the

set of tensors remaining in the network T after this

simplification; equivalently C(B) can be defined as the set of

tensors C ∈ T whose output state can be affected by the choice of

input state on region B.

Notice that this configuration causal cone C(B) is precisely
equivalent to the (standard) causal cone [36, 51] that would

emerge from an isometric MERA for the same region B, defined

as the set of tensors that can affect the local reduced density

matrix ρB. However, the origins of these causal cones are

drastically different: the causal cones in isometric MERA

result arise due to the isometric constraints imposed on

tensors, whereas the number-state preserving tensors proposed

in this manuscript are not required to be isometric. Similarly,

configuration causal cones arise only in networks that preserve

number states, and are thus ill-defined for generic MERA [Note

that it is, however, possible to have networks with tensors that are

both simultaneously isometric and number-state preserving, see

Supplementary Appendix SA for further discussion]. Despite the

difference in the origins of these two forms of causal cone, it is not

a fluke that they were exactly equivalent in the previous example.

It can be understood that the configuration causal cones in any

number-state preserving tensor network are always equivalent to

the causal cones found in an isometric tensor network of the

same geometry, provided that the index orientations (specifying

incoming and outgoing indices) match between the networks.

Given this equivalence, we will henceforth drop the distinction

between the two definitions, such that the term “causal cone” can

refer to either definition.

The process of evaluating the configuration space for a region

B of three sites from a binary MERA is depicted in Figure 6A.

This evaluation can be formulated as a sequence of contractions

that each “lower” the configuration space through the causal

cone,

. . . |ϕB
2[ ]〉→|ϕB

1[ ]〉→|ϕB
0[ ]〉 (18)

FIGURE 5
(A) The network T with fixed output label |y〉 is applied to a
number state 〈ZA| defined only on a sub-region A of the initial
lattice, with the state on the complimentary region B left open. (B)
The input number-state 〈ZA| is lifted through T as much as is
possible by using the number-state mapping properties depicted
in Figure 1. The (configuration) causal cone C(B) associated to
region B describes the remaining set of tensors C ∈ T after this
lifting; this is equivalently the set of tensors whose output states
can be affected by the choice of input state on region B.

Frontiers in Physics frontiersin.org07

Evenbly 10.3389/fphy.2022.858388

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.858388


where bracketed subscripts denote configuration spaces at

different depths within the network. Each of the lowering

contractions is implemented by one of two geometrically

different lowering operators, depicted in Figure 6B, which are

the direct analogues to the descending superoperators [48] used

in the evaluation of density matrices from isometric MERA.

In our example using a binary MERA, the cost of evaluating

|ϕ[0]B 〉 for a region B of three contiguous sites scales at most

linearly with the network depth, since the form of the lowering

operators are self-similar at all depths. In a general (number-

state) preserving network the computational cost of evaluating

configuration spaces will be related to the causal structure of the

network: the leading order cost will scale exponentially with

maximum width of the causal cones. Thus it is apparent that not

all number-state preserving tensor networks can be efficiently

evaluated for local information (characterized by the

configuration space |ϕB〉); only those for which the maximum

causal width is not too large. However, since MERA are precisely

designed to have bounded causal width (i.e., the causal width

never spreads beyond some small number of sites), it follows that

number-state preserving versions of MERA networks precisely

fall within the class of networks that can be efficiently evaluated.

Given that the evaluation of configuration spaces has been

understood, we now turn to the task of building the environment

Γu associated to tensor u, as depicted in Figure 7, which is

accomplished as follows. First we lift the initial number state

|Zin
k 〉 to a new number state | ~Zk〉 that lives on the boundary of

causal cone C(u) associated to tensor u, as depicted in Figure 7A.

Then we compute the configuration space 〈~ϕuk | defined on the

output indices of tensor u, as depicted in Figure 7B. Then the

environment Γu is given by taking the outer product of the

configuration space 〈~ϕuk | with the piece of the state | ~Zk〉
supported on the input indices of u, denoted | ~Zu

k〉, while

summing over all training samples k,

Γu � ∑
k

~Zu

k

∣∣∣∣∣ 〉〈~ϕu

k

∣∣∣∣∣, (19)

see also Figure 7C.

6 Benchmark results

In this section we present benchmark results for how

number-state preserving tensor networks perform as classifiers

in some simple problems. The goal here is to establish the

feasibility of our proposal, rather than to establish

performance for challenging real-world tasks, which will be

considered in future work. In particular we demonstrate 1)

that the proposed optimization algorithms can efficiently and

reliably train the networks under consideration, and 2) that

number-preserving networks perform comparably well to

unrestricted networks for classification tasks.

FIGURE 6
(A) Sequence of contractions used to evaluate the configuration space |ϕB[0]〉 associated to region B, starting from the causal cone C(B) as
depicted in Figure 5B. At each step in the evaluation the tensors in shaded region are contracted into a single tensor. (B) For any region B of three
contiguous sites on the initial lattice, the configuration space |ϕB[0]〉 can be evaluated using a composition of the left/right lowering operators.
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6.1 Parity classification

For this first test, we benchmark the performance of a number-

state preservingMPS for classifying the parity of binary strings. Here

each test sample is a length-N binary vector �Zk � [0, 0, 1, 0, 1, . . .],
which is labeled yk ∈ {0, 1} according to its parity. The MPS that we

use is depicted in Figure 8, and is built from tensors that are number-

state preserving only when acting from left-to-right. In this problem,

we are free to choose the lengthN of the binary strings as well as the

number nsamp. of training samples to use (as these can be randomly

generated). We also have two hyper-parameters associated to our

method: the maximal bond dimension χmax of the MPS and the

parameter α from Eq. 14 that controls the amount of randomness in

the optimization. For each set of parameters investigated we

performed 100 trial runs, each run starting with a randomly

generated training set and a randomly initialized MPS, and then

performed at no more than 100 optimization sweeps in each trial.

The most computationally demanding trials (which consisted of: a

length N = 20 chain, nsamp. = 20,000 training samples, a bond

dimension of χmax = 10, and 100 optimization sweeps) each took

about 5 s to run on a single 3 GHz desktop CPU. At the end of each

trial we also test the generalization error of the MPS classifier by

evaluating its accuracy in classifying the parity of all possible 2N

binary strings.

A summary of the results from a large number of trials is

presented in Table 1. For binary strings of lengthN = 16 andN = 20

we used 1,300 and 20,000 training samples respectively; these

numbers were chosen as they represent about 2% of all possible

binary strings in each case (of which there are 2N in total). The

randomness parameter was fixed at α = 1 for N = 16 and α = 5 for

N = 20 length chains; these values were determined as adequate

through small amount of experimentation (and are probably not

those which would give optimal performance). Somewhat

surprisingly, we found that each trial would produce only one of

two outcomes: 1) the optimization would fail completely, achieving

only slightly over 50% classification accuracy on the set of all binary

strings, or 2) would converge to a perfect parity classifier, with 100%

classification accuracy for all length-N binary strings. From Table 1

we see the proportion nperfect of perfect classifiers obtained increases

dramatically as the bond dimension χmax was increased, reaching 96/

100 for N = 20 and χmax = 10. This is expected, as networks with

more degrees of freedom are less likely to be trapped in local

minima. We found that the likelihood of obtaining a perfect

classifier was also greatly improved when using a larger number

of training samples, although do not provide this data here. In a

recent work by Stokes and Terilla [52] standard (unrestricted) MPS

were also trained to classify the parity of binary strings, and

produced comparable results for similar strings lengths and

training set sizes. This is a good indication that, for this

classification problem, number-state preserving MPS are as

powerful as unrestricted MPS.

6.2 Division-by-7 classification

For the second test we classify binary strings, interpreted

as a base-2 representation of an integer, by their remainder

under division by 7. We again use a number-state preserving

MPS, employing the same set-up as used for the parity

classification considered previously. A key difference here is

that the samples now take one of seven different labels, yk ∈ {0,
1, 2, 3, 4, 5, 6}.

A summary of the results from these trials is presented in

Table 1. For binary strings of length N = 16 and N = 20 we used

3,000 and 30,000 training samples, respectively; although this was

more than was used for the parity classification it is still less than

5% of the possible binary strings. Similar to the parity

benchmark, we here found that each trial would either fail

completely, producing no better than a random results, or

would converge to a perfect division classifier, with 100%

FIGURE 7
The sequence of steps used to evaluate the environment Γu
of the shaded tensor u. (A) The initial state 〈Z in

k | is transformed
through the network to form a new number state on the boundary
of the causal cone C(u) associated to u. (B) The configuration
space |~ϕuk〉, defined on the output indices of u, is computed
through use of the left/right lowering operators, as in Figure 6. (C)
The environment Γ is formed by taking the outer product of the
configuration space |~ϕk〉with the state 〈 ~Zu

k | defined the input of u,
summing over all training samples k, see also Eq. 19.

Frontiers in Physics frontiersin.org09

Evenbly 10.3389/fphy.2022.858388

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.858388


classification accuracy for all length-N binary strings. As with the

parity benchmark, it is seen that the proportion of perfect

classifiers obtained increases steadily with the bond dimension

χmax. However, this problem required larger dimensions χmax

than used for the parity benchmark, which is expected since here

we have many more classification categories.

6.3 Height classification

The final test problem that we consider, which we refer to

as height classification, takes length-N strings of integers from

the set z ∈ { − 1, 0, 1} and classifies them with labels yk ∈ {0, 1,

2} depending on whether the sum (under regular addition) of

the integers is positive, zero or negative, respectively. We test

the effectiveness of both number-state preserving binary TTN

and binary MERA as classifiers for this problem, working with

strings of length N = 24. A binary MERA of the form depicted

in Figure 2B is used, and is compared with the binary TTN that

would result from restricting to trivial disentanglers u

throughout the MERA network. Given that the problem is

translation-invariant, we imposed that all tensors within a

network layer are identical. In terms of the optimization, this

is achieved by updating using the average single-tensor

environment from all equivalent tensors within a network

layer. We found that the injection of randomness into the

optimization was unnecessary, possibly due to the imposition

of translational invariance, such that the randomness

parameter α from Eq. 14 could be set at α = 0. This left the

bond dimension of the networks as the only hyper-parameter

TABLE 1 Summary of results forMPS applied to the parity classification (above) and division-by-7 classification (below). Parameters are as follows:N is
the length of binary strings classified, nsamp is the number of samples in the training set, χmax is the maximal MPS bond dimension, parameter α
controls the randomness in the optimization as per Eq. 14, nperfect is the proportion of trial runs that yielded perfect (100% accuracy) classifiers,
nsweeps is the average number of variational sweeps required to reach convergence.

Parity classification

N nsamp χmax α nperfect nsweeps

16 1,300 4 1 38/100 31

16 1,300 6 1 63/100 28

16 1,300 10 1 93/100 25

20 20,000 4 5 34/100 26

20 20,000 6 5 63/100 21

20 20,000 10 5 96/100 27

Division-by-7 Classification

16 3,000 9 1 92/100 43

16 3,000 12 1 100/100 36

16 3,000 16 1 98/100 29

20 30,000 9 5 75/100 56

20 30,000 12 5 88/100 44

20 30,000 16 5 96/100 26

FIGURE 8
(A) Tensor v is a number-state preserving tensor mapping from two indices to a single index. (B) An MPS network T is built from tensors v that
preserve number-states when mapping from left-to-right. The MPS is trained as a classifier by maximizing the scalar product ∑k〈Z in

k |T |yk〉.
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in the calculation, which was fixed at maximum dimension

χmax = 9.

The benchmark results are displayed in Figure 9, and

consisted of 100 trials, each trial starting from

12,000 randomly generated training samples (with

4,000 samples from each label category) and a randomly

initialized network. Rather than running separate TTN and

MERA trials they were instead combined: the first 20 sweeps

were performed with trivial disentanglers u, such that

underlying the network was a TTN, the u were then

“switched on” for the remaining 40 sweeps such that the

network became a MERA. At the conclusion of each trial,

the generalization error was estimated by applying the trained

classifiers to a randomly generated test set of the same size as

the training set. Most of the trials converged smoothly, with

the proportion of wrongly identified testing samples

decreasing monotonically with optimization, although

about 5 trials failed to properly converge (yielding

classifiers with greater than 30% error). Discarding the

worst 10 trials from consideration, of the 90 remaining

trials the TTN gave average training/test errors of 14.15%

and 14.91%, while MERA gave substantially reduced average

training/test errors of 1.13% and 1.86%. These results clearly

demonstrate the extra representation power endowed through

use of the disentanglers u in MERA. Impressive is that both

networks generalized well, with only relatively small

differences between test and training accuracies, despite

being trained on less than 5 × 10–6 percent of the possible

324 training samples.

7 Conclusion

We have proposed the class of number-state preserving

tensor networks for use as classifiers in supervised learning

tasks and have shown that a large class of these networks,

specifically those with bounded causal structure, are efficiently

trainable for large problems. In particular we have described a

training algorithm that, for any chosen tensor in the network

under consideration, exactly identifies the optimal tensor for that

location (i.e., that which maximizes the number of correctly

classified training samples), all with cost that scales only linearly

in number of training samples. Importantly, the class of

efficiently trainable number-state preserving networks includes

realizations of sophisticated networks such as MERA, which

would otherwise be computationally intractable. As such, we

believe this could be the first computationally viable proposal

which would allow MERA, close tensor network analogues to

convolutional neural networks, to be applied as classifiers for

challenging tasks such as image recognition. This remains an

interesting direction for future research.

Although number-state preserving tensors represent a highly

restricted class of tensor, the preliminary results of Section 6 are

encouraging that this class is sufficient when applying tensor

networks as classifiers for learning problems as outlined in

Section 3. It still remains to be seen whether number-state

preserving tensor networks are as powerful as generic tensors

networks for these tasks; this question requires further theoretical

and numerical investigation. However it is relatively easy to

understand that, in the limit of large bond dimension, a

FIGURE 9
(left) Results of training TTN and MERA for the height classification problem, displaying how much of training set is wrongly classified as a
function of the number of optimization sweeps performed. The first 20 sweeps are performed while keeping trivial disentanglers u, such that
underlying the network is a TTN, while the u are then “switched on” for the remaining sweeps such that the network becomes a MERA. The figure
displays results from 10 different trials, where each trial starts with a randomly generated training set and randomly initialized network. (right)
Average results of the training data from 100 trial runs (after discarding the 10 worst trials). Dashed lines show the average generalization error
computed from applying the trained TTN and MERA applied to a randomly generated test set. For TTN we get average training/test errors of 14.15%
and 14.91%, while for MERA we get average training/test errors of 1.13% and 1.86%.

Frontiers in Physics frontiersin.org11

Evenbly 10.3389/fphy.2022.858388

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.858388


number-state preserving tensor network could in principle

achieve 100% accuracy on any training problem outlined in

Section 3. The reasoning follows similarly to the argument

that a generic tensor network can represent an arbitrary

quantum state in the limit of large bond dimension. Consider,

for instance, the MERA depicted in Figure 2B. One could

increase the bond dimension of indices within the network

until the output index of each w tensor matches the product

of its input dimensions, in which case each w could be fixed as a

trivial identity tensor when viewed as an input-output matrix. In

this scenario, the top tensor wtop could implement an arbitrary

classifier that would perfectly map every training sample to its

designated label, regardless of the training data given.

A major difficulty with the use of MERA in D = 2 or higher

spatial dimensions [37, 38] is their high scaling of computational

cost with bond dimension χ. However, there is reason to be more

optimistic for their application as classifiers. The cost of contracting

an isometric metric MERA for a density matrix, necessary for its

optimization towards the ground state of a local Hamiltonian, is

related to the size of the maximum causal width of the network. For

instance, the most efficient known 2D isometric MERA [38] has a

causal width of 2 × 2 sites, such that the density matrices within the

causal cone have 8 indices. The cost of computing these density

matrices can be shown to scale at most as O (χ16). However, while a

number-state preserving version of this 2DMERAwould also have a

causal width of 2 × 2 sites, the relevant configuration space |ψ〉
within the causal cone would only have 4 indices (which follows as

the density matrix involves both the bra and the ket state, whereas

the configuration space only involves the ket). Thus the cost of

optimizing a number-state preserving version of this 2D MERA,

where the key step is the evaluation of configuration spaces, will scale

roughly as O (χ8) (i.e., the square-root of the cost of optimizing an

isometric MERA for a quantum ground state). This square-root

reduction in cost scaling as a function of bond dimension χ from

isometric to number-state preserving networks will hold in general,

such that number-state preserving networks could realize much

larger bond dimensions given a fixed computational budget. This

advantage is somewhat mitigated by the fact that the cost of

optimizing a number-state preserving network comes with a

factor nsamp related to the size of the training set, which could be

very large. However, it would also be straight-forward to parallelize

the evaluation of environments over the samples.

Although the main text of this manuscript focused on

number-state preserving versions of MERA, many other forms

of hierarchical network could also be of useful as classifiers as

discussed further in Supplementary Appendix SB1. In particular

the network of Supplementary Figure SB2, which does not have

an isometric counterpart, seems to be the closest tensor network

analogue to a convolutional neural network. Rather than

disentanglers, this network uses δ-function tensors to

effectively allow neighboring w tensors to “read” from the

same boundary sites, mirroring the overlap of feature maps

arising in a convolution (and similar to the generalized

networks recently proposed in Ref. [31]). It would be

interesting to compare the effectiveness of this structure versus

a traditional MERA, which will be considered in future work.
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