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Mitochondria are dynamic organelles that integrate bioenergetics, biosynthesis, and
signaling in cells and regulate redox homeostasis, apoptotic pathways, and cell
proliferation and differentiation. Depending on the environmental conditions, the
mitochondrial morphology dynamically changes to match the energy demands. The
mitochondrial dynamics is related to the initiation, migration, and invasion of diverse
human cancers and thus affects cancer metastasis, metabolism, drug resistance, and
cancer stem cell survival. We reviewed the current image-based analytical tools and
machine-learning techniques for phenotyping mitochondrial morphology in different
cancer cell lines from confocal microscopy images. We listed and applied pipelines
and packages available in ImageJ/Fiji, CellProfiler, MATLAB, Java, and Python for the
analysis of fluorescently labeled mitochondria in microscopy images and compared their
performance, usability and applications. Furthermore, we discussed the potential of
automatic mitochondrial segmentation, classification and prediction of mitochondrial
abnormalities using machine learning techniques. Quantification of the mitochondrial
morphology provides potential indicators for identifying metabolic changes and drug
responses in cancer cells.
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INTRODUCTION

Cancer cells have different metabolic profiles from healthy cells to ensure their unregulated
proliferation and survival in tumor microenvironments. Aerobic glycolysis, which is known as
the Warburg effect, is a hallmark of cancer cell metabolism [1]. In addition to ATP generation via
mitochondrial oxidative phosphorylation (OXPHOS), glycolytic flux is often enhanced despite the
presence of oxygen. Aerobic glycolysis provides metabolic intermediates for tumor biomass
expansion, is an alternative pathway for generating energy (ATP), reduces the oxygen
requirement of the hypoxic tumor interior, evades mitochondria-mediated apoptosis, and
exports lactate to create an acidic extracellular environment that favors cancer cell survival.
However, cancer cells exhibit metabolic plasticity to survive and thrive in various tumor
microenvironments [2]. In addition to aerobic glycolysis, previous studies have revealed that
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cancer cells could adopt a variety of metabolic phenotypes [3, 4],
such as high OXPHOS, intermediate type (high glycolysis and
OXPHOS), and idling type (low glycolysis and low OXPHOS),
and gene expression profiles predicted via systems biology
simulations. Cancer cells might reconfigure their metabolic
pathways to facilitate epithelial-mesenchymal transition and
metastasis [5].

As the hub for bioenergetics, metabolism, signal transduction,
and cellular survival, mitochondria play crucial roles in cancer
cell proliferation, progression, and response to treatment [6–9].
Mitochondria are also motile organelles that constantly undergo
fission, fusion, mitophagy, and biogenesis cycles. Processes called
mitochondrial dynamics are crucial for the mitochondrial
network, DNA (mtDNA) integrity, ATP synthesis, ROS
generation, and cell cycle progression [6, 10, 11].
Mitochondrial fusion is associated with a well-developed
mitochondrial network and increased OXPHOS capacity. In
contrast, mitochondrial fission is related to fragmented
mitochondria, enhanced mitophagy (elimination of damaged
mitochondria), increased uncoupling, and increased ROS
production [12]. The cellular mitochondrial phenotype
correlates with the cellular metabolic state.

At the molecular level, mitochondrial fission/fusion events are
driven by dynamin-related GTPases [10]. Mitochondrial fusion is
mediated by mitofusins (Mfn-1 and Mfn-2) [13] located on the
outer mitochondrial membrane (OMM) and optical atrophy-1
(Opa-1) [14, 15] proteins located on the inner mitochondrial
membrane (IMM), and these proteins drive OMM and IMM
fusion via sequential steps [16], respectively. Mitochondrial
fission is mediated by dynamin-related protein 1 (Drp-1) [17]
recruited to the OMM at endoplasmic reticulum (ER)-
mitochondria contacts [18] and by other cofactors, such as
mitochondrial fission factor (Mff), mitochondrial fission 1
protein (Fis1), MiD49, and MiD51 [19]. The activities of
fusion/fission proteins are not only regulated by gene
expression levels but also controlled by posttranslational
modifications [10, 20], metabolic cues [12], cellular signaling,
and crosstalk between fusion and fission proteins. For instance,
Fis1 exhibits dual functions of blocking fusion proteins (Opa-1,
Mfn-1, and Mfn-2) and enhancing the recruitment of the fission
protein Drp-1, which results in the fragmentation of
mitochondria [21].

Cancer cell progression and metastasis involve alterations
in the mitochondrial network morphology. In general, a
fragmented mitochondrial network facilitates cancer cell
proliferation and metastasis [22]. The downregulation of
fusion proteins (e.g., Opa1 and mitofusins) and the
upregulation of fission proteins (e.g., Drp-1) have been
observed in various cancer cells, with some exceptions [10].
In addition to genomic and proteomic profiles, the
mitochondrial network morphology might serve as
biomarkers for the cancer cell metabolic status and response
to antitumor treatments [23]. A previous study revealed that
an increased fraction of punctate mitochondria is associated
with increased glycolysis relative to OXPHOS and the response
to antitumor drugs in cancer cell lines and cancer cells
harvested from patients.

Alterations in the mitochondrial morphology and structure
may indicate early events of carcinogenesis or tumor progression
[24], which suggests that the mitochondrial phenotype might
provide a biomarker for cancer diagnosis and treatment targets
[25, 26]. However, the identification of reliable and quantitative
tools for evaluating the mitochondrial morphology and network
parameters has been challenging [27]. Imaging techniques
provide potential solutions. Electron microscopy has been used
to investigate the morphologies of the mitochondrial network in
human cancer, particularly in pathological tissues [28, 29].
However, electron microscopy requires special preparation
procedures and is not applicable to live specimens.
Consequently, imaging using confocal microscopy is another
solution for measuring mitochondrial morphological features.
Nonetheless, manually analyzing and tracking microscopy
images of mitochondrial structures can be labor intensive, and
image analysis techniques are thus crucial for obtaining objective
and quantifiable results. Hence, in this review, we focus on
automatic (or semiautomatic) pipelines established for
confocal microscopy image analysis, specifically for analyzing
the mitochondrial morphology and dynamics in live cells.

Image Processing Pipelines
Fluorescence microscopy images intuitively show the shapes,
intensities, positions, and distributions of labeled organelles to
study their morphologies. Mitochondria have been labeled with
mitochondria-targeting fluorescent proteins or organic dyes, such
as MitoTracker Red, tetramethylrhodamine methyl ester
perchlorate (TMRM), and JC1, for imaging [30, 31]. The
acquisition of images using microscopy is often classified
spatially (2D images vs. 3D images) and temporally (snapshot
images vs. time-lapse images). Flat, two-dimensional (2D) images
only capture a single slice of the xy-plane. The information along
the z-axis is limited. However, with the pinhole nature of confocal
microscopes blocking out-of-focus light, a three-dimensional
(3D) image is obtained by taking multiple z-slices (known as a
z-stack). Although 3D images reveal more of the cells’ internal
structure, the imaging of multiple slices is more time consuming,
requires more computational power to process the resulting data,
and risks an overdose of incoming photons, which leads to
phototoxicity and photobleaching. A similar rule applies to
taking multiple snapshots for a time-series image. Cells and
mitochondria are prone to damage from the intense laser
beams under the confocal microscope, and the fluorescent
signals decrease as more images are taken over time.

After obtaining fluorescent images, the next step is to
determine a proper method for analyzing the images and
revealing the morphological information. Although manual
classification is straightforward and intuitive, it is laborious
and lacks precise and quantitative criteria. Therefore,
researchers have developed software and pipelines to
automatically process and analyze images in a high-
throughput manner. Several image analysis tools or software
packages are currently available with detailed pipelines and
procedures or are released as open-source software (Table 1).
The selection of tools from all of these sources according to the
image features and functional needs can make image analysis
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TABLE 1 | List of publicly available tools for analyzing the mitochondrial morphology and dynamics.

Software/
Algorithm

Image
dimension

Input images Output analysis Features Tested cells Reference Link

CellProfiler
Rees et al. 2D TIF images with a

mitochondrial
channel and nucleal
channel

Count, area and
intensity of nuclei,
mitochondrial
puncta, and
cytoplasm

Step-by-step
construction and
detailed description
of the execution and
parameters of
automated
segmentation to
allow user
implementation

SN4741 mouse midbrain-
derived neuronal cell line (a
rotenone-based in vitro
Parkinson’s disease
model)

[35] —

Reis et al. 2D Fluorescent images
of mitochondria.
(softWoRx is used
for deconvolution)

Parameters
provided by
CellProfiler measure
functions such as
area and shape,
Zernike, and texture-
related parameters

Classifies
mitochondria into
networked,
fragmented, and
swollen
morphologies using
a Random Forest
algorithm

Human MCF-7 breast
cancer cells

[36] —

ImageJ
MiNA 2D/3D

(limited
options)

Single-channel
image with 8-bit or
16-bit color

Skeleton
parameters

Focuses on a
skeleton analysis of
mitochondrial
networks and
classifies
mitochondria into
two types:
individuals and
networks

C2C12 cells, SH-SY5Y
cells

[45] https://github.com/
StuartLab/MiNA

1) Parameters
related to branch
lengths: mean
branch length,
median branch
length, standard
deviation of branch
lengths
2) Parameters
related to the
number of branches:
individuals,
networks, mean
branches/network,
median branches/
network, standard
deviation, branches/
network

Mitochondria
Analyzer

2D/3D Fluorescent images
of mitochondria

Particle analysis
such as “Mito
Count”, “Area”,
“Perimeter”, “Form
Factor” and “Aspect
Ratio” for 2D images
and “Volume”,
“Surface Area”, and
“Sphericity” for 3D
images

Performs particle
analysis and
skeleton analysis
and provides various
parameters for both
2D and 3D images

MIN6 cells, pancreatic β-
cells

[46] https://github.com/
AhsenChaudhry/
Mitochondria-
Analyzer

Skeleton analysis
such as “Branches”,
“Branch Junctions”,
“Branch Length”
and “Mean Branch
Length”

Chustecki et al. 2D Time-series images
of mitochondria

Cell areas and
dynamic and
network
parameters, such as
the diffusion rate,
moving speed,
connectivity, and

Dynamic analysis
focusing on the
colocalization
events, which is the
most suitable
approach for
analyzing the
morphology of

Wild-type (WT) andmutant
A. thaliana

[47] —

(Continued on following page)
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TABLE 1 | (Continued) List of publicly available tools for analyzing the mitochondrial morphology and dynamics.

average degree of
the social network

discrete and
separated
mitochondria

MATLAB
Mytoe 2D TIF/most common

image file types
Mitochondrial
length, tortuosity,
intensity, number of
branches and
motion parameters
(speed,
direction, etc.)

Applying optical flow
estimation to time-
series images for
motion analysis

U2OS cells [52] https://sites.google.
com/view/
andreribeirolab/
home/software

Multipage and
multichannel
images are
supported

MitoSPT 2D Time series images Net distances
traveled by the
mitochondria and
individual
mitochondria
location information

Track whole-cell
mitochondrial
movements

Adult human dermal
fibroblasts

[53] https://github.com/
kandelj/MitoSPTPreprocessing

using an ImageJ
macro

MitoWave 2D Time-series
fluorescent images
of mitochondrial
labeled with TMRM
(membrane
potential-
related dye)

Transition time
points of the inner
mitochondrial
membrane
potentials during
ischemia, five
different membrane
potential oscillating
patterns
(scalograms) during
I/R, predominant
frequencies of
mitochondrial
clusters, and
mitochondrial
cluster size

Analysis of time-
series data focusing
on the mitochondrial
membrane potential

Neonatal mouse cardiac
myocytes

[51] https://github.com/
dashok1/MitoWave

Zamponi et al. 2D Fluorescent images
of mitochondria

Cluster mass
(i.e., number of
pixels) and pixel
degree; c1, and c2
are obtained using
computational
models

Easy to use and can
be combined with
computational
model simulations

MEFs [49] https://github.com/
nahuelzamponi/
MitoCluster

Mitometer 2D/3D TIF image stacks
with time series

Morphological
parameters, such as
area, solidity, and
perimeter, along
with dynamic
parameters, such as
fusion rate, fission
rate, distance, and
speed

Dynamic analysis
including fusion/
fission rates and
speeds from both 2D
and 3D images

Neoblastic
pheochromocytoma 12
cells

[50] https://github.com/
aelefebv/Mitometer

Non-small-cell lung
carcinoma H1299 cells
Human foreskin fibroblast
(HFF) cells
Primary normal breast
epithelial cell lines
Two ER/PR + breast
cancer cell lines (MCF-7
and T-47D), three TNBC
cell lines (MDA-MB-231,
MDA-MB-468, and
BT-549)
Two TNBC PDX cell lines
(HCI-010 and HCI-002)

Others
Momito (Java) 2D Confocal images/

binary images
(JPEG)

Mitochondrial
length, connectivity
(ECs and J/E),
cristae structureetc.

Probabilistic
approach that
considers multiple
possible connection
patterns of skeleton
configurations

WT MEFs and human
U2OS cells

[48] www.uqtr.ca/
LaboMarcGermain

(Continued on following page)
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more efficient and effective. Within this scope, mitochondrial
fluorescent image analysis tools in different platforms and
applications are reviewed and compared, including traditional
image processing pipelines as well as emerging machine learning
and deep learning methods.

CellProfiler
CellProfiler is a multifunctional software developed by the Broad
Institute that allows researchers to perform automatic analyses in
several biological areas, such as genomics, organelle morphologies,
and protein staining [32]. CellProfiler has a friendly graphical user
interface (GUI) and is open-source software written in MATLAB
[32] and Python [33, 34]. CellProfiler is flexible in terms of
adjusting its parameters to suit different image sets. Due to its
extensibility, several image processing pipelines have been
developed to analyze and process mitochondrial images in an
automated, high-throughput manner [35, 36]. CellProfiler
pipelines need both nuclear and mitochondrial information to
determinemutual relationships. Thus, two dyes (one for nuclei and
the other for mitochondria) are needed for bioimaging. CellProfiler
pipelines are optimized for small and round mitochondria and less
effective for extensive mitochondrial networks.

Reis et al. [36] developed a fluorescent image analysis
pipeline based on CellProfiler that extracts mitochondrial
morphological features from microscopic 3D images of

human MCF-7 breast cancer cells. This pipeline classifies
mitochondria into networked, fragmented, and swollen
types using the random forest method, and Zernike [37]
binary information and the mitochondrial area and shape
are the most relevant features. The detailed steps are
described in Table 2 and the Supplementary Material.

Rees et al. [35] studied the SN4741mouse midbrain neuronal cell
line as an in vitro model of Parkinson’s disease by adding the
mitochondrial complex I inhibitor rotenone to cause mitochondrial
fragmentation. These researchers used CellProfiler to analyze
microscopic images and compare the number of mitochondrial
puncta and small and round mitochondria. They also provide a
comprehensive description of the steps, settings, and parameters for
implementing and reproducing the protocols. The detailed steps are
described in Table 3 and the Supplementary Material.

MitoGraph
MitoGraph [38, 39] is an open-source automated platform for
analyzing 3D mitochondrial morphologies from fluorescent
images. It is written in C++ and includes comprehensive
documentation and examples. MitoGraph processes 3D
bioimages and turns mitochondrial networks into surfaces
and node-and-edge structures (skeletons). The outputs
could be further analyzed by other programs, such as R
scripts, and visualized using ParaView and MayaVi.

TABLE 1 | (Continued) List of publicly available tools for analyzing the mitochondrial morphology and dynamics.

MitoGraph (C++)
2D/3D Fluorescent images

and binary images
of mitochondria as
well as VTK data

Morphological
parameters, such as
volume, average
width, and total
length

3D skeleton
reconstruction with
high performance

Saccharomyces
cerevisiae, HMEC-1 cells,
C2C12 cells, HEK293 and
293T cells, H1299 cells

[39] https://github.com/
vianamp/MitoGraph

Network
parameters, such as
number of nodes
with different
degrees, locations of
nodes and average
edge length

TABLE 2 | List of tools and functions in the CellProfiler pipeline developed by Reis et al. [36].

Stage Name(s) Descriptions

Before the pipelines softWoRxTM An external tool to deconvolute 3D images

Preprocessing – Identify prim automatic Finding nuclei and cell locations
– Identify secondary
– Rescale intensity Adjusting pixel intensities for mitochondria to accommodate uneven illumination in the

images– Apply threshold
– Correct illumination calculate
– Correct illumination apply
– Smooth or enhance

Mitochondrial
segmentation

– Identify prim automatic with otsu adaptive
threshold

Finding mitochondrial locations

Mitochondrial profiling – Measure object area shape Calculating mitochondrial morphologies; relating mitochondria and their owner cells
– Measure object neighbors
– Relate objects
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Although MitoGraph was initially designed for mitochondria
in budding yeast [39, 40], MitoGraph has been used for images
of mitochondria in various mammalian cell lines, including
HMEC-1 cells (human microvascular endothelial cells),
C2C12 cells (mouse myoblasts), HEK29d and 293T cells
(human embryonic kidney cells and their derived mutant
cells containing the SV40 T-antigen), C6 (rat glial) cells,
and H1299 (human non-small-cell lung carcinoma) cells.
The detailed steps are described in Table 4 and the
Supplementary Material.

Another study [41] also used MitoGraph to analyze the
mitochondrial network structures (such as loops), complexity,
and connectivity from wild-type and Δdnm1Δfzo1 (both
fission- and fusion-inhibited) budding yeasts. The authors
concluded that the wild-type mitochondrial networks were
more evenly distributed than their Δdnm1Δfzo1 counterparts
for better communication efficiency.

ImageJ/Fiji and Java-Based Software
ImageJ [42, 43] and its battery-included Fiji distribution [44]
are the software programs of choice for microscopy image
processing and analysis. Written in Java, ImageJ is a cross-
platform tool available for Linux, Mac OS, and Windows. Due

to its open-source nature, many plugins, macros, and pipelines
have been developed for ImageJ. MiNA (Mitochondrial
Network Analysis) [45] and Mitochondria Analyzer [46] are
two prime examples of ImageJ-based image analysis pipelines
for studying the mitochondrial morphology.

Mitochondrial Network Analysis
MiNA [45] provides simplified, free, and user-friendly analysis
methods for 2D mitochondrial morphologies, including puncta,
rods, and branched networks. MiNA focuses on 2D image
processing and is suitable for images of flat mammalian cells
such as C2C12 cells, SH-SY5Y cells, and mouse embryonic
fibroblasts (MEFs). MiNA may produce skewed results for
thicker specimens. After analysis, MiNA yields mitochondrial
network parameters such as the mean branch length, number of
individuals and networks, and mitochondrial footprint (i.e., total
area). The detailed steps of MiNA are described in Table 5 and
the Supplementary Material.

Mitochondria Analyzer
Mitochondria Analyzer is another ImageJ pipeline and plugin for
analyzing fluorescent 2D, 3D, and 4D (3D time-series) images of
mitochondria [46]. Mitochondria Analyzer has been used to

TABLE 3 | List of tools and functions in the CellProfiler pipeline developed by Rees et al. [35].

Stage Name(s) Descriptions

Preprocessing – Correct illumination calculate Adjusting pixel intensities to accommodate uneven illumination in the images
– Correct illumination apply

Segmentation – Identify primary/secondary/tertiary objects Finding nuclei, cell bodies, and cytoplasm locations

Image enhancement – Enhance or suppress feature Enhancing mitochondrial speckle signals

Mitochondrial
segmentation

– Identify primary objects with Otsu thresholding “Per Object” Marking mitochondrial areas

Mitochondrial morphology – Measure object size and shape Finding mitochondrial morphologies; relating mitochondria and their owner
cells– Measure object intensity

– Relate objects

TABLE 4 | List of tools and functions in the MitoGraph [38, 39] pipeline.

Stage Name(s) Descriptions

Preprocessing – GenerateFramesMaxProj.ijm Marking regions of interest (ROIs) using maximum intensity projections as boundary references
– CropCells.ijm Cropping image according to ROIs

Mitochondrial morphology Skeletonization by MitoGraph Converting mitochondrial images to graph-based networks

TABLE 5 | List of tools and functions in the MiNA [45] pipeline.

Stage Name(s) Descriptions

Preprocessing – Unsharp mask Enhancing the edge and sharpening the images without changing contrast
– Enhance local contrast (CLAHE) Equalizing histograms locally with limited ranges of changes to avoid overamplifying noise
– Median filters Eliminating salt-and-pepper noise

Thresholding – IsoData algorithm Converting to black-and-white (binary) images

Mitochondrial morphology – Skeletonization Categorizing mitochondrial morphologies into networks and individuals
– Categorization
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demonstrate mitochondrial fragmentation in both primary
mouse β-cells under glucose stimulation and the pancreatic
beta-cell line MIN6 under palmitate treatment. The
mitochondria analyzer revealed that the experimental groups
exhibit a higher mitochondrial count, a lower average area,
and a shorter branch length. The detailed steps of
Mitochondria Analyzer are described in Table 6 and the
Supplementary Material.

ImageJ Pipeline Reported by Chustecki’s ImageJ
Pipeline
The ImageJ pipeline developed by Chustecki et al. [47] is a novel
approach for analyzing mitochondrial dynamics using time-
series bioimages. This pipeline has been used to reveal the
mitochondrial spatial distribution, moving speed, connectivity,
and interactions between mitochondria in the plant Arabidopsis
thaliana. The pipeline is suitable for separated and punctate-like

TABLE 6 | List of tools and functions in the Mitochondria Analyzer [46] pipeline.

Stage Name(s) Descriptions

Preprocessing – DcceonvolutionLab2 For deconvolution of z-stack (3D) images
– Subtract background Subtracting the background pixel intensity with the Rolling Ball Algorithm [88]
– Sigma filter plus Enhancing local contrast
– Gamma correction Enhancing faint objects

Thresholding – Weighted mean (adaptive), mean, median, or MidGray
methods

Converting to black-and-white (binary) images
Weighted mean (adaptive) produces the best results

Noise reduction – Despeckle Removing residual noises
– Remove outliers

Mitochondrial
morphology

– Skeletonize (2D/3D) Converting mitochondrial images to graph-based networks

Analysis – Analyze particles Mitochondrial count, area, perimeter, form factor, and aspect ratio from 2D
images

– 3D object counter Mitochondrial count, volume, surface area, and sphericity from 3D images
– 3D Particle analyzer (from MorphoLibJ package)
– Analyze skeleton (2D/3D) Branches, branch junctions, branch length, and mean branch length from 2D/3D

images

Visualization – 3D Viewer Visualization of 3D images
– Volume Viewer

TABLE 7 | List of tools and functions in the ImageJ pipeline by Chustecki et al. [47].

Stage Name(s) Descriptions

Analysis – TrackMate To detect and track the dynamic behaviors in time-series fluorescent images
– Mosaic ParticleTracker

TABLE 8 | List of tools and functions in the Momito [48] pipeline.

Stage Name(s) Descriptions

Thresholding – Median smoothing Converting to black-and-white (binary) images
– Contrast enhancement
– Auto local threshold

Noise reduction – Manual global threshold Removing low-intensity noises
– Multiplying pixels from two
images

– Erosion

Mitochondrial
morphology

– Skeletonize Converting mitochondrial images to graph-based networks and quantifying the mitochondrial network
connectivity– MitoMo algorithm

Analysis – MitoMo algorithm Mitochondrial area, count, length, and connectivity
– Data consolidation Compiling data obtained from the analysis and comparing the distributions
– EMD comparison
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mitochondrial images such as those in A. thaliana. The detailed
steps are described in Table 7 and the Supplementary Material.

Momito
Momito [48] is a Java-based tool for automatic 2D mitochondrial
analysis from confocal microscopy images. Momito uses a
probabilistic approach to compare two mitochondrial
morphologies under different conditions and thus more
accurately determine their differences. Momito can manage
undesired image artifacts such as overlapping mitochondria by
considering possible connection patterns to produce desirable
mitochondrial network skeleton configurations. Momito
produces comprehensive results for morphological analysis,
such as the numbers of ends, tubules, junctions, and clusters,
to quantify the mitochondrial network connectivity and
distributions. The detailed steps of the Momito pipeline are
described in Table 8 and the Supplementary Material.

MATLAB-Based Software
As a programming platform used in matrix operations,
graphs and visualization, MATLAB is a common analysis
tool for images of mitochondria. Here, we review several
methods that utilizing MATLAB to study mitochondrial
morphologies.

Mitocluster
Zamponi et al. [49] published Mitocluster, a MATLAB-based
image analysis pipeline to analyze mitochondrial networks as
skeletons and elucidate the mitochondrial cluster mass and pixel
connectivity. Sukhorukov et al. [51] used Mitocluster with
bioimage data to estimate fission and fusion frequencies and
developed a computational model to simulate mitochondrial
dynamics events in a graph-based manner. The detailed steps

of the Mitocluster pipeline are described in Table 9 and the
Supplementary Material.

Mitometer
Mitometer [50] analyzes the mitochondrial morphology and
fission-fusion dynamics from time-series 2D and 3D
microscopic TIFF images. Mitometer not only measures
morphological features such as the mitochondrial sizes and
shapes but also dynamic parameters such as movement speeds
and fission/fusion rates. The detailed steps of the Mitometer
pipeline are described in Table 10 and the Supplementary
Material.

MitoWave
MitoWave [51], which is based on the MATLAB programming
language and Fiji image analysis platform, can be used to study
mitochondrial inner membrane potential (ΔΨm) fluctuations
from 2D time-series microscopic images. MitoWave was
developed to measure the ΔΨm oscillation patterns in
neonatal mouse ventricular myocytes (NMVMs) undergoing
ischemia/reperfusion (I/R) episodes. The developers classified
the reperfusion ΔΨm patterns into five distinct types and
compared the ΔΨm transition time points during ischemia,
the predominant frequencies of mitochondrial clusters, and
the size of mitochondrial clusters. These researchers found
that the oscillation frequency of the membrane potential is
inversely correlated with the area of mitochondrial clusters.
The detailed steps of the MitoWave pipeline are described in
Table 11 and the Supplementary Material.

Mytoe
Mytoe [52] is a MATLAB-based tool for the analysis of the
mitochondrial morphology, dynamics, and motion from 2D

TABLE 9 | List of tools and functions in the Mitocluster [49] pipeline.

Stage Name(s) Descriptions

Thresholding – im2bw Conversion to black-and-white (binary) images

Mitochondrial
morphology

– bimorph Converting binary images to graph-based networks and finding mitochondrial network
clusters– bwlabel

Analysis – Graph-based analysis of the mitochondrial
network

Degree of each connecting point

TABLE 10 | List of tools and functions in the Mitometer [50] pipeline.

Stage Name(s) Descriptions

Preprocessing – Diffuse background removal algorithm Removing background noise and smoothing the image
– Gaussian filter

Thresholding – Otsu’s threshold Making a binary mask for mitochondrial segmentation

Mitochondrial
morphology

– Frame-by-frame global assignment tracking
algorithm

Tracking mitochondrial movements and fission/fusion events

Analysis – Morphological parameters Mitochondrial areas (volumes), solidity, and perimeters
– Dynamics parameters Mitochondrial fission/fusion rates, movement speed, and distance between

mitochondria
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time-series images. This tool uses optical flow (OF) estimation
to obtain mitochondrial dynamics parameters, including
the speed, moving direction, and wiggling ratio of each
branch. Another study [29] combined Mytoe and fractal
analysis algorithms to study the drug response of the
mitochondrial network in the DMS273 small cell lung
carcinoma (SCLC) cell line compared with that of a
nontumorigenic control lung cell line (BEAS-2B). The
detailed steps of the MitoWave pipeline are described in
Table 12 and the Supplementary Material.

MitoSPT
MitoSPT [53] is an easy-to-use, robust, and computationally
inexpensive MATLAB package that quantifies the distribution
of mitochondrial motility in time-series 2D images. MitoSPT
was used by its developers to study adult human dermal
fibroblasts [53], and the results showed that the net
distances traveled by individual mitochondria followed a
lognormal distribution and were not directly correlated with
their spatial locations in the cell. The detailed steps of the

MitoWave pipeline are described in Table 13 and the
Supplementary Material.

Machine Learning and Deep Learning for
Mitochondrial Bioimaging Analysis
Over the past few years, machine learning (ML) and deep learning
(DL) have achieved tremendous success in computer vision and have
outperformed other conventional image processing methods.
Modern microscopes are often connected to digital systems, and
the acquired microscopy images must be processed using
computational methods. As a result, scientists have developed
novel image analysis methods, and one of the primary
approaches involves the application of DL to microscopy data.
Since then, several DL methods have shown strong potential for
the analysis of microscopy images, including U-Net [54] and
UNet++ [55] for image segmentation. DeepImageJ provides
access to pretrained deep learning models to perform common
bioimage processing tasks, including classification, segmentation,
denoising, and virtual staining [56].

TABLE 11 | List of tools and functions in the MitoWave [51] pipeline.

Stage Name(s) Descriptions

Preprocessing – StackReg Aligning time-series images

Thresholding – Median filter Making masks of mitochondria
– Enhance contrast
– Auto local threshold (Niblack)

Mitochondrial
morphology

– Analyze Particles Finding mitochondrial particles; those with a radius less than 60 pixels are
omitted

Analysis – Intensity and oscillation analysis using wavelet transform
algorithms

Calculating membrane potential oscillations using wavelet transform

TABLE 12 | List of tools and functions in the Mytoe [52] pipeline.

Stage Name(s) Descriptions

Preprocessing – Median filter Removing background noises
– Top-hat filter

Thresholding – Otsu’s algorithm Obtaining binary masks

Mitochondrial morphology – Thinning procedure with two iterations Converting to skeletal images

Analysis – Morphological parameters Cell area, mitochondrial area, and mitochondrial count
– Optical flow (OF) estimation Motion estimation: speed, moving direction, and wiggle ratio of each branch
– MitoMorF and FracLac Fractal analysis of the mitochondrial morphology and dynamics [29]

TABLE 13 | List of tools and functions in the MitoSPT [53] pipeline.

Stage Name(s) Descriptions

Preprocessing – Convolution Provided by the MitoSPT pipeline
– Fast fourier transform (FFT)
– Filtering

Thresholding – Manually Obtaining binary (black-and-white) images

Mitochondrial morphology and tracking – bwconncomp Tracking centroid locations of all identified mitochondrial objects in time-series images
– regionprops
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The analysis task most commonly applied to microscopy
images is the detection and segmentation of objects such as
nuclei, mitochondria, and other organelles. After segmentation,
scientists can further measure the morphology and properties of
segmented organelles. The traditional segmentation method is
based on human visual inspection, which requires professional
knowledge and is time-consuming. Moreover, manual
completion of the segmentation task is rarely possible for large
datasets. Therefore, the use of deep learning technology to aid the
completion of these tasks appears to be a reasonable approach.
For example, Ounkomol et al. [57] trained a DL model using
transmitted light images as the input and successfully predicted
fluorescence images. Falk et al. [58] adopted U-Net for
microscopy image analysis to count and detect cells. Another
primary microscopy image analysis using deep learning was
designed to improve the quality of images or to reconstruct
the images. Several DL algorithms, such as CARE [59] and
Noise2Void [60], were developed to recover high-resolution
images from low-intensity, noisy, and low-quality images. In
addition to restoration, other DL algorithms assist with the
postprocessing steps used in super-resolution microscopy
techniques (e.g., DeepSTORM [61]).

As mentioned above, the segmentation of organelles and the
analysis of mitochondrial morphology have become essential

tools for studying mitochondrial function. Traditionally,
mitochondria exhibit complex movements and morphology,
which impedes the construction of a robust system for
analyzing mitochondrial images. Several DL-based tools have
been developed to solve problems related to mitochondrial
segmentation. For instance, Fischer et al. [62] developed
MitoSegNet, a toolbox that quantifies the mitochondrial
morphology using the deep learning segmentation tool and the
morphological analysis tool. Chai et al. [63] implemented
mitochondrial segmentation with fluorescence microscopy
images using a fully convolutional network (FCN) and U-Net.
U-Net has also been utilized to segment mitochondria from label-
free phase-contrast microscopy images [64] or brightfield images
[65]. Classification is another crucial application in the analysis of
bioimages of mitochondria. Recently, Collier and Taylor [66]
trained a supervised machine learning model to classify the
mitochondrial morphologies using known mitochondrial
phenotypes, including fragmented, normal, and hypertubular
phenotypes. MitoMo [67] with a MATLAB GUI automatically
segments and classifies the mitochondrial morphology using the
K-nearest neighbor (KNN) and naïve Bayesian methods. MitoMo
also provides pixel-based methods for analyzing the motion
of molecules, individual mitochondria, and classes of
mitochondria. Fogo et al. [68] implemented decision tree

FIGURE 1 | Examples of published tools for mitochondrial image analysis. The image analysis pipelines are roughly classified according to the programming
languages, although some software programs were developed with mixtures of programming languages and tools. The images are TMRM-fluorescent-labeled
mitochondria obtained from PANC-1 cell lines.
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algorithms in R to classify mitochondria in primary neurons
according to their size and geometric descriptors. Leonard
et al. [69] used the conditional inference algorithm in R to
categorize individual mitochondrial subtypes into four
morphological bins (puncta, rod, network, and large and
round). MitoHacker [70] provides a set of tools with
Jupyter notebook semigraphical user interfaces, including
Cell Catcher, Mito Catcher, and MiA, to process cellular
images, extract mitochondrial networks, and perform
morphometric measurements. Iqbal et al. [71] built a
convolutional neural network-based framework called
mitochondrial organelle movement classification (MOMC)
to classify mitochondrial movements according to the
mitochondrial shape, positions, and fission/fusion events.
GoogLeNet-22, ResNet-50, and an inception model extract
low-level, middle-level, and high-level features to
differentiate mitochondrial organelle positions.

To summarize, the image analysis tasks are classified into four
categories with the available ML/DL tools based on their specific
applications: 1) Mitochondria Segmentation: U-Net is the most
commonly used DL architecture that can be implemented for
mitochondria segmentation. MitoSegNet [63] and MitoHacker
[71] also provide toolboxes for mitochondria segmentation tasks.
2) Mitochondria Classification: MitoMo [68] provides the
toolbox that uses ML methods to classify mitochondria. Fogo
et al. [69] and Leonard et al. [70] also provide guidelines for

mitochondrial classification using ML algorithms. 3) Motion
analysis: MOMC [72] is a DL-based algorithm used for
mitochondrial movement classification. MitoMo [68] can also
be used for movement detection. 4) Image Restoration: CARE
[60] and Noise2Void [61] are algorithms developed for
recovering high-resolution images from low-quality
microscopy images.

DISCUSSION

Mitochondria adjust their morphologies and functions in
response to biological or metabolic signals in the cellular
environment, including changes in tumor microenvironments.
Close relationships between mitochondrial dynamics in cancer
cells and diseases have been revealed. Mitochondrial dynamics
also play crucial roles in cancer cell metastasis, metabolic
rewiring, drug resistance, and cancer stem cell survival. The
structural alterations in human tumor mitochondria are
heterogeneous and not specifically correlated with any
neoplasms.

Fluorescence microscopy provides direct observations of
mitochondrial morphologies in a snapshot and fission-fusion
dynamics in a time series. Image analysis pipelines are studied
procedures that facilitate automation to reduce menial work and
increase throughput. After analyses using the image analysis

FIGURE 2 | Decision flow chart for the selection of image analysis tools. The choice of analysis tools for mitochondrial microscopic images depends mainly on the
imaging acquisition methods and types, the mitochondrial morphologies and cell types, and the purposes of the analysis. The requirements for image preprocessing,
adjusting parameters, and programming languages of the software might be other things to consider.

Frontiers in Physics | www.frontiersin.org April 2022 | Volume 10 | Article 85577511

Chu et al. Mitochondria Image Analysis

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


pipelines, quantitative morphological indicators can be extracted
and provide clues for understanding mitochondrial profiles and
network morphology, such as whether the mitochondrial
network is network-like or fragmented under certain

conditions. These indicators quantify the morphological
features of mitochondria and describe the relationship between
the value of each indicator and the morphology indicator in
detail.

FIGURE 3 | Comparison of mitochondrial morphologies between noncancerous and cancerous cell lines. (A) Fluorescence microscopy images of the AC16
human cardiomyocyte, HepG2 human liver hepatocellular carcinoma, HEK293 human embryonic kidney, IMR32 neuroblast, PANC-1 human pancreatic carcinoma, and
INS-1 rat insulinoma cell lines. Mitochondria were labeled with TMRM and imaged with a Zeiss LSM800 laser-scanning confocal microscope and a 1.40-NA 63×
objective. (B)Workflow of the 2D image analysis pipeline for confocal images of mitochondria [74], which was adapted from the Mitochondria Analyzer [35] ImageJ
pipeline. The image analysis pipeline is divided into three steps: preprocessing, thresholding, and analysis. In the preprocessing step, images are first deconvoluted using
ZEISS ZEN 2 (Blue Edition) software, and the ImageJ commands “Subtract Background”, “Add Noise” (optional), “Sigma Filter Plus”, “CLAHE”, “Gamma” and
“Brightness and Contrast” are then applied to reduce the noise, increase the contrast, and make the images appropriate and ready for thresholding. In the thresholding
step, the local adaptive threshold algorithm “Sauvola”, “Mean” or “Niblack” is applied to the preprocessed images obtained from the previous step in most cases. After
thresholding, the ImageJ commands “Despeckle” and “Remove Outliers” are applied to remove the salt-and-pepper noise, and the ImageJ macro
“getFinalTH_with_invert”, which fills the tiny holes regarded as artifactual holes due to noise in the images, is then applied. After thresholding and noise removal, the binary
images are converted into skeleton images with one-pixel-width lines representing the network frame of mitochondria using the “Skeletonize” ImageJ command.
Branches with lengths less than the threshold are removed from the skeleton images using the image macro “Prune” prior to the skeleton analysis if serious
overskeletonization occurs. For skeleton images, “Analyze Skeleton” is used to extract and calculate network information such as “Total Branches”, “Average Branch
Length”, “Total Deg 1 Points” and “Average Degree.” After completing the binarization and skeletonization steps, “Analyze Particles” is applied to the binary images to
perform particle analysis and obtain information on indicators such as “Count”, “Total Area”, “Perimeter” and “Form Factor” that describe the features related to the
number and profile of mitochondria. (C) Boxplots of the 2D particle analysis and skeleton analysis of mitochondrial networks in six different cell lines. The analysis feature
“Count” is the number of total mitochondria in one cell. “Total area” measures the total area of the mitochondria in one cell, and “Average area” denotes the average
mitochondrial area in a cell. “Perimeter” measures the average length of the mitochondrial boundary in a cell. “Form factor” is defined as the perimeter 2/(4π*area), and
“Aspect ratio” is the length of the major axis divided by the length of the minor axis. “Total branches” represents the number of total edges of the mitochondrial network in
one cell, and “Average branches” is defined as the average number of branches per mitochondrion in a particular cell. “Average branch length” is the mean value of the
average length of branches of each mitochondrion in a cell. “Branch length per mito” is the mean value of the total length of branches of each mitochondrion in a cell.
“Average degree” is defined as the mean value of the average degree of each separated mitochondrion as connected components in cells. “Deg. 1/Deg. 3” is the ratio of
total degree 1 nodes to total degree three nodes in the mitochondrial network.
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Several mitochondria analysis tools mentioned above have
been tested using confocal microscopy images of mitochondria
(Figure 1). Each method has its advantages and disadvantages.
For example, CellProfiler provides flexible and versatile
methods and algorithms with a user-friendly interface but
lacks 3D pipeline references for mitochondrial image
analysis. MitoGraph provides precise 3D skeleton results
and visualization with ParaView but is not available for
Windows systems and has limited thresholding methods for
different cell lines. MiNA uses fast and adjustable ImageJ
pipelines but works only for 2D images focusing on
skeleton network analysis and provides fewer mitochondrial
indicators than other software packages. We summarize a
flowchart to help select the appropriate tool for analyzing
mitochondrial images (Figure 2). Notably, preprocessing
and thresholding parameters should be optimized in each
software program based on the specific cell type to obtain
more accurate results.

Cancer cells are diverse and display heterogeneity in
different types of tissue, cancer stages, and tumor
positions. To illustrate, we used our own mitochondrial
image analysis pipeline [72] adapted from Mitochondria
Analyzer to test cancerous and noncancerous cell lines and
compare differences in the mitochondrial size, amount,
shape, and network structures in 2D (Figure 3). The
mitochondrial morphologies and network structures vary
among different types of cells and tissues depending on the
cellular functions.

Determining the most appropriate tools to utilize among all
image analysis sources according to the image features and
functional needs may make image analysis more efficient and
effective. Some image analysis tools are open-source and
freely available, whereas others, such as MATLAB, Image-
Pro Plus, and Imaris, are proprietary image analysis programs
that may require a paid license. The next steps are to
encourage further development and ensure that studies are
more reproducible, although several challenges remain. First,
the mitochondrial sizes and morphologies are heterogeneous
[73, 74] due to the use of diverse cell types, different cultures
and various imaging parameters. Variations even exist within
the population from the same tumor [23]. The processing
pipeline might need to be constantly adjusted to
accommodate these variations. Second, mitochondria are
small (0.5–3 µm) [73, 75, 76], and super-resolution
microscopy (higher resolution than traditional confocal
microscopy) may be needed to observe their fine structures
(e.g., cristae) on a submicron scale. Third, the intense laser
beams used to illuminate chromophores might result in
phototoxicity and photobleaching [77, 78], which affects
the image quality and limits how many slices or snapshots
can be obtained from live-cell imaging.

Regarding hardware, novel microscopy techniques with
high resolution and a limited laser dosage will be suitable for
mitochondrial imaging to address these challenges. For
example, light-sheet microscopy illuminates the sample
from its side in a sheet-like manner and provides high
resolution, fast acquisition, and low photodamage [79, 80].

Super-resolution radial fluctuations (SRRFs) [81–84] enable
the super-resolution imaging of live cells without complex
hardware by measuring the radial symmetry in each pixel and
calculating the location of the fluorophores.

Regarding software, kinetic modeling methods [49, 85–87]
have been used to estimate mitochondrial dynamics
parameters from limited data. Additionally, machine
learning can train models to gather quantitative
information and recognize specific patterns, shapes and
patterns in mitochondrial images to optimize and
accelerate image analysis. Machine learning can also help
1) reconstruct high-resolution data from low-resolution data
in both time and space, 2) increase the throughput of image
processing pipelines, and 3) classify mitochondria in
different cell types or pathological conditions based on
features extracted from the mitochondrial image
analysis. Bioimage analysis using modern DL methods is
faster when the models are trained and ready compared
with the analyses performed using the above-mentioned
conventional methods. In addition, with a considerable
amount of data, the DL methods will exhibit better
performance in certain analysis tasks, such as
segmentation and classification. Several studies have
focused on cell classification methods based on images of
mitochondria to detect whether a cell is healthy. For example,
USK-net models have been applied to measure the closeness
of cells to the healthy or tumorous classes based on the
morphology of healthy mitochondria or cancerous
mitochondria in electron micrographs [88]. However, DL
methods may face serious difficulties in analyzing bioimages
without sufficient data and proper data preprocessing, which
rarely occurs when using conventional algorithms. Therefore,
the selection of using either traditional or DL methods deeply
depends on the quality and quantity of mitochondrial
bioimages. Another option is combining the strength of
traditional image analysis for preprocessing images and ML/
DL algorithms for downstream segmentation and classification
tasks. Ultimately, image analysis can be accelerated to obtain
unbiased and reliable results.

Scientists have been researching the relationship between
mitochondria and cancer cells to further explore the potential
application in mitochondrial morphology analysis. Cancer
cells reprogram metabolism to lead to mitochondrial
dysfunction and changes in the mitochondrial morphology.
In addition to molecular methods, image-based features are
also important in determining a clinical cancer diagnosis.
Morphological abnormalities in mitochondria are related to
cancer function and the metabolic state; therefore, analyzing
descriptors of the mitochondrial morphology, shape, and
movement will identify potential indicators for cancerous
cells. Overall, image acquisition, software selection,
methods for preprocessing, parameters of algorithms, and
additional adjustments differ according to the cell lines,
cellular conditions, microscope settings, image quality, and
the purposes of the analysis, which are all critical factors to
consider when developing mitochondrial image
analysis tools.
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