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Self-propelled objects, which exhibit characteristic features of motion, are proposed based
on nonlinear science. At first, a self-propelled object with length like undulatory swimming
is designed, i.e., the phase of oscillation at several points on the object is propagated in the
opposite direction of motion. Second, the vertical oscillation of a camphor disk is created at
an amphiphilic molecular layer developed on water. The proposed systems suggest that
nonlinearity can enhance the autonomy of self-propelled objects as multidimensional
motion.
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INTRODUCTION

Several types of inanimate self-propelled objects such as nano wires and Janus particles have
been developed for environmental, industrial, and medical applications [1–4]. In general, self-
propelled objects exhibit random motion or unidirectional motion which is determined by
their shape or the external force [1–7]. On the other hand, animate self-propelled objects such
as bacteria exhibit characteristic features of motion depending on the information of the
environment. These facts suggest that the autonomy of animate self-propelled objects is
significantly higher than that of the inanimate ones [5–7].

We introduced nonlinear science into systems to enhance their autonomy, and as a result,
characteristic nonlinear phenomena such as oscillation, bifurcation, synchronization, hysteresis,
and pattern formation could be reproduced experimentally [5–7]. Several types of self-propelled
objects, which exhibit characteristic features of motion from the viewpoint of nonlinear science,
have been reported [5–18]. Among them, the objects composed of camphor or camphor
derivatives, of which the driving force is the difference in surface tension, have been
investigated as a simple experimental system [5–7, 19–35]. For example, a camphor disk
placed on a linear water channel, reciprocating motion along the channel, was observed [5,
6]. When a camphor disk attached to the bottom of a larger plastic circular plate was placed on
water, oscillatory motion between rest and motion was observed, and the bifurcation between
the continuous and oscillatory motion was determined by the location of the camphor disk [5, 6,
23, 27]. The period of oscillatory motion and bifurcation between continuous and oscillatory
motion was observed coupled with chemical reactions [5–8, 36, 37]. When two or more camphor
disks or boats were placed in the same circular water channel, synchronized swimming or
collective motion was observed [5–7]. Motion with memory, i.e., future motion expected by
previous motion, could be realized by using a camphor disk and plastic plate [22, 28, 35].
Recently, the catch and release type of chemotaxis was realized using 6-methylcoumarin as a self-
propelled object and sodium phosphate as a chemical stimulus [38]. These characteristic features
of motion could be qualitatively reproduced by numerical calculations based on
reaction–diffusion equations and the equation of motion [5–7, 28, 31–35, 39].
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In this article, we propose novel self-propelled objects which
exhibit multidimensional motion at the air–water interface
under nonequilibrium: one is a self-propelled object with
length like undulatory swimming and the other exhibits
vertical oscillation of a camphor disk on an amphiphilic
molecular layer developed on water. The proposed systems
suggest that nonlinearity can further enhance the autonomy
of self-propelled objects.

SELF-PROPELLED FILAMENT LIKE
UNDULATORY SWIMMING

In this section, we introduce a self-propelled filament placed
on water. The filament is produced from a commercial
adhesive (consisting mainly of nitrocellulose and acetone),
and the energy source is acetone and the driving force of
motion is the difference in the surface tension around the
filament since acetone reduces the surface tension. As the
shape of the filament is deformed and oscillated periodically,
information of wave propagation along the filament is added
as characteristic features of motion in addition to
information of mass movement [40]. When one of the end
points of the single filament is fixed on the edge of the
chamber, periodic pendulum motion is produced and the
phase of the filament near the fixed edge progresses faster in
comparison with the phase of the free edge for the pendulum

motion. When two filaments are coupled together, in-phase
and out-phase synchronizations are produced depending on
the distance between them and the initial floating state.

We propose a self-propelled filament of which one of the
end points is adhered to the free plastic film with V-shape to
introduce heterogeneity. Figure 1 shows (a) snapshots of the
filament and (b) outline of points a, b, c, and d on the
filament. The filament moves in the direction of the plastic
film while oscillating except for point a, i.e., the head of the
filament. The phase of oscillation was propagated from b to d,
i.e., in the opposite direction of the motion. The propagation
of the phase oscillation in the animate undulatory swimming
is the same as the direction of motion. Thus, the direction of
the phase propagation of our inanimate meandering filament
is opposite to the animate undulatory swimming like “moon
walk” by MJ. The opposite direction of phase propagation
suggests that our inanimate filament is passive on the motion
since the Marangoni flow occurs in the opposite direction of
motion. The shape and size of the head of the filament should
be improved to make the direction of the phase propagation
the same as animate undulatory swimming.

VERTICAL OSCILLATORY MOTION OF A
CAMPHOR DISK PLACED ON AN
AMPHIPHILIC MOLECULAR LAYER
DEVELOPED AT THE AIR–WATER
INTERFACE

In this chapter, we introduce vertical oscillatory motion of a
camphor disk placed on an amphiphilic molecular layer
developed at the air–water interface. Here, nervonic acid is
used as an amphiphilic substance [24]. The surface pressure
vs. area isotherm exhibits a transition point corresponding to a
phase transition between the fluid and fluid/condensed phases of
nervonic acid. The characteristic features of motion, i.e., no
motion, oscillatory motion, and continuous motion, are
determined by not only the value of the surface pressure but
also the nature of the phase in the nervonic acid molecular layer.
These results suggest that the characteristic features of motion
can be designed based on the chemical structure of an
amphiphilic molecule.

We propose vertical oscillation of a camphor disk (diameter:
3 mm, thickness: 1 mm) placed at the air–water interface. Here,
nervonic acid which is developed on water is in the fluid/
condensed phase. Figure 2 shows (a1) snapshots of one cycle
of vertical oscillation and (a2) time-variation of the lateral
location of a camphor disk. The camphor disk exhibited not
only lateral oscillation but also vertical oscillation even at the
air–water interface. The vertical oscillation may be generated by
the following mechanism. As the surface pressure of the nervonic
acid molecular layer (Πna ~ 8 mNm−1 at 293 K and 40 Å
molecule−1) is similar to that of the camphor (Πc, the
saturated value of Πc ~ 17 mNm−1), repetition between the
resting and motion states is possible since no motion at Πna ≥
Πc and motion at Πna ≤ Πc occur. The periodicity and

FIGURE 1 | (A) Snapshots of the self-propelled filament (time interval:
0.2 s) and (B) outline of the points a, b, c, and d on the filament from top view.
The arrow around the middle of the outline denotes the direction of motion.
The object around the left side of the outline denotes the schematic
illustration of the filament. [See the actual movies in the supporting information
as Supplementary Movie S1 (10× speed)]. 2.2, 2.1, and 2.0 s on the blue
circles in (A) denote the time at one of the maximum values of the oscillation on
the outlines of the points b, c, and d.

Frontiers in Physics | www.frontiersin.org March 2022 | Volume 10 | Article 8548922

Fujita et al. Multidimensional Self-Propelled Motion

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


nonlinearity of the oscillation were observed as the fundamental
frequency (~0.3 Hz) and the higher harmonics in the linear
spectrum of the fast Fourier transformation (FFT) for
Figure 2A2, respectively (see Figure 2A3). Vertical oscillation
may occur due to the repetition of fluid and fluid/condensed
phases since the development and sublimation of the camphor
molecules at the air–water interface induces the phase transition
from the fluid/condensed to the fluid phase and vice versa,
respectively. No oscillation was observed at 298 K and 40 Å
molecule−1, i.e., the fluid phase, as shown in Figure 2B. The
change in the surface pressure around the disk induces the change
in the meniscus at the camphor solid/water interface including
nervonic acid, and as a result, the vertical oscillation occurs.

CONCLUSION AND OUTLOOK

In this article, we proposed novel types of self-propelled
objects which exhibit multidimensional motion from the
viewpoint of nonlinear science. Further multidimensional
motion, such as translation including rotation like drill and
pattern formation coupled with motion like collective motion,
will be created in the near future by enhancing autonomy.
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