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The purpose of this review is to describe the rationale behind the RVP (resonance via Padé)
approach for calculating energies and widths of resonances, while emphasizing a solid
mathematical ground. The method takes real input data from stabilization graphs, where
quasi-discrete continuum energy levels are plotted as a function of a parameter, which
gradually makes the employed basis functions more diffuse. Thus, input data is obtained
from standard quantum chemistry packages, which are routinely used for calculating
molecular bound electronic states. The method simultaneously provides the resonance
positions (energies) and widths (decay rates) via analytical continuations of real input data
into the complex plane (via the Padé approximant). RVP holds for isolated resonances (in
which the energy-gap between resonance states is smaller than their decay rates). We
focus also on the ability to use an open-source “black-box” code to calculate the
resonance positions and widths as well as other complex electronic properties, such
as transition dipoles.
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1 INTRODUCTION AND MOTIVATION

1.1 Resonances in Chemistry
Resonances are perhaps one of the most striking phenomena in chemistry [1, 2]. Molecules in
metastable states (so called resonances) have enough energy to ionize or dissociate but do not do it
right away. They have finite lifetimes and decay to the products which can be electrons, ions and
radicals. The decay rates can vary from case to case and can be different by many order of magnitudes
and there may be several open decay channels.

Let’s consider the following illustrative triatomic (ABC) molecular reaction that occurs on a
ground electronic potential energy surface,

A + BC → ABC[ ]# → AB + C
Or → AC + B
Or → A + BCp.

(1)

Where [ABC]# represents an activated complex that has enough energy to dissociate to several
different products and, BC* is the diatomic molecule BC in an excited ro-vibrational state. This
reaction takes place for a specific collision energy (within a given uncertainty) at which the activated
complex is created in a well defined metatsable state. This metastable state is known as a resonance
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state, as time passes it decays into the reaction products. The
energy of the activated complex above the lowest energy
threshold (i.e., above the minimal energy in which it can
dissociates) is the resonance position, Eres. The decay rate or
width of the activated complex, Γres, is inverse proportional to the
lifetime of the activated complex, where 2πZ is the proportional
parameter. The decay rate, Γres, is a sum over the partial decay
rates into all the possible products. That is,

Γres � ΓAB+C + ΓAC+B + ΓA+BCp.

The difference between the energy of the activated complex in
a resonance (metastable) state and the energies of the different
bound-state energies of the reaction products provide the relative
kinetic energies of the AB + C, AC + B and A + BC* products. The
energy and width of the activated complex and the partial decay
rates can be calculated from a single eigenfunction of the time
independent nuclear Schrödinger equation when outgoing
boundary conditions are imposed [1–3]. Notice that by
imposing outgoing boundary conditions on the non-
equilibrium reaction presented in Eq. 1 will turn the real
physical molecular Hamiltonian into a non-Hermitian
Hamiltonian, as will be explained in details below. The
resonance via Padé (RVP) method, which is the focus of this
review, enables the calculations of the energy and decay rate of
such an activated complex. In principle, also the partial widths
can be calculated by RVP, but the way to do it is out of the scope
of this review.

A second illustration examines the autoionization process in
the helium atom. Helium has an infinite number of discrete
bound states. The bound states of helium are associated with the
ground and singly excited electronic states. Contrary, the doubly-
excited states must ionize after a finite period of time, i.e., these
states are resonance states,

Hepp → He+ + e−. (2)
Let us prove it. The starting point in our proof is to neglect the

electronic repulsion and approximate the energy of a doubly-
excited helium (He**) as,

En1 > 1,n2 > 1 no − repulsion( ) � −Z2 1
n21

+ 1
n22

( )13.6 eV ,

where Z = 2. This value must be lower than the exact energy of a
doubly-excited helium state since the electronic repulsion was
neglected. Therefore, whenever

−Z2 1
n21

+ 1
n22

( )13.6 eV > − Z2 1
n2ion

13.6 eV

ionization takes place, where n1, n2 are the neutral He electronic
levels and nion is the level of He+. This inequality can be
reformulated as,

n21n
2
2

n21 + n22
> n2ion.

The lowest doubly-excited states occur when n1 = n2 = 2, for
which n21n

2
2

n21+n22 � 2, i.e., the energies of these He** states are higher

than the ionization threshold (corresponding to nion = 1). As long
as n21n

2
2

n21+n22 ≤ 4 (corresponding to nion = 2), there is only one open
channel–autoionization decay into the helium cation in its
ground electronic state. In case n21n

2
2

n21+n22 > 4, there will be several
open decay channels involving also excited helium-cation states.
Note that the spontaneous-emission time of He** is longer by
several order of magnitude than the resonance lifetime. The
spontaneous-emission time can be estimated using the
Einstein coefficient for spontaneous emission (A, which is
proportional to the calculated transition dipoles and the
energy differences between the relevant states) [4], where the
emission time is T = A−1. The resonance lifetimes are inverse
proportional to the calculated widths. Therefore, auto-ionization
would dominate the dynamics of He**.

These kind of resonances are referred to Feshbach type
resonances [2] since their energies (for n1 = n2 = 2) are below
their own ionization threshold, i.e., He*+(2s or 2p), but above the
He+(1s) threshold. Thus, Feshbach resonances are associated with
two-electron processes. Therefore, dynamical electronic
correlation, in which one go beyond the mean field (Hartree
Fock) approximation, must be considered. Imposing outgoing
boundary conditions on the electronic solutions of the time-
independent Scrödinger equation makes the electronic
Hamiltonian non-Hermitian, as in the above molecular
dissociation example. Thus, the resonance energy positions
and decay rates of He**, and any chemical systems in
autoionization states, can be immediately obtained from the
eigenvalue spectrum of a non-Hermitian Hamiltonian (see the
next section for more details). Moreover, below we show that
RVP can be used to study the autoionization process in Eq. 2with
great accuracy.

Another type of metastable electronic states are the shape-type
resonances [2], which lay above their own ionization threshold,
therefore they represent a one-electron transition and they can be
obtained within the Hartree-Fock approximation. This is a one-
electron process, in which an electron tunnels through a potential
barrier that results from a mean repulsion potential that
corresponds to all the other electrons. Of course, for accurate
calculations of energies and widths (inverse lifetimes) one should
go beyond the mean field approximation. The simplest examples
for electronic shape-type resonances are the ground electronic
states of the molecular Hydrogen, Nitrogen and CO anions [5, 6].
Notice that in such anionic-resonance cases the decay process is
referred to as autodetachment.

Uracil anion is an example for a biochemical system in which
ionization and dissociation may occur simultaneously.
Attachment of an electron to uracil leads to two types of
electronic resonance anion states. Shape resonances appear as
an electron is attached to one of the unoccupied π* orbitals of the
neutral ground state of uracil. Alternatively, an electron can be
attached to excited states of the neutral uracil, forming an
electronica Feshbach resonances. In addition to the
autoionization process associated electronic resonance states,
also dissociative electron attachment (DEA) processes may
follow upon the creation of a uracil anion. Uracil may
undergo DEA into C3H3N2O

− by eliminating CO and H [7].
These autoionization and DEA process may result in damage to
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the RNA strand. Below we show that RVP can be used in studying
such processes, by calculating the complex energies of the lowest
three shape-type states of the uracil anion as well as the transition
dipoles between them.

All in all, electronic resonances refer to autoionization (e.g.,
Eq. 2) and nuclear resonances refer to a situation in which a
molecule pre-dissociates (e.g., Eq. 1). Notice that autoionization
can become a more complicated and “rich” phenomenon, as in
the case of: Auger [8–11], ICD (interatomic Coulombic decay)
[12–20], ETMD (electron-transfer mediated decay) [15, 20–23],
etc. Nuclear shape-type and Feshbach-type resonances are
described in detail in Chapter 2 in Ref. 1 that is dedicated to
Resonances Phenomena in Nature. Of course, often the decay of
the electron and nuclear resonance states may happen
simultaneously. As for example,

A + BC → ABC[ ]# → AB + C+ + e−.

The RVPmethod, which is described below, is applicable to all
these cases.

1.2 Wavepacket Time-Dependent
Propagation vs. Time-Independent
Stationary Solutions via Outgoing Boundary
Conditions
Let us first briefly explain the motivation to look for such a
comparison. In scattering theory resonances are associated with
wavefunctions or eigenstates of the time-independent
Schrödinger equation (TISE), which only consist of outgoing
waves at the asymptote. The physical reason is clear. The system is
prepared in a metastable state and as time passes it breaks apart
into sub-systems as described above. Solving the TISE with such
outgoing boundary conditions (OBCs) results in a discrete
spectrum with real and complex eigenvalues, which are
associated with bound states and resonances, respectively
[1–3]. Notice that such a spectrum characterizes the non-

Hermitian quantum mechanics (NHQM) formalism, i.e., by
imposing OBCs we turn the QM problem into the NH regime.
The bound state eigenvalues are real and the corresponding
eigenfunctions are exactly as usual (i.e, decay asymptotically to
zero). The resonance eigenvalues are complex, Eres − i

2Γres. The
real part, Eres, corresponds to the resonance energy position, while
the imaginary part, Γres, corresponds to the resonance decay rate
(inversely proportional to the resonance lifetime) [1]. Alas, the
asymptotes of the corresponding resonance eigenfunctions
exponentially diverge. This asymptotic exponential divergent
of the TISE is also obtained by wavepacket propagation
calculations as illustrated in Figure 1A.

This seems to contradict the representation of resonances as
the solutions of the time-dependent Schrödinger equation
(TDSE) known as wavepackets. Since resonances are
embedded in the continuous part of the spectrum they cannot
be described using a single stationary eigenstate. Though, at any
given time of the dynamics, the wavepackets are represented as
superpositions of the (Hermitian) Hamiltonian eigenstates. Thus,
wavepackets by definition are square integrable functions,
i.e., their asymptotes decay exponentially and do not
exponentially diverge.

The answer to this puzzle was given in Refs. [1, 3, 24]: before a
wavepacket decays at the asymptote it actually diverges
exponentially (at very large but finite distance from the
interaction region). Figure 1B illustrates this point at different
dynamic times. The conclusion is quite clear. It is appropriate to
impose OBCs in order to describe a decaying system since the
corresponding solution of the TISE with OBCs also display the
same divergence as the wavepacket solution of the TDSE does.

So which method, out of the two, is recommended for
calculating resonances? The answer is that neither of them can
be recommended for realistic molecular systems. The reason is as
follows: within Hermitian QMwe cannot use the TISE and we are
forced to solve the TDSE; this presents a major numerical
difficulty when considering standard quantum chemistry

FIGURE 1 | (A) Illustration of the asymptotic divergence of the resonance state density for the model potential V(x) � (1 − cosh−2(x))2 exp(−0.05x2) (B) The
probability density of the wavepacket at different times on a logarithmic scale. Note that the region of exponential increase in the spatial domain is expanding with time.
Reprinted from Ref. [3], Copyright (Year), with permission from Elsevier.
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packages for calculating resonance states. Within NHQM, solving
the TISE with OBCs does not allow one to use square integrable
basis sets, which transform the partial differential eigenvalue
problem into a matrix eigenvalue problem, as in the
Hermitian case. Therefore, a practical approach for describing
resonances would be to transform the problem into the NH
regime while retaining the square-integrability of the eigenstates.
Such a procedure (the so-called complex scaling, which is
described in the next section) can be used within many-body
electronic structure formalism.

Let us briefly explain why the asymptote of the resonance
wavefunction diverges exponentially in space but decays
exponentially in time. The time-independent Schrödinger
equation is given by,

Ĥ|ΨE〉 � E|ΨE〉, (3)
where E = Ethreshold + |Zk|2/(2m) and Ethreshold is the ionization/
dissociation threshold energy. The asymptote of an eigenfunction
associated with an above threshold energy and with only one
open decay channel is given by,

〈r|ΨE〉→r → ∞ Aout E( ) e
ikr�
r

√ + Ain E( ) e
−ikr�
r

√ . (4)

The scattering matrix is the ratio between the amplitudes of
the incoming [Ain(E)] and the outgoing [Aout(E)] waves. The
poles of the scattering matrix are complex and the associated
wavevectors take discrete values,

kn � kRen − ikImn � |kn|e−iϕn (5)
when ϕn ≥ 0, for which Ain(En) = 0 (see chapter 4 in Ref. [1]).

Therefore, since

eiknr � ei|kn |r exp −iϕn( )→r → ∞ ∞, (6)
the resonance function is not part of the Hilbert space. That is, it
is not a square integrable function since it exponentially diverges
in space. Due to this spatial behavior the resonance wavefuctions
can not be expanded with a basis set of square integrable
functions, as in the calculations of bound electronic states.
Therefore we need to find out how we can transform the
electronic coordinates such that the resonance wavefunction
will remain square integrable and can be described as a finite
linear combination of square integrable basis functions. As for
example Gaussians which are used in standard electronic
structure calculations.

Now, let’s turn to the exponential decay of the resonance
function in time. The time phase factor

e−iEnt/Z � e−iReEnt/Ze−ImEnt/Z→t → ∞ 0, (7)
where En = ReEn + iImEn (and for resonances ImEn < 0) and the
number of particles is conserved only when ZkRen t � r (for
explanation see Ref. [1] on the coupling of space and time
even in the non-relativistic quantum mechanics framework).
An interesting situation, which demonstrates the decay of the
resonance function in time is presented in Figure 2. When the
initial wavepacket mainly populates the two narrowest
resonances of a model Hamiltonian, which is given in the
caption of Figure 2. As one can see from Figure 2 first the
shorter resonance decays and only then the resonance with longer
lifetime (smaller width) decays. The plot of the log of the survival
probability as function of time gives two straight lines that their
slopes provide the decay rates of the two resonances initially
populated.

1.3 Complex Scaling Transformations in
Order to Calculate Resonances by Methods
Originally Developed for Bound States
It is straightforward to realize that Eq. 6, when r→ reiθ and using
Eq. 5, becomes,

e+iknr exp iθ( ) � e+i|kn |r exp i θ−ϕn( )[ ]→r → ∞ 0, (8)
when θ ≥ ϕn. And since (Eq. 5)

kn � |kn|e−iϕn �
���������������
2m En − Ethreshold( )√ /Z,

the condition θ ≥ ϕn yields,

tan 2θ( )≥ 2Γn
Re En[ ] − Ethreshold

. (9)

Where {En} are the complex resonances energies, Γn = −2Im[En],
m is the mass of the emitted particle (e.g., an electron) and
Ethreshold is the ionization/dissociation threshold energy. For
additional details see Chapter 5.2 in Ref. [1]. In such a case,
the resonance state can be represented as a square integrable
function, thus, it can be expanded in terms of localized basis
functions (such as Gaussians), similarly to a bound state. Upon
such complex coordinate rotation, the Hamiltonian becomes

FIGURE 2 | The survival probability, Pint = |〈Ψ(0)|Ψ(t)〉|2, as a function of
time. The initial Gaussian mainly populates the two narrowest resonances of
the model potential V(x) = (x2/2 + 0.8) exp(−0.2x2). The slope of each line
represents the decay rate of each resonance. The larger slope (of y2) is
the decay rate of the shorter resonance while the smaller slope (of y1) is for the
longer (i.e. narrower) resonance. Reprinted by permission of the publisher
(Taylor & Francis Ltd, http://www.tandfonline.com).
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non-Hermitian and the complex resonance energies are obtained
regardless of the value of the rotation angle θ inside the interval
[θc, π/4]. (The upper limit on the θ interval is also explained in
Chapter 5.2 in Ref. [1].)

This raises the question: is it possible to rotate the coordinate
into the complex plane? If the physical potential is an analytical
function, as in the case of atomic potentials, the coordinates of the
system can be rotated into the complex half lower plane when θc <
θ < π/4. However, the molecular electronic Hamiltonian within
the Born-Oppenheimer approximation is singular at the nuclei
positions and therefore a uniform analytical continuation into the
complex plane by re → ree

iθ is not allowed. This complication
results in different methodologies for tackling this problem. The
rigorous solution to this problem is to chose complex electronic
coordinates that remain real inside an interaction volume, which
include all the molecular nuclei. By that we avoid the singularities
in the electron-nucleus attractive potential terms, and rotate the
coordinate into the complex plane only out of the interaction
volume by using θ. Section 4 presents several methods, which
introduce such complex electronic coordinates that avoid these
singularities. By using one of these complex electronic
coordinates, the non-Hermitian (NH) Hamiltonian, Ĥ(rθe ), is
obtained. This NH operator can be represented using a finite
matrix that is spanned by finite number of Gaussian basis
functions. The non-Hermitian Hamiltonian matrix elements
are given by

Hθ
ζ ,ζ′ � 〈Gζ |Ĥ rθe( )|Gζ′〉, (10)

where {Gζ(re)}ζ�1,2,...N represents a set of Gaussian basis
functions.

Here we are coming to a delicate point which is important
for the RVP method. Rather than computing the complex
matrix elements for a non-Hermitian Hamiltonian operator
[Ĥ(rθe )], we can calculate the complex matrix elements by
keeping the molecular Hamiltonian operator real [Ĥ(re)], as
usual, and use complex transformed Gaussian basis functions
instead. Moreover, since we want to move into the complex
plane outside the interaction volume, we can complex
transform only the diffuse Gaussians of the employed basis
set [25]. To a good approximation, these diffuse Gaussians
span the space outside the interaction volume. Therefore,
transforming only these diffuse Gaussians will transform
only the electronic coordinates outside the interaction
volume. In this case, the non-Hermitian Hamiltonian matrix
elements become

Hθ
ζ ,ζ′ � 〈 G−θ

ζ[ ]p|Ĥ re( )|G−θ
ζ′ 〉,

where the complex diffuse Gaussians are given by [26],

Gζ r−θe( ) � xe − xN( )n ye − yN( )m ze − zN( )l exp −ζη−2 re − rN( )2[ ]( ){ }
ζ�1,2,...N,

(11)
and where η = αeiθ and the electronic vector position is re = (xe, ye,
ze) centered on the nuclei RN = (xN, yN, zN). Notice that one needs
to avoid the complex conjugate in the matrix elements (the so
called c-product, see Ref. [1]) and therefore we get,

Hθ
ζ ,ζ′ � 〈G+θ

ζ |Ĥ re( )|G−θ
ζ′ 〉. (12)

Examining the NH Hamiltonian matrix elements, one can see
that going into the complex plane can be made even simpler.
From Ref. [27] we know that the Hamiltonian matrix elements,
unlike the operator itself, can be analytically dilated. Therefore,
one does not even have to use complex diffuse Gaussians to
obtain these matrix elements. Instead, one can calculate these
elements as a function of the parameter η but with θ = 0,
i.e., calculate the matrix elements as a function of α. Then,
analytically dilate this parameter into the complex plane by
substituting η = αeiθ. In other words, to simplify things further
and avoid the use of complex diffuse Gaussian basis functions,
one can use real diffuse Gaussian basis functions, which
depend on the real parameter, α, and then make this
parameter complex by taking θ ≠ 0. Doing so, one can
obtain the NH matrix elements by using real functions and
the real Hamiltonian.

Needless to say that even this kind of simplification is not
straightforward to apply and requires the modifications of the
standard (Hermitian) quantum chemistry packages, which
include variety of ab-initio methods (based on MP (Møller
Plesset perturbation theory), CI (configuration interaction),
CC (coupled cluster) and more.

Here we are coming to the new approach we developed, in
which we take one step further in the analytic continuation
direction and replace the analytic dilation of the Hamiltonian
matrix elements with that of a single eigenvalue. A proof of this
point is given in the next two sections. Obviously, there is a
great numerical advantage to analytical continuation of a
single eigenvalue over an N × N matrix elements, where N
is the number of basis functions employed. Since the Padé
approximant (see Section 2.2) is used for the analytical
continuation the method is know as Resonance via Padé
(RVP). There are additional numerical advantages to RVP.
Standard NHQM methods commonly work directly in the
complex plane in order to calculate the resonance eigenvalue
[6, 25–40]. RVP belongs to a subgroup of methods,
which move into the NHQM regime via analytical
continuation [41–44] It is based on the stabilization
technique [45–49], where the real energy levels are plotted
as a function of a parameter (α as denoted above) that
controls the diffuseness of the Gaussian basis functions (see
details in Section 2.1). The stabilization calculation, which is
computationally the most demanding step, is followed by a
very “cheap” analytical continuation step [50] (see Section 3).
Therefore, analytical-continuation methods that are based on
the stabilization technique hold two distinct advantages:
First, Matsika and co-workers showed that the computation
time required by the stabilization technique is an order of
magnitude lower than the time required by a NHQM approach
that works literally in the complex plane [43]. Second, the
versatility in generating the stabilization graph opens the door
for various applications. That is, stabilization graphs can be
calculated using any standard quantum chemistry packages,
with any existing Hermitian electronic structure method, see
for example Ref. [44].
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1.4 Proof of Concept for the Resonance via
Padé Method for Small Hamiltonian
Matrices
In this section we explain the concept behind the RVP method
and its connection to the analytical continuation of the real
Hamiltonian matrix elements (HMEs); we stated above that in
order to calculate resonances in the complex plane one can
analytically dilate the real HMEs into the complex plane. This
means that in order to calculate resonances one needs to obtain
the matrix elements as a function of a real parameter, α.
Therefore, the characteristic polynomial for this matrix will
also depend on α, and in turn the solution of this polynomial
will also depend on α. The solution of this polynomial is in fact
the eigenvalue (energy level) that we are looking for. We conclude
that if the real Hamiltonian matrix elements can be analytically
dilated into the complex plane, also the eigenvalues can be dilated
into the complex plane. Further details are given below.

Thus, one can avoid the numerical diagonalization of a non-
Hermitian complex matrix and replace it with Hermitian
electronic-structure calculations that yield real eigenvalues,
which can be dilated into to complex plane. Similarly, one can
carry out dilation into the complex plane and obtain complex
properties other than the energy, such as complex dipole
transitions and other properties that are calculated as
expectation values. This is because the eigenvectors can be
expressed as a linear combination of the HMEs, therefore we
claim that they also depend on α, and can be analytically dilated
into the complex plane. Thus, one can avoid the numerical
calculations of the eigenvectors of the non-Hermitian complex
matrix, and obtain complex energies and expectation values by
analytical continuation.

Unfortunately, closed form expressions of the eigenvalues and
eigenvectors as function of the HMEs are known only for small
Hamiltonian matrices, i.e., less than 5 × 5. Namely, such closed
form expressions are known only for Hamiltonian matrices
constructed from two, three or four basis functions.
Nevertheless, we can use the Padé approximant in order to get
closed form expressions for the eigenvalues and expectation
values for relatively large matrices, which are typically used in
electronic structure calculations. However, before going into the
procedure for large and finite analytical expressions (that are
required for actual chemical problems) we want to establish the
proof for the small dimensional matrices.

Let us show it for the simple 2 × 2 Hamiltonian matrix. The
HMEs are function of a real scaling parameter η, where we chose
η = αeiθ with θ = 0. The eigenvalues are given by

E± η( ) � H11 η( ) +H22 η( )
2

±
1
2

�������������������������������
H11 η( ) +H22 η( )( )2 + 4H12 η( )H21 η( )√

.

It is clear that if the HMEs are known analytical functions of η,
one can dilate them into the complex plane by substituting
complex values for η → αeiθ with θ ≠ 0. Then, analytically
calculate the stationary points in the complex plane (to satisfy
the complex variational principle as described in Ref. [1]). The
stationary points are associated with the resonance complex
eigenvalues, where Re[E±] are the energy positions and − 2Im

[E±] = Γ are the widths. Similarly, the real dipole transitions can
be expressed as function of a real scaling parameter,

D+,− η( ) � Ψ†
+ η( )[ ]Td η( ) Ψ− η( )[ ].

For the 2 × 2 real Hamiltonian matrix case the vectors [Ψ±(η)]
are analytically obtained as function of the real HMEs. The

components of the eigenvectors
[ψ±(η)]1[ψ±(η)]2( ) are given as

usual by,

ψ± η( )[ ]1 � H12 η( )
E± −H11 η( ) ψ± η( )[ ]2

where

ψ± η( )[ ]21 + ψ± η( )[ ]22 � 1.

Thus the complex dipole transitions can be associated with
stationary solutions in the complex plane obtained by analytic
dilation of D+,−(η) into the complex plane.

Similar expressions can be derived for the 3 × 3 and 4 × 4 cases.
However, for larger matrices we shell use the Padé
approximant in order to get closed form expressions for the
eigenvalues and dipole transitions as a function of (a real) η.
And then, carry out the analytical continuation into the
complex plane and look for stationary solutions, which are
associated with the resonance positions and widths or the
complex dipole transitions, as detailed in Section 2 and
Section 3.

1.5 Resonance via Padé for a Large and
Finite Sized Hamiltonian Matrix
In the above section we saw that complex resonance eigenvalues
and dipole transitions can be obtained by analytical continuation
from real eigenvalues and dipole transitions, which are obtained
from standard (Hermitian and real) calculations. However, this
analysis is limited to small number of basis functions (<5) for
which we have closed form analytical expressions. The extension
of this approach to large matrices, i.e., to large number of basis
functions, requires the use of a numerical scheme to describe
either {Ej(η)}j�1,2,..,N or {Dj,j′(η)}j,j′�1,2,..,N by a closed form
analytical expression. One such scheme is based on the Padé
approximant, in which the energy and dipoles are expressed as a
rational fraction of polynomials,

Ej η( ) ≈ ΣNp

p�0aj,pηp

ΣNq

q�0bj,qηq
(13)

and,

Dj,j′ η( ) ≈ ΣMp

p�0cj,j′,pηp

ΣMq

q�0dj,j′,qηq
. (14)

The main question is from where do we get the data from
which we will fit the coefficients in the above expression. The
answer to this question is that we take it from stabilization graphs,
see Section 2.1 for more details.
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Other questions we need to answer are:

(Q1) How to select the initial real data points from the
stabilization graphs?

(Q2) How to select the Np, Nq or Mp, Mq parameters of the
polynomials?

(Q3) How to optimize the real approximated polynomial
expansions, i.e., the aj,p, bj,q or cj,j′,p, dj,j′,q coefficients,
to the ab-initio stabilization calculations?

(Q4) How to locate the stationary solutions in the complex
plane, which are associated with the resonance positions
and widths or with the complex transition dipoles?

These questions are answered in Section 2 (specifically
Section 2.2), which discusses the RVP formalism in details.

2 THE RESONANCE VIA PADÉ
METHOD—RESONANCE VIA PADÉ IN
PRACTICE FOR LARGE HAMILTONIAN
MATRICES

2.1 Real Stabilization Graphs
As mentioned above, our new approach to introduce non-
Hermiticity and obtain resonances is by analytic dilation of
eigenvalues from the stable part of a stabilization graph into
the complex plane. Since we use the Padé approximant as our
analytical continuation method, we call our new approach
Resonance Via Padé, RVP. This approach, unlike uniform
complex scaling, uses standard, Hermitian, calculations to
obtain the resonance position and width, and does not modify
the Hamiltonian.

In the RVP method, as a first step, the energy spectrum is
calculated using Hermitian codes as a function of a generalized box
quantization parameter, E(α) where α = η (with θ = 0 and η = αeiθ).
For example, the eigenvalues can be calculated as a function of the
number of basis functions (BFs) [45] or when finite given BFs are
scaled by a real factor [47, 48, 51]. In practice, to scale the BFs by a

real factor, one can use Gaussian base functions and divide the
exponents of the Gaussians by the real factor α (see Eq. 11).
Calculating the energy spectrum with these BFs will produce E(α).
Note that in this case, α < 1 will cause the spatial distribution of the
Gaussians to compress, and α > 1 will cause it to expand. Therefore,
we typically employ the range: 0.6 < α < 2.0.

In such calculations, when continuously increasing α, the
discrete energy levels of the quasi-continuum spectra are
highly affected (i.e., lowered). Resonance states, unlike the
delocalized quasi-continuum states are much less affected by
small variations of α [1, 52], since resonance states are typically
much more localized in the interaction region, see Figures 3.5 and
3.6 in Ref. [1]. Therefore, while quasi-continuum states
significantly change as α is varied, resonance states remain
relatively stable. This is why a graph portraying E(α) as
function of α around the resonance energy is named a
stabilization graph, as illustrated in Figure 3A.

In such a graph, an energy level crossing is expected between
the highly affected delocalized quasi-continuum states and the
stable resonance energy. However, since states with the same
symmetry cannot cross each other in the adiabatic representation,
avoided crossings are obtained in the graph. In these avoided
crossings, a transition from a localized state to a delocalized
quasi-continuum state occurs. Therefore, the avoided crossings
are associated with branch points (BPs) in the complex energy
plane (see chapter 9 in Ref. [1]). Consequently, E(α) is not an
analytic function of α.

Nevertheless, while the avoided crossings correspond to a
mixing between two functions: a localized function and a
delocalized quasi-continuum function, the stable part of the
stabilization graph, in between two avoided crossings,
corresponds to a single function, localized in the interaction
region. Therefore, the stable part of the stabilization is
expected to be locally analytic, while the avoided crossings are
expected to be non-analytic. Thus, the stable regions contain all
the relevant information for analytical continuation into the
complex plane. A numerical proof for this point is given in
Refs. [52, 53] and the figures within.

FIGURE 3 | The stabilization graph of the He**(2s2) resonance state, where the real energy level is plotted as a function of a real parameter (α) that controls the
diffuseness of the Gaussian basis functions. The plot illustrates the different steps within the automated RVP algorithm. (A)Calculated (black circles) and interpolated (red
squares) data points. (B) The interpolated stable region produced by step 1 of the automated RVP algorithm (green diamonds) that serves as input for the Padé/
Schlessinger point method.
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This is how the RVP approach avoids the non-analytic parts in
the stabilization graph. In this approach, a single energy level,
obtained from the stable part of the stabilization graph, is
analytically dilated using the Padé approximant. Namely, the
stable part of the stabilization graph, which has a smaller slope
than the unbound energies [46], is fitted as a function of a real
scaling parameter to a ratio between two polynomials (like
Eq. 13):

E α( ) � P α( )
Q α( ). (15)

where P(α) and Q(α) are polynomial functions of a real
scaling parameter, α. As the focus of the analytic continuation
scheme is not on the avoided crossing regions, but rather on the
stable part of the stabilization graph, excellent results are obtained
[50, 53].

2.2 Resonances by Analytical Continuation
of the Padé-Schlessinger Method Into the
Complex Energy Plane
As previously explained, the stable part of the stabilization graph
is expected to be locally analytic. Yet this is not all, this stable
region is also known to contain information on the resonance
lifetime. It has already been shown by Hazi and Taylor. [46], that
the slope of the stable region is related to the width of the
resonance. That is, as the resonance width increases the slope
of the stable part increases. Furthermore, as shown in Section 3.4
in Ref. [1] (and Figures 3.4–3.8 wherein), one can even estimate
the resonance width by analysing the localized function that is
associated with the stable region’s eigenvalues. In this case, the
width is proportional to the square of the ratio between the
normalized amplitude of the function out of the interacting
region and in the interaction region. So, the stable region in a
stabilization graph contains enough information on the
resonance lifetime and all the relevant information for analytic
dilation into the complex plane.

Therefore, it is clear why this region should be used if one
wants to carry analytical continuation to the complex plane and
gain insight on the resonance lifetime. In other words, the answer
to Q1 in Section 1.5 is clear - the initial real data points from the
stabilization graphs one needs to use is the data from the stable
part of the stabilization graph.

Indeed, as a second step in the RVP method, data from the
stable region is analytically dilated into the complex plane using
the Padé approximant (Eq. 15) in order to locate stationary
points (SPs), resonances. In Ref. [53], an analytical path from the
stable region towards a complex stationary point is shown. This
path goes between the BPs and bypass them. This is an additional
proof that using Padé, one can always remain on an analytic path
in the complex plane that goes towards a stationary point. Notice
that the existence of such a path results from the use of a finite
basis set, which are always used in any electronic-structure
calculation [53].

In practice, within the RVP method, an analytic Padé function
is fitted using the Schlessinger point method [54] to data from the

stable region. The Schlessinger point method requires a set of M
data points (αi) and their corresponding eigenvalues (Ei), and
then the Schlessinger truncated continued fraction assumes the
following form:

CM α( ) � E η1( )
1 + z1 α−α1( )

1+ z2 α−α2( )
..
.
zM−1 α−αM−1( )

, (16)

where the zi coefficients need to be determined recursively such
that

CM αi( ) � E αi( ), i � 1, 2, . . . ,M. (17)
This truncated continued fraction can be transformed to a

Padé like form (Eq. 15). Thus, by choosing to use the Schlessinger
point method for the Padé approximant, one obtains
automatically from the data points, all the information on the
Padé function, namely the answers to Q2 and Q3 in Section 1.5
above. Q2 deals with the degree of the polynomials in the Padé
function, and Q3 deals with their coefficients. Clearly, both are
determined by the data set itself satisfying Eq. 17.

Once the zi coefficients are determined, and Eq. 16 is
completed, an analytic continuation into the complex plane is
performed. This is done by substituting a complex η, instead of α,
i.e. η = αeiθ with θ ≠ 0. Then, SPs, resonances, can be identified by
generating α- and θ-trajectories and looking for cusps in the
complex plane [52, 55]. Alternatively, SPs can be identified by
solving the algebraic equation dE

dη � 0 [52]. While solving an
algebraic equation is easier than looking for cusps in the
complex plane, the SPs found by solving the algebraic
equation are not necessarily associated with resonances [52].
This means that if we solve the algebraic equation some SPs
are unphysical. Therefore, to identify the resonance energy and
lifetime, we use a clusterization technique described in Ref. [50] as
the final step of the RVP method. In practice, we generate Eq. 16
for different input sets, where all sets are taken from the stable
region. This way we get a large number of SPs by solving the
algebraic equation for each set. The SPs depend on the input
points chosen for the analytical dilation, where as mentioned,
some SPs are also unphysical. The physical SPs should not
depend strongly on the variation of the input data, unlike the
unphysical ones. Therefore, we examined the SPs by statistical
distribution and look for clusters of SPs obtained from different
input data. The mean value of the cluster is reported as the
resonance complex energy. In this way, we finally answer Q4 in
Section 1.5 above: We understand that we locate the stationary
solution in the complex plane, by solving the algebraic equation
dE
dη � 0 for many input sets, and by using a statistical clusterization
technique.

To sum up, by using the RVPmethod, analytic continuation of
a single eigenvalue level into the complex plane can be employed,
provided that the input data is taken from the stable region of a
stabilization graph since it is a local analytic region. Therefore, we
can divide the RVP method to three steps. In the first step the
stable region data is fitted into a Padé/Schlessinger function and
dilated into the complex plane. An analytic path from the stable
region to the complex SPs, which avoids any of the BPs, exist
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when a finite basis set is employed. In the second step, the SPs are
located using the algebraic equation dE

dη � 0, for different input
data sets. Then, as a final step, the clusterization technique locates
the physical complex resonance values out of the total SPs.

3 AUTOMATIC CALCULATIONS OF
RESONANCES BY THE RESONANCE VIA
PADÉ METHOD: THE “PUSH OF A BUTTON
APPROACH”

Based on all the knowledge we have reviewed in this body of
work, and all the knowledge we have accumulated throughout the
years on the RVP method, recently we were able to take the next
step in implementing the RVP method, and produced an
automated RVP package (https://pypi.org/project/automatic-
rvp/). This package, given a stabilization graph from other
Hermitian computations, is able, in the click of a button, of
automatically calculating the resonance energy and width and
presenting it with the relevant statistical data. Doing so, the
package goes through three steps:

1. Recognizing the analytical part of the stabilization graph.
2. Constructing RVP approximation for different inputs.
3. Running statistics.

In the first step, the package is given a stabilization graph
produced by other Hermitian computations, and its goal is to
recognize the analytical, stable, part of the graph. Practically, the
package gets as input the α values as the x variables, and the real
energy values (E) as the y variables, f(x), (black circles in
Figure 3A).

At first, the package interpolates the data between min(α) to
max(α) through the makima interpolation [56–58], and estimates
the y values of equally distributed x values. The number of these x
values is 40% of the initial α values, and they are ranging from
min(α) to max(α). In this point, we have two sets of data: the
initial set of α and E values (black circles in Figure 3A), and the
interpolated set of x and y values (red squares in Figure 3A). The
interpolated set aim is to portray the structure of the function f(x)
in a general form, without any focus on small deviation in the
original data.

Next, the package identifies the stable region of the
stabilization graph. It does so by looking for two consecutive
data points in the interpolated set, which have the smallest
numerical slope between them. Afterwards, the slope between
this couple and all the other data points in the interpolated set is
calculated. Then the package looks for all the data points in the
interpolated set that are adjacent to the couple and have a slope
value between 70% and 130% of the original slope found. If the
number of points that meet this criterion is more than or equal to
10, the package proceed to the next stage and sets the range
between the min(x) found and the max(x) found as the x range
corresponding to the analytical, stable, part of the stabilization
graph. If the number of points is less than 10, the package looks
for two other consecutive data points in the interpolated set,

which have the second smallest numerical slope between them,
and so on.

In the next stage, the package checks the number of α values it
has in the x range it found. If the number is smaller than 25, the
package produces an error message. If not, the package estimates
through the makima interpolation, the y values of equally
distributed 25 x values in the range it found. These 25 x
points and their y values are considered as the analytical,
stable, part of the stabilization graph (see the green diamonds
in Figure 3B). The aim of this stage is to avoid overfitting of data,
therefore the data is interpolated over the range of x found in the
previous stage.

In step 2 of the package, the data is divided into all possible
subset containing between 8 and 25 consecutive data points. Each
subset is fitted to a Padé approximant, which is stored as a
symbolic function [59]. This symbolic function is later derived to
find the SPs. Convergence of the SPs is checked with respect to the
number of input points (M from Eq. 16 and 17), and the
difference between CM(η) and CM−1(η) is reported as the error
of the SP [53]. At the end of this step, all of the SPs, with their α, θ
and error values, are collected.

In step 3 of the package, the collected SPs are first screened:
SPs with more than 25% error in their imaginary energy part are
thrown out. The number of SPs left is termed n. Later, the
collection of SPs is normalized in the real and imaginary
energy axes. This stage aims to an equal distribution of SPs
for every problem, so the next stage in the package can be
problem-independent.

In the next stage, the packages looks for clusters according to
the DBSCAN algorithm [60]. This algorithm requires two
parameters: ϵ which is the maximal distance between 2 core
points of the cluster, and minPT which is the minimum number
of points required to form a cluster. In our case, minPT is the
minimum between 100 and 8% of n, and ϵ is varied in iterations
between 0.001 and 5 in leaps of 0.001.

In every iteration, the clusters are screened, and all of the
physical clusters are evaluated and graded between 1 and 3, based
on their size and standard deviation. The higher the grade is, the
better the cluster is: We are looking for a cluster as big as possible,
with the smallest standard deviation possible. All the clusters,
together with their grades are stored. In the next iteration, ϵ is
raised, and the newly found physical clusters are graded. This
time, the clusters are compared to the stored clusters. Any cluster
that was upgraded, is deleted from the storage and is saved with
the new data and grade. Any new clusters with a grade of 1 or 2 is
also stored. All the other clusters are thrown away, and then ϵ is
raised again in iterations, until it reaches a value of 5.

At the end of this stage, the package reports all the stored
clusters with a grade 3 or 2. In addition to the cluster mean real
energy and mean imaginary energy, the package presents the
following statistical data: the cluster grade, the real energy
standard deviation, the imaginary energy standard deviation,
the imaginary energy coefficient of variance, the mean α value,
the α standard deviation, the mean θ value, the θ standard
deviation, the ϵ in which the cluster was found, the size of the
cluster and the size of the cluster in percentage relative to n.
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Of course, all of these steps are transparent to the end user, and
given the stabilization graph, one gets, at the push of a button, a list
of clusters containing the resonance mean energy and width and the
above statistical data. Additionally, the user is also presented with
the stabilization graph, on which the chosen stable part is marked.
Yet, it is important to note that the package is also modular, and the
user can change every parameter marked in bold in the above
description. Furthermore, the user can choose, if desired, to run all
the steps together or to run only some step individually.

4 THE EQUIVALENCE BETWEEN
RESONANCE VIA PADÉ AND OTHER
NON-HERMITIAN METHODS IN
CHEMISTRY

RVP belongs to the group of methods that operate within the
non-Hermitian (NH) quantum mechanics (QM) formalism [6,
25–40]. Other NH methods that are considered herein are:
complex scaling, complex basis function and reflection-free
complex absorbing potential. The equivalence between the
different methods is illustrated below by comparing the
complex electronic coordinate, which are obtained by RVP
and by the other NH methods. Notice that these complex
electronic coordinate remain real inside the interaction region
as discussed in Section 1.3 above.

The most straightforward approach for studying resonances is
complex scaling (CS) [1, 2]. In this approach the coordinates are
rotated into the complex plane, i.e., the method is associated with
a contour of integration that is rotated into the complex plane.
The scaling can be uniform or partial. Uniform scaling is
associated with a uniform complex contour (UCC), in which
�r → rη

→ � η �r for any value of | �r|, where �r is the electron coordinate
vector and η = αeiθ is the complex scaling parameter (θ and α are
the rotation and stretching real parameters). Partial scaling is
associated with a smooth exterior complex contour (SECC). In
contrary to atomic calculations, for which it is suitable to use a
UCC, in molecular calculations, the contour of integration should
take into account the singularity in the Born-Oppenheimer
Hamiltonian. A SECC avoids the singularity points in the
Coulombic potential terms of the molecular Hamiltonian (see
discussion in Section 1.3). In addition, using a SECC reduces the
number of basis functions (BFs) required for describing the
interaction region [26, 51]. The imaginary part of the SECC is
as close as one wishes to zero in the interaction region and beyond
some critical point in the coordinate space �r → η �r. The SECC
smoothly detaches from the real axis into the complex plane
around | �r| � r0; see for example Ref. [61] for an explicit
expression. The SECC is the analytical (smooth) form of the
exterior complex contour of integration. This contour can be
represented in spherical coordinated as rη

→ � �r for | �r|< r0 and
rη
→ � �r

| �r| [r0 + η(| �r| − r0)] for | �r|> r0 (regardless of the
symmetrical properties of the molecular potential, as long as r0

FIGURE 4 | (A) A schematic representation of a uniform (x0 = 0) and exterior (x0 = 6) complex contours of integration for calculating the non-Hermitian Hamiltonian
matrix elements (Reprinted from Ref. [2], Copyright (1998), with permission from Elsevier). (B) and (C) presents smooth exterior complex contours from numerical
calculations using (B) CBF (Reprinted (adapted) with permission Ref. [62]. Copyright (2016) American Chemical Society) and (C) RVP (Reprinted (adapted) with
permission Ref. [63]. Copyright (2021) American Chemical Society), as described in the text.
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is sufficiently large). Figure 4A presents such a (one-dimension
r → x) complex contours of integration for the uniform (x0 = 0)
and exterior (x0 = 6) cases.

Another approach for studying resonances is to augment the
physical Hamiltonian with a complex absorbing potential (CAP)
in order to guarantee that the asymptotes of the resonance
eigenfunctions decay to zero. However, the CAP must be a
reflection-free CAP (RF-CAP) in order to perfectly absorb and
avoid generation of reflections, which temper with the description
of the resonance wavefunction in the interior region [61]. If the
CAP is not a RF-CAP one should remove the artificial effect of the
CAP on the solutions of the time-independent Schrödeinger
equation. Note that it is challenging to remove this effect
within the framework of finite basis set calculations, however,
schemes for such a removal can be found in Refs. [6, 64, 65]. The
RF-CAP, on the contrary, is a perfectly absorbing potential, which
avoids the reflection problem by definition. Importantly, the
absorbing potential introduced within the RF-CAP method, is
derived from a complex contour of integration, specifically, using
a SECC. Therefore, the equivalence between CS and RF-CAP
emerges directly from the construction of the absorbing
potential [61].

Alternatively, it is possible to use complex basis functions
(CBFs), i.e., complex Gaussian functions [25, 26, 38, 39]. Within
the CBF approach one can carry out analytical continuation of the
Hamiltonian matrix elements (as discussed in Section 1.4), in
which the Gaussian exponential parameters are scaled by e−2iθ

(and fixing the stretching parameter α = 1). CBF can be used
uniformly, if all the Gaussian basis functions are scaled by the
complex factor, or partially, if only the diffuse basis functions are
scaled. Importantly, the CBF method is also associated with a
complex contour of integration [62, 63]. Such a complex CBF
contour can be obtained by diagonalizing the matrix of the one-
particle coordinate operator �x that is represented by the
employed basis set in the electronic-structure calculations
(whose matrix elements were continued into the complex
plane). It was shown that there is a correlation between
uniform CBF and UCC and between partial CBF and SECC
[62, 63], Figure 4B presents a partial CBF contour of integration
(i.e., a SECC). It is calculated using an even-tempered Gaussian
basis set, where the diffused functions are analytically dilated into
the complex plane. The even-tempered Gaussians basis set is
given as, {xne−ζkx2 }n�0,1, k�0,1,...,kmax

with ζk � ζ0ϵk−10 meaning, ζ0 >
ζ1 > ζ2. . .. And for ζk < ζth, ζk → ζke

−2iθ, where ζth is a threshold
parameter. Diagonalizing the �x matrix yields the eigenvalues of
the coordinate operator, {xk}k�1,2,.., which represent the grid
points that corresponds to the complex contour of integration.
The CBF complex coordinate contour in Figure 4B is obtained
using ζth = 0.1, kmax = 41, ζ0 = 1000 ϵ0 = 1.4125 and θ = 0.25.
Moreover, Eqs 10, 12 demonstrate a mathematical equivalence
between the uniform-CBF and uniform-CS methods for one-
center Gaussian functions.

RVP is conceptually equivalent to CBF, however here the basis
functions are scaled by a real parameter η = αeiθwith θ = 0. Again,
the scaling can be done uniformly, such that all the basis functions
are scaled, or partially, in which only the diffuse basis functions
are scaled. Calculating the RVP complex contour is done in two

steps. First, the contour is obtained in a similar fashion to CBF,
but here the contour lay on the real axis. Next, by dilating it into
the complex plane we obtain the complex RVP contour. We do it
in a similar manner to the analytical continuation employed in
RVP for the energies (see details in Section 2.2), but unlike the
energy case here we substitute into the fitted Padé function the
scaling parameters that yield the resonance energy,
i.e., ηres � αreseiθres . In Ref. [63] it was shown that partial
scaling within RVP is associated with a SECC, whereas
uniform scaling is associated with a UCC. Figure 4C presents
a partial scaling RVP radial contour of integration (i.e., a SECC).
This contour is associated with the electronic 1s22p3s1P
resonance state of beryllium. The cutoff parameter used for
the partial scaling of the employed 14s14p5d basis set is αth =
0.15. The αres = 0.873 and θres = 0.579 values that corresponds to
the resonance energy, are also used in generating the contours.

The ability to associate a complex coordinate contours for CS,
RF-CAP, CBF and RVP suggests similarities between these
NHQM methods. The rationale behind this is that all these
NHQM methods introduce, indirectly, outgoing boundary
conditions to the many-electron problem, which manifests in
a complex contour of integration.

5 RESONANCE VIA PADÉ: CALCULATIONS
OF RESONANCE POSITIONS, WIDTHS AND
COMPLEX DIPOLE TRANSITIONS FROM
STANDARD-HERMITIAN QUANTUM
CHEMISTRY PACKAGES

Belowwe present several illustrative applications of RVP for atomic
and molecular systems. Atomic helium, the triplet Van-der Walls
3He*−H2 supermolecule, and the RNA base uracil anion. Helium
was chosen as a benchmark due to the availability of extremely
accurate reference complex energies and transition dipoles.
3He*−H2 was chosen since it illustrates the remarkable
agreement of the theoretical RVP calculations with the cold-
collision experimental results. Moreover, while the excited
helium is in the 3S state (in the He(3S,1s2s) + H2 collision) the
agreement between the calculated and measured reaction rates
where not so sensitive to the accuracy of the calculated resonance
width. However, for the He(3P,1s2p) + H2 case the agreement
between theory and experiment were obtained only for accurate
calculations of the width. The agreement between the quantum
RVP calculations and the cold-chemistry measurements illustrates
the capabilities of our method. The uracil anion example illustrates
the ability of RVP in carrying out NHQM ab-initio calculations for
many-electron many-atom molecules with biological interest.

5.1 Benchmarking of the Resonance via
Padé Approach for Complex Energies as
Well as for Complex Dipole Transitions
5.1.1 Complex Energies–Positions and Widths
In previous studies RVP was benchmark by examining several
small-to medium-size chemical systems for which there exist
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reliable and accurate experimental data or theoretical values.
These systems include the doubly-excited Feshbach states of:
helium (multiple states) [50, 53], H− (2s2) [53], beryllium
(1s22p3s1P) [63] and H2 (1Σ+

g(1σ2u) at 1.4 and 2.0 Bohr) [50].

In addition the shape-type 2Π resonance state of N−
2 at the

equilibrium distance of the neutral system, RNN = 1.0975 Å
[50]. And the energy positions and decay rates of the
three lowest π* shape-type resonances of the uracil anion [66].
Finally, the reaction rates of the [He(3S,1s2s) + H2] and
[He(3P,1s2p) + H2] collisions [67, 68]. Comparison of these
RVP calculated results to available values from literature was
successful. Some of these benchmarking are presented below.

One of the best system for studying autoionization is the
doubly-excited He** atom (Eq. 2) since exact calculations
(i.e., converged non-relativistic energies) are available [69–72].
In addition, very accurate complex transition dipole values that
can be used as a reference have been reported [73]. Helium is a two

electron system, hence it is possible to calculate its resonance
positions and widths using full configuration interaction (FCI)
and complex scaling (CS) with a very large and highly optimized
one-electron basis set (ExTG5G), these CS/FCI/ExTG5G [36, 73]
energies are in perfect agreement with the exact ones [69–72]. From
the electronic structure point of view FCI involve no
approximation, therefore comparing our FCI/RVP with the
reference FCI/CS allows for a pure comparison between the two
non-Hermitian methodologies. Furthermore, there are several
doubly-excited He** resonance states, which allows examining

FIGURE 5 | The RVP complex energies (ReE+iImE) of the doubly excited
Feshbach He** states contrasted with the exact values, in mHartree. These
energies are also presented in Table 1. The RVP energies are in remarkable
agreement with the exact ones. Reprinted (adapted) with permission
Ref. [50]. Copyright (2019) American Chemical Society.

TABLE 1 |Multiple complex energies of the doubly-excited He** Feshbach states;
RVP vs. exact values. These values are also represented graphically in
Figure 5. Reprinted (adapted) with permission Ref. [50]. Copyright (2019)
American Chemical Society.

State ReE, mHartree ImE, mHartree

RVP Exact RVP Exact

12s2 −777.7858 −777.8676a −2.246 −2.271a
32s2p −760.4625 −760.4906b −0.151 −0.1495b
12p2 −701.5648 −701.946c −1.244 −1.181c
12s2p −692.8821 −693.1349d −0.698 −0.687d
12p2 −621.1877 −621.9273a −0.120 −0.108a

aRef. [70].
bRef. [72].
cRef. [69].
dRef. [71].

TABLE 2 | Complex transition dipoles of helium in milli-atomic units. The state
labels in the first column corresponds to the labels in Figure 6. The reference
values refer to a very accurate results obtained by complex scaling (CS) and full
configuration interaction (FCI) with a very large (ExTG5G) basis set [36, 75]. The
RVP transition dipoles are calculated using two type of truncated ExTG5G
basis sets, where Basis-I is larger than Basis-II. Reprinted (adapted) with
permission Ref. [74]. Copyright (2020) American Chemical Society.

Transition Reference Basis-I Basis-II

Reμ Imμ Reμ Imμ Reμ Imμ

1↔6 35.4 +12.11 34.88 +12.44 35.99 +12.99
2↔6 313.0 −3.598 313.0 −3.021 313.1 −4.136
3↔4 −123.1 −2.554 −122.8 −2.403 −125.5 −2.367
3↔5 328.8 +0.193 326.8 +0.140 321.4 +0.119
3↔7 −192.5 +0.3475 −192.4 +0.3571 −192.4 +0.2619
4↔6 1522.7 −9.73 1528.9 −10.24 1529.3 −10.79
5↔6 1705.45 −3.767 1704.42 −4.030 1693.6 −4.499
6↔7 −2161.4 −1.007 −2163.4 −1.164 −2167.5 −2.570

FIGURE 6 | A schematic representation of the atomic helium energy
levels. The singly and doubly excited states correspond to bound and
resonance states, respectively. There are three bound states (at the bottom of
the figure) and four resonance states (at the top). The left-hand side
shows the spectroscopic atomic term symbols, which are associated with the
index lables (shown on the right-hand side). The red double arrows represent
the dipole allowed transitions, these eight complex dipoles are presented in
Table 2. Reprinted (adapted) with permission Ref. [74]. Copyright (2020)
American Chemical Society.
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the performance of RVP in case of multiple resonances; that is, we
tested the reliability of the computed energy difference between
resonance states. Therefore, it is also suitable for examining the
quality of the RVP transition dipoles between resonance states.

The five lowest doubly-excited resonance states of He** are
calculated and compared with the exact values [69–72].
Clearly, from Figure 5 and Table 1 the RVP energies are in
remarkable agreement with the exact ones. Notice that this
agreement is further improved by increasing the size of the
basis set used within the RVP calculations, as presented in
Ref. [74].

5.1.2 Complex Transitions Dipole
Table 2 presents the complex dipole transitions between different
electronic states of helium. The transitions shown on the left
column correspond to the labeling presented in Figure 6. Since
these dipoles involve transitions from bound or resonance states
always into a resonance state they become complex in accordance
with the non-Hermitian theory. The reference values in Table 2
corresponds to very accurate theoretical values obtained by a CS/
FCI with a very large ExTG5G basis set, see Refs. [36, 75] for
details. These values can be regarded as exact since ExTG5G is
highly-extended and optimised even for treating highly excited
helium Rydberg states. In order to calculate the RVP transition
dipoles we use two different basis sets, Basis-I and Basis-II. They
are obtained by truncating the ExTG5G basis set, i.e., by omitting
the most diffuse basis functions (which are essential for studying
highly excited Rydberg states). Basis-I is a more extended basis set
than Basis-II. Both basis sets yield good agreement with the
reference CS values. For the real part of the transition dipoles,
Reμ, RVP is converged since the difference between Basis-I and
Basis-II is very small, nevertheless the agreement of Basis-I
with the reference values is better than that of Basis-II. For
the imaginary part of the transition dipoles, Imμ, Basis-I
clearly works better than Basis-II. Seven out of the total
eight transitions calculated with Basis-I are in better
agreement with the reference values than the Basis-II
results. For the eighth transition, from the 2nd to the 6th
states, both Basis-I and Basis-II give the same error with
respect to the reference value. Since the RVP complex
transition dipoles are in agreement with the very accurate
FCI/CS/ExTG5G dipoles and since the trend of the results with
respect to the size of the basis set behave as expected, we

conclude that the RVP approach is suitable for calculating
electronic properties other than energies.

5.2 Complex Potential Energy Surfaces for
3He*−H2 Penning Ionization Reaction
The calculated RVP complex potential energy surfaces (CPESs)
that are presented below play a crucial role in the interpretation
and analysis of the reaction rates (RRs) measured in cold
molecular collision.

5.2.1 He(3S,1s2s) + H2

Herein, we present investigation of the following molecular
reaction:

He(3S,1s2s) + H2 → [He*−H2] → He(1S,1s2) + H+
2 + e−,

which allows direct comparison with the experimental results.
Thus, it can be considered as an additional benchmarking of RVP.
This particular Penning ionization process was studied
experimentally at very low temperatures [76]. That is,
experimental cold-chemistry RRs are available. RR calculations
require the CPES of the He*−H2 supermolecule, which is
obtained from the RVP complex eigenvalues as a function of
the geometrical configuration of this system. The sensitivity of

FIGURE 7 | Schematic representation of the He*−H2 supermolecule.
Reprinted (adapted) with permission Ref. [67]. Copyright (2017) American
Chemical Society.

FIGURE 8 | Potential energy curves of the neutral-excited (He(3S,1s2s) +
H2, in blue) and cation (He(1S,1s2) + H+

2, in green) systems at ϕ = π/2. Energies
are in Hartrees and the intermolecular separation in angstroms. The excited
(blue) state is approximated as bound state in the continuum, i.e., using
standard Hermitian formalism. In addition, decay rates are presented
schematically by red arrows (according to the RVP results presented below).
The intensity of the red color reflects the decay rate from the neutral-excited
state to the cation state, where stronger intensities indicate higher decay
rates. Enlarging the region around 6 �A, see inset, reveals a shallow well. The
experimental observation of the autoionization process is associated with this
region [81]. Reprinted (adapted) with permission Ref. [67]. Copyright (2017)
American Chemical Society.
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such a quantum process to the CPES structure poses a challenge
to any state-of-the-art ab-initio calculations since autoionization
becomes more pronounced as the temperature decline.

The computational details are: the real PES and the
stabilization graphs are calculated with the equation-of-motion
coupled cluster (EOM-CC) method with singles, doubles, and
perturbative triples corrections [EOM-CCSD(dT)] [77]. The 1S
ground state of He–H2 is the reference configuration used to
calculate the target 3S resonance state. For the basis set we use the
primitive 5ZP set [78]. The hydrogen molecule is treated as a rigid
rotor with a fixed distance, r0 = 0.74085 Å. The distance R varied
over a wide range, while the angle is restricted to ϕ = 0 and ϕ = π/
2. See Figure 7 for the definition of these parameters. Using these
two angles we can expressed the CPES, E(R, ϕ), as a power series
(in cosϕ). See Ref. [67] for additional details.

Figure 8 displays the real potential curve (blue) for the He* −
H2 supermolecule at ϕ = π/2 (T-shape). In addition, it shows a
schematic representation of the RVP decay rates using red arrows
(the actual RVP calculations are presented below), where a darker
shade corresponds to a faster decay, and a lighter shade to a
slower decay. The autoionization state decays into the potential
energy curve of the cation ground state of the supermolecule
(green). The cation surface represents the ionization threshold for
this autoionization process. The area of interest, in which the
autoionization was observed experimentally [76], is shown as
inset in Figure 8. A shallow potential well is exposed, which could
be overlooked on larger scale, see the black rectangle on the blue
curve in Figure 8. The depth of the well for the T-shape and linear
(not shown here) geometries is around 2.87 × 10–5 and 5.012 ×
10–5 Hartree (6.3 and 11 cm−1), respectively, which emphasizes
the need for a highly accurate CPES.

The CPES is obtained by recalculating the RVP complex
energies at each molecular configuration. That is, calculating
at different distances, R at for both T-shape and linear

geometries. The position [ReE(R, ϕ)] and decay rate [Γ(R, ϕ) =
−2ImE(R, ϕ)], for the T-shape geometry of He*−H2 are presented
in Figures 9A,B, respectively. From Figure 9A it is clearly seen
that the depth of the potential well remains unchanged after
analytic continuation. Thus, the approximation of the resonance
as bound state in the continuum is justified, however this
approximation does not provide the decay rate of the
resonance state. The calculated RVP decay rate, Figure 9B, is
fitted into a single exponential curve (or linear in logarithmic
scale, see inset). The Penning ionization decay rate is associated
with a single exponential function [79]. Therefore, we conclude
that the autoionization process under study corresponds to a
Penning ionization. A similar behavior was also observed for the
complex potential of the linear geometry (not shown).

Next, the ab-initio RVP CPES was used to compute the RRs
for the above collision with ortho- and para-hydrogen
molecules. The CPES is represented as a truncated
interaction potential [E(R, ϕ) → V(R, ϕ)], which is expressed
as a power series (in cos ϕ) [67]. Then, we solve the nuclear
time-independent Schrödeinger equation with V(R, ϕ) for the
metastable and cationic product. The nuclear eigenvalues and
eigenfunctions of the metastable state and product state were
integrated into the scattering theory to compute the RRs. The
computing of the RRs were done by using the non-Hermitian
time independent scattering theory (see derivation given in
Chapter 8 of Ref. [1] and references therein) within the
framework of the adiabatic approximation first derived for
cold molecular collisions in Ref. [80].

Figure 10 presents the RRs calculated with the RVP CPES and
measured by the cold-chemistry experiment. The experimental
curves is in blue and our theoretical findings in red, we observe
excellent agreement for both the para-H2 and ortho-H2 cases.
Notice that our results are within the experimental uncertainty,
see Ref. [67] for details. In addition, the theoretical RRs are

FIGURE 9 | The RVP complex potential energy surface in T-shape (ϕ = π/2) geometry of He(3S,1s2s) + H2. The real part is presented in panel (A), where the inset
zooms into the shallow well. The orange curve (the real part (ReE(R)) of the complex RVP curve) and the black curve (the approximated Hermitian calculations) are in
agreement. The imaginary part, i.e., the decay rate (Γ(R) = −2ImE(R)), is presented in panel (B). The decay rate fits into a single exponential curve (see inset in logarithmic
scale), which confirms that this autoionization is a Penning ionization [79]. Reprinted (adapted) with permission Ref. [67]. Copyright (2017) American Chemical
Society.
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calculated in an ab-initio fashion without any fitting parameters,
where only the Planck’s constant, charges, and masses of the
electrons and nuclei were used as input parameters. It
demonstrate the accuracy of the calculated CPES, which allows
interpretation of the observed resonance phenomena. Finally, it
illustrates the universality of the RVP approach in calculating
CPESs and reaction rates for any many-atom system in any decay
process.

The RVP reaction rate [67], in red, is in excellent agreement
with the experimental one [81], in blue. The theoretical results are
computed using the RVP ab-initio complex potential energy
surface, without using any fitting parameter. Adopted from
Ref. [67].

5.2.2 He(3P,1s2p) + H2

In an additional cold chemistry experiment, structures in the
measured RRs, associated with resonances, were reported in a
collision between the ground-state hydrogen isotopologues (H2/
HD) with helium atoms, but now, in an excited triplet
P-state [82]. That is:

He(3P,1s2p) + H2 → [He*−H2] → He(1S,1s2) + H+
2 + e−.

A theoretical explanation of the appearance of these
structures was not given. However, in Ref. [68] we presented
a quantum ab-initio calculation that interpreted this
experiment. This emphasis the need for proper CPESs, in
which the real and imaginary parts are computed at the
same level of theory.

The RVP CPESs were calculated using the two of the most
symmetric orientations of the supermolecule, ϕ = 0 and ϕ = π/2,
i.e., with H2 perpendicular and parallel to the collision trajectory.
The computational details are similar to the ones given in the 3S
case. The linear configuration give rise to one Σ and one Π states
since He is in a P state. Whereas, the T-shape configuration
display the C2v point group symmetry and give rise to three
potentials with A1, B1, and B2 symmetries. Therefore, five
different potential curves are obtained. Figure 11 present these
complex potentials, where the real parts (ReE(R)) are presented in
Figure 11A, showing three attractive and two repulsive curves.
The imaginary part is shown in Figure 11B, where each decay
rate curve fits into a single exponential curve (or liner in
logarithmic scale). This suggests that this autoionizations are
Penning ionizations [79]. B1, which has the most attractive
potential (with about 4800 K depth at 2Å) and also has the

FIGURE 10 | The reaction rates for the He(3S,1s2s) + H2 collision. Panel (A) for H2 in its rotational ground state (para) and (B) in its first excited state (ortho). The
peaks are associated with nuclear resonances of the He*−H2 supermolecule. Reprinted (adapted) with permission Ref. [67]. Copyright (2017) American Chemical
Society.

FIGURE 11 | The RVP complex potential energy surface of He(3P,1s2p) + H2 in T-shape and linear geometries. The real part (ReE(R)) is presented in panel (A). The
decay rate (Γ(R) = −2ImE(R)) is presented in panel (B) in logarithmic scale. Reprinted (adapted) with permission Ref. [68]. Copyright (2019) American Chemical Society.
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highest decay rate (in black), is the dominated potential in the
reaction rate calculations, as discussed below.

Next we identify these CPESs as the interaction potentials in the
nuclear Hamiltonian [E(R, ϕ) → V(R, ϕ)], again, expressed as a
power series (in cosϕ), see Ref. [68] for details. The RRs were
calculated using the solutions of the nuclear time-independent
Schrödeinger equation. The experimentally measured RRs found
that the Penning ionization product weight is 90% at all collision
energies [82]. Therefore, we assumed that Penning ionization
dominated the whole process. The theoretical Penning-ionization
RR obtained for the He(23P) + H2 system is shown in Figure 12.
Notice that H2 is in the ground (J = 0) para state of the rotational
levels. It is possible to recover pure para-hydrogen in a cold-collision
experiment, which makes the para-H2 an exciting molecular species
to study. The figure compares the theoretical RR (in blue) with the
experimental one (in black) for the temperature range of 0.01–100 K.
In addition, we also report the RR for the He(23P) + HD(J = 0) case,
it is behavior is nearly identical to the He(23P) + H2(J = 0) case.
Finally, the Langevin power law is shown (in red dashed line), which
scales as E1/6. The Langevin power law was calculated with a
coefficient value of 122a.u. [82]. Notice that the RVP calculations
do not include any external scaling or fitting parameter. Our results
are in good agreement with the experimental RRs over the entire
temperature range. The theoretical reaction rate reproduces the
experimental structure also below 1 K. At this temperature a
transition from the classical to the quantum domain occurs.

In the experimental work [82], the authors had related their
theoretical reaction rate on the long range Van der-Waal’s
interaction, where the potential scales as 1/R6. Moreover, they

claimed that the entire reaction rate would be controlled by the
classical Langevin power law. However, based on our ab-initio
quantum calculations, a clear transition from this “classical” regime
to the quantum region is observed. Specifically, the RR of He(23P) +
para-H2 behaves as the power law at the asymptote for relatively
high temperatures. However quantum effects become dominant
below 1 K. This can be seen very clearly in Figure 12 as a sharp
drop in the RR coefficient. Above 1 K (i.e., above this drop) the
classical power law can be used in order to predict the RR. But
below 1 K, the classical explanation completely fails and the RR
coefficients are governed by quantum laws.

Notice that the RR can be reproduce using only the T-shape B1
potential but to achieve a quantitative agreement with experimental
date the entire CPESs need to be considered. The asymptote (R→
∞) of the collision coordinate is the entry channel of the reactants.
At the asymptote all the five potential are degenerate, therefore we
expect that all states will contribute. However, the B1 state alone
dominated the collision process. The B1 potential is the most
symmetric, it has the deepest well, i.e., lowest in energy, and it
has the fastest decay rate, see Figure 11. Thus, the majority of the
reactants will populate B1 and the collision is along this particular
adiabatic surface, see Ref. [68] for additional details.

5.3 Resonances of Uracil Anion
5.3.1 Complex Energies–Position and Width
Resonance (metastable) states can be generated, for example, by
an absorption of slow electrons by neutral nucleobases in their
ground state. It was suggested that such resonance states play a
key-role in DNA or RNA damage [83]. In this section, we present
an ab-initio investigation, using RVP, of the uracil anion. We
present, for its three low lying shape-type resonance states the
positions and decay rates. We also present the calculation of the
complex transition dipoles between these metastable states. These
electronic properties are a prerequisite for a future ab-initio light-
matter interaction study. Notice that this is the first application of
RVP to a medium-size system.

The presented results are converged with respect to the size of
the one-electron basis set. Since polarized basis functions appear
to be essential we consider the Dunning’s basis sets. We find that
it is necessary to employ the triple-ζ basis set, cc-pVTZ. However,
additional diffuse functions are mandatory, by systematically
adding these on top of the cc-pVTZ basis set we conclude that
cc-pVTZ+2s2p2d is the optimal basis set. Where two diffuse
functions with s, p and d angular momentum are added to the cc-
pVTZ set of each atom, while for the hydrogens we use aug-cc-
pVTZ. The stabilization graphs of the three uracil anion shape-
type resonance states, at the EOM-EA-CCSD/cc-pvTZ+2s2p2d
level, are presented in Figure 13.

Table 3 presents the converged RVP results compared with the
most recent theoretical results. These studies include the Generalized
Padé Approximation (GPA) approach that is also based on the
stabilization technique [42, 43], and complex absorbing potential
(CAP) added to the symmetry-adapted cluster-configuration
interaction (SAC-CI) approach [84]. We observe the same trend
for all the recent theoretical results (presented in Table 3). This is
encouraging since earlier studies [85–88] presented a wide range of
values for the positions and widths.

FIGURE 12 | The reaction rates for the He(3P,1s2p) + H2 collision. The
theoretical reaction rate is shown in blue and the experimental one in black
dots with error bars over a temperature range of 0.01 K till 100 K (For the
isotopic collision we use cyan and gray for the theoretical and
experimental rates, respectively.) The ab-initio theoretical results (based on the
RVP complex surfaces) are in agreement with the experimental reaction rates
also in the low temperature region (< 1 K). The red dashed line is the
theoretical Langevin power law (E1/6). The power law matches well with the
reaction rate till 0.8K, below this temperature it fails and cannot explain the
observed drop. Reprinted (adapted) with permission Ref. [68]. Copyright
(2019) American Chemical Society.
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5.3.2 Complex Transition Dipoles Between the Uracil
Anion Resonances
Complex dipole transitions between the lowest shape-type
metastable states are computed using the energy-converged,
cc-pVTZ+2s2p2d, basis set. The RVP procedure for calculating
complex dipole transitions is illustrated in Figure 14 for the 1π*

↔ 2π* case, i.e., between the 1st and 2nd shape-type states. The
energy stabilization graph for these states is presented in
Figure 14A. We highlight (in black) an area for which there is
an overlap between the two stable regions. This overlap region in
parameter space corresponds to a “macroscopic stability” in the
dipole transition graph, Figure 14B. It is an analytic region, in
which the change in the values is relatively small, in the current
case less than 10% of the dipole value itself. The “macroscopic
stability” idea was defined for situations in which the variational
principle does not hold [92]. In such cases and, unlike the case of
energy stabilization graphs, the behaviour of the continuum
states that are scaled by a parameter is not well defined. In the
energy stabilization graphs case, the energy of a continuum state
will always decrease as α (the real scaling parameter) increases,
i.e., as the space spanned by the basis set is increased. Contrary,
in transition dipole calculations the dipole can either decrease
or increase. Therefore, in the dipole transition case one obtains
different shapes of stabilization graphs, as in Figure 14B,
additional dipole stabilization plots can be found in the
supporting information in Refs. [66, 74].

FIGURE 13 | (A) Stabilization (energy) graphs for the uracil anion. This is an EOM-EA-CCSD/cc-pVTZ+2s2p2d calculation. Circles represent the input data for the
RVP method, which is taken from the stable region. (B–D) zoom into the stable part that corresponds to the 1π*, 2π* and 3π* states, respectively. Reprinted from Ref.
[66], with the permission of AIP Publishing.

TABLE 3 | Energy positions (Er) and widths (Γ, in parenthesis) of the lowest three
shape-type resonances of uracil anion calculated using RVP and compared
with other theoretical works. Adopted from Ref. [66].

Er(Γ), eV

1πa 2πa 3πa

RVPb 0.597 (0.014) 2.183 (0.140) 4.858 (0.657)
GPAa 0.61 (0.02) 2.28 (0.07) 4.98 (0.34)
CAPc 0.57 (0.05) 2.21 (0.10) 4.82 (0.58)

this work, EOM-EA-CCSD/cc-pVTZ+2s2p2d.
aEOM-EA-CCSD/aug-cc-pVDZ+1s1p1d [89, 90].
bthis work, EOM-EA-CCSD/cc-pVTZ+2s2p2d.
cSAC-CI/cc-pVDZ+2s5p2d [91].
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Technically, the complex dipole transitions are calculated in a
similar manner to the procedure for calculating the complex
resonance energies [74]. Input data for fitting a Padé
polynomial function are taken as the points marked in black in
Figure 14B. Once in possession of a Padé function, analytical
dilation into the complex plane is allowed. Next, one search for SPs
clusters, i.e., complex dipoles are identified using the clusterization
technique [50]. The results, i.e., the complex dipole transitions
between the three low-laying resonance states, are given inTable 4.
Notice that the real part dominant the three dipole transitions,
where the imaginary part corresponds to about 1% of it or less.

6 SUMMARY

The RVP (Resonance via Padé) method and its applications have
been described. The method enables the calculations of complex
eigenvalues and energy surfaces associated with resonance states
with finite lifetimes, also know as metastable states. Moreover, RVP
allows calculations of other complex electronic properties, such as
complex dipole transitions and moments. As illustrative numerical
applications we present the calculations of: multiple doubly excited
helium resonance states and the transitions between them, the
3He*−H2 cold collision, and uracil anion (an RNA nuclear base).

Since RVP is based on the stabilization technique, the complex
properties are computed from real eigenvalues and real dipole
transitions obtained from standard (Hermitian) quantum

chemistry packages. The transition from the real axis into the
complex plane is done by analytical continuation, specifically
using the Padé approximant. The rational, mathematical logic
and the methodology of RVP are presented here.

The ability to calculate ab-initio energies and lifetimes for
small to medium-size systems (even with biological relevant)
opens the door for investigating reactions of such molecules
in which autoionization takes place. While the ability to also
compute their complex dipole transitions enables
investigating photo induced dynamics of such biological
molecules.

Moreover, we describe an open-source code, which can
be used as a “black box” to calculate complex physical
properties from real input data with the RVP method. For the
automatic code see (https://pypi.org/project/automatic-rvp/).

AUTHOR CONTRIBUTIONS

AL—writing and calculations. IH—writing and calculations.
NM—writing and ideas.

FUNDING

We acknowledge the Israel Science Foundation (Grant No. 1661/
19) for a partial support.

FIGURE 14 | (A) Stabilization (energy) graphs for the 1π* and 2π* resonance states of the uracil anion. The black squares represent the overlap region (in the energy)
between the two electronic resonance states. (B) Stabilization (dipole transitions) graphs for 1π*↔ 2π*. The black points corresponds to a stable part on the graph, which
has the same α-range as the overlap (energy) region. These points are used as input within RVP. This is n EOM-EA-CCSD/cc-pVTZ+2s2p2d calculation. Reprinted from
Ref. [66], with the permission of AIP Publishing.

TABLE 4 | Complex dipole transitions (in a.u.) between the three lowest shape-type resonances of the uracil anion calculated with RVP. Electronic-structure method: EOM-
EA-CCSD. Basis set: cc-pVTZ+2s2p2d. Reprinted from Ref. [66], with the permission of AIP Publishing.

Reμ Imμ Reμ Imμ Reμ Imμ

1π* ↔ 2π* 1π* ↔ 3π* 2π* ↔ 3π*

5.089e-01 −3.599e-03 8.782e-01 −6.017e-03 8.204e-01 −1.628e-02
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