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We proposed a diffuse imaging approach for universal noninvasive blood glucose
measurements based on visible light, which can predict the blood glucose
concentration without personal calibration. The proposed approach used a CCD to
obtain diffuse images from human index finger pulp. The denoising autoencoder
algorithm adopted effectively extracted the scattering information highly related to
blood glucose concentration from the diffuse images, and the gradient boosting
regression algorithm enabled an accurate calculation of blood glucose concentration
without prior personalized calibration. In vivo experimental results showed that the
proposed approach had a mean absolute error of 19.44 mg/dl, with all the predicted
results observed within the clinically acceptable region (Region A: 78.9%) in the Clarke
error grid analysis. Compared to other blood glucose concentration measurement
methods of scattering coefficient, this new method does not require individual
calibration, therefore it is easier to implement and popularize, which is critical for the
noninvasive monitoring of blood glucose concentration.
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1 INTRODUCTION

Diabetes mellitus (DM) is a metabolic endocrine disease characterized by hyperglycaemia, which
may cause many complications, such as heart disease, disability, and even death. DM has become the
third serious threat to human health after cardio cerebrovascular disease and cancer in the world [1,
2]. According to the International Diabetes Federation, there were approximately 463 million adults
with DM worldwide in 2019, with this number expected to increase to 700 million by 2045 [3]. The
blood glucose concentration measurement method used clinically is to draw blood from a patient’s
vein or fingertips, and then a chemical test paper is used to determine the blood glucose
concentration from the blood. This method not only makes the patient susceptible to infection,
but also increases the economic burden and causes mental pain. In recent years, lots of efforts have
been put into research and development in noninvasive measurement methods of blood glucose
based on optical methods to solve these issues [4–7]. These optical methods specifically include near-
infrared spectroscopy, Raman spectroscopy, bioimpedance spectroscopy [5, 6], thermal emission
spectroscopy, and blood glucose measurement sensors based on cutting-edge tapered [9] optical fiber
sensors [8–10].

Edited by:
Karol Krzempek,

Wrocław University of Science and
Technology, Poland

Reviewed by:
Xiaojun Yu,

Northwestern Polytechnical
University, China
Santosh Kumar,

Liaocheng University, China

*Correspondence:
Yuejin Zhao

yjzhao@bit.edu.cn
Lingqin Kong

konglingqin3025@bit.edu.cn
Fen Li

feny2004@sina.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Optics and Photonics,
a section of the journal

Frontiers in Physics

Received: 12 January 2022
Accepted: 28 February 2022
Published: 25 March 2022

Citation:
Liu M, Xu G, Zhao Y, Kong L, Dong L,
Li F and Hui M (2022) Diffuse Imaging
Approach for Universal Noninvasive

Blood Glucose Measurements.
Front. Phys. 10:853266.

doi: 10.3389/fphy.2022.853266

Frontiers in Physics | www.frontiersin.org March 2022 | Volume 10 | Article 8532661

ORIGINAL RESEARCH
published: 25 March 2022

doi: 10.3389/fphy.2022.853266

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.853266&domain=pdf&date_stamp=2022-03-25
https://www.frontiersin.org/articles/10.3389/fphy.2022.853266/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.853266/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.853266/full
http://creativecommons.org/licenses/by/4.0/
mailto:yjzhao@bit.edu.cn
mailto:konglingqin3025@bit.edu.cn
mailto:feny2004@sina.com
https://doi.org/10.3389/fphy.2022.853266
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.853266


The strong scattering property of skin tissue makes the
scattered light more sensitive to the change of blood glucose
concentration. Researchers have found that blood glucose levels
may be predicted using the variation of scattering coefficient [11,
12]. Bruulsema et al [13] found a strong correlation between
blood glucose concentration and scattering coefficient in DM
patients. They provided a new idea that the scattering coefficient
was estimated noninvasively based on measurements of the
diffuse reflectance on the skin. This study was performed to
evaluate the sensitivity of the tissue scattering coefficient in
response to step changes in the blood glucose levels, and
further verified the study in 41 DM patients. Heinemann et al.
[14] demonstrated that in the visible and near-infrared light
region, the effect of scattering was much higher than that of
absorption in tissue. An increase in blood glucose concentration
led to a decrease in the scattering coefficient of turbid suspension
in both phantom studies and type I diabetic patients. Tianjin
University’s research [15] further demonstrated that the effect of
the scattering coefficient on the diffuse reflectance was greater
than that of the absorption coefficient. In their study, they
separated the absorption coefficient and scattering coefficient
of human tissue [16, 17]. However, although the relationship
between blood glucose concentration and scattering coefficient
has been studied to a certain extent, the accurate measurement
model of blood glucose concentration by using scattering
coefficient has not been further promoted [19, 20].

Deep learning algorithm shows strong computing power in
the medical field, the optical method combing the deep learning
algorithms is considered as one of the most promising
measurement methods to set up a blood glucose model and
has received extensive attention and research [18–21]. Bob
Zhang [22] addressed a noninvasive method to detect DM
patients based on facial block color features by using an image
sensor with a collaborative representation classifier. In the
collaborative representation classifier, the healthy facial color
feature and the diabetic facial color feature were used to
establish the relationship to determine whether the patient had
DM. However, this classifier just classified the healthy people and
the DM patients, which belonged to quantitative analysis, and did
not measure the blood glucose concentration. Segman [23]
employed a personal calibration procedure to associate blood
glucose concentration and multiple optical signals which were
derived from a fingertip response to light emission in the range of
visible to infrared light. However, this model obtained the blood
glucose concentration value in an invasive way to establish the
personal calibration procedure. The model was only suitable for
the individual of blood glucose measurement and did not have a
universal application. Therefore, establishing a universal model
for the measurement of blood glucose concentrations remains
challenging. As for how to establish a universal model for the
prediction of blood glucose concentration by using scattering
information from human tissue has not been well understood.

In this paper, we presented a noninvasive blood glucose
concentration measurement approach based on diffuse
imaging. We used the denoising autoencoder (DAE) [24] to
extract the weak blood glucose signal from the diffuse images
of human fingertips, and a universal blood glucose calibration

model was established between the diffuse images and scattering
coefficient by gradient boosting regression (GBR) [25]. The
experimental results showed consistency with the existing
invasive device measurements.

2 METHODS

Compared with the absorption coefficient, the scattering
coefficient is not susceptible to interference from other
components in the tissue fluid, so it is more likely to establish
a general model by using the relationship between the scattering
coefficient and blood glucose concentration. Theoretical and
in vitro studies [13, 26] also showed that visible light absorbed
very little blood glucose. Heinemann [27] investigated changes of
blood glucose concentration induced by an oral glucose
experiment that can be monitored by registration of scattering
coefficient changes. The scattering coefficient of biological tissue
is mainly caused by the mismatch between the refractive index of
the scattering particle ns in the tissue fluid and the refractive index
of the tissue fluid nm. Under the assumption that the scattering
condition is approximately consistent with the Rayleigh-Gans
theory [26], the scattering coefficient can be expressed as

μs � k(ns − nm
nm

)
2

(1)

where k is a proportionality factor related to particle size,
wavelength, particle density, and scattering angle. The change
value of the scattering coefficient caused by the change of blood
glucose concentration is written as

Δμs � k(ns − nmc

nmc
)

2

− k(ns − nm0

nm0
)

2

(2)

where nmc is the refractive index of the tissue fluid when blood
glucose concentration is cg, nm0 is the refractive index of the tissue
fluid when blood glucose concentration is 0. The change of tissue
fluid refractive index caused by the change of blood glucose
concentration is small, we can consider as n2mc � n2m0 in the high
order term:

Δμs � 2kns(nm0 − nmc

n2
m0

) (3)

Assuming that the scattering coefficient is μs0 when the
concentration of blood glucose is 0, we can deduce that
nmc − nm0 � Δn × cg. Δn means that the refractive index of the
scattering tissue fluid changes as a fixed constant when the blood
glucose concentration changes by 1 mg/dl. When the
concentration of glucose is cg, the scattering coefficient can be
expressed as

μs � Δμs + μs0 � −2knsΔn
n2
m0

cg + k(ns − nm0

nm0
)

2

(4)

According to the [28], the refractive index of the scatter
particle ns is 1.46 and when the concentration of blood
glucose is 0, the refractive index of the tissue fluid nm0 is 1.35,
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respectively. The refractive index of the scattering tissue fluid
changes Δn = 1.515 × 10−6 mg/dl. Based on the Eq. 4, the
scattering coefficient caused by the change of blood glucose
concentration is as follows:

μs � 2.43 × 10−6cg − 6.64 × 10−3 (5)
Equation 5 indicates that the change of scattering coefficient

caused by the change of blood glucose concentration is still slight.
Therefore, the accuracy of the instrument is not enough to obtain
the changing relationship of blood glucose concentration from
the scattering coefficient by the diffuse reflectance spectroscopy
method. Compared with the one-dimensional diffuse reflectance
spectroscopy information, the two-dimensional diffuse images
contain more features related to the scattering information from
the change of blood glucose concentration.

Extracting useful information from the diffuse images and
eliminating the interference factors independent of the blood
glucose concentration, which are critical to build an accurate
model. In this paper, we adopted the DAE network to extract
the weak scattering information caused by the change of blood
glucose concentration in two-dimensional diffuse images, and
estimated the blood glucose concentration by combining with
the GBR algorithm. The network structure of the autoencoder
is shown in Figure 1. The autoencoder consists of an encoder and a
decoder. The encoder converts an input signal into a coded signal,
and the decoder converts the coded signal into an output signal.
The output signal reproduces the input signal as much as possible.

The DAE randomly adds noise to the input signal of the
autoencoder, so that features extracted from the whole DAE

network structure occupies the robustness. The core idea of
DAE is to select the best feature, which is extracted from the
raw data by using the autoencoder. The best feature refers to
the feature that can be used to recover the raw data when the
raw data is corrupted. The network structure of the DAE is
shown in Figure 2A, where input x (the ROIs of the raw diffuse
images) is corrupted according to the stochastic mapping
distribution to get �x. Subsequently, �x was used as the input
to the network. By training �x, the output z (reconstruct images)
would finally be nearly equal to the original input x. The loss
function is the cross-entropy, which can be expressed by the
below equation:

LH(x, z) � −∑
j
[xj log zj + (1 − xj)log(1 − z j)] (6)

After training N epochs, the loss function on the training set
converged to less than the threshold we set. Then, we extracted
the vector s from the DAE middle layer as the deep features of
the diffuse images. Specifically, the dimension of the deep
feature is the scattering information of the raw diffuse images
extracted in the middle layer of the DAE network. Finally, we
used the deep features as the input x of the regression model to
establish a universal GBR model connecting the deep features
and blood glucose concentration. The GBR algorithm uses
regression trees as weak learners with its structure shown in
Figure 2B.

The basic function of the GBR algorithm is a binary
regression tree. First initialize a regression tree, and then
learn the next regression tree according to the residual of the
previous regression tree. The regression tree was learned to
obtain the final model by fitting the residual of the current
model. Let us denote Q = (s1, y1), (s2, y2), . . ., (sn, yn), where si
is the input composed of the deep features extracted from
diffuse images by DAE, and yi is the reference values of the
blood glucose concentration from the invasive method. We
suppose T1, T2, ... TM as the M regression trees, C1j, C2j, ...,
Cmj is the corresponding output of mth (m = 1, 2... M)
regression trees, where j is the number of leaf nodes (j =
1,2... J) and Rjm is leaf node area. The final fitting regression
tree is as follows:

f M(s) � ∑M

m�1∑J

j�1Cmj (7)

The negative gradient of the loss function is used as an
approximation of the residual in the GBR algorithm. The
negative gradient the loss function of the ith subject in mth
regression tress can be expressed as:

rim � −[zL(yi, f (si))
zf (si) ]f (s) � f m−1(s) (8)

where L (y, f(s)) represents the loss function, f(s) is the prediction
values of the blood glucose concentration, respectively.

The fit residual error of jth leaf node (j = 1, 2, ..., J) is as follow:

rjm � argmin
c

∑
si∈Rjm

L(yi, f m−1(si) + γ) (9)

FIGURE 1 | The network structure of the autoencoder. The autoencoder
consists of an encoder and a decoder. The encoder converts an input signal
into a coded signal, and the decoder converts the coded signal into an output
signal. The output signal reproduces the raw input signal as much as
possible.
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By updating fm−1(x), we can eventually calculate the blood
glucose prediction f(s).

3 EXPERIMENTAL SYSTEM

Figure 3 shows the experimental system for obtaining the diffuse
images of fingers. The experimental system is composed of an
imaging system, a light-emitting diode (LED) red light source, a
specially designed shell and a computer. The imaging system
includes a 1/1.2″ CCD sensor (FLIR co. BFLY-U3-23S6C-C), and
a lens (ZLKC. VM0812MP) with an 8 mm focal length, and a
1.4 F-number. The frame rate captured by the CCD sensor is set

to 25 frames/s and pixel resolution is 640 × 480 pixels. The size of
the LED light source is 20 mm × 20 mm, which is integrated by
four monochromatic lights with a wavelength of 625 nm. The
angle between the light path of the illumination and imaging is
45°. The rated current is 700 mA and the voltage is 9–10 V. The
imaging accuracy is 50 db and the speed of exposure is 30 ms.
This specially designed shell reduces the interference from the
external ambient light, measurement location, and image capture
angle, and fixes the CCD and light source while retaining the
collection hole of the test site. To avoid variation caused by the
inconsistent measurement positions of different individuals, we
collect diffuse images from the index finger pulp with a relatively
stable surface and abundant blood vessels. The light, emitted from

FIGURE 2 | Detailed network structure of the proposed algorithm (A) the DAE model; (B) the GBR model.

FIGURE 3 | Diagram of the system. A specially designed shell is used to fix the LED, CCD and a position for the test.
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the LED red light source, which is irradiated to the index finger.
Then, the light is diffused by the index finger. Finally, the diffuse
images of the index fingers are obtained by the CCD target surface
and transmitted to the computer to process.

4 DATA PROCESSING AND ANALYSIS

The research protocol was approved by the Medical Ethics
Committee of Medical and Laboratory Animal of Beijing
Institute of Technology with approval code 2021-004. We
obtained 188 image data from different subjects including 49
healthy people and 139 DM patients. The healthy people were
from the Beijing Key Laboratory for Precision Optoelectronic
Measurement Instrument and Technology with an average age of
25.0, and the DM patients were from the Xian Tao First People’s
Hospital Diabetes Center and Taiyuan Central Hospital Diabetes
Center with an average age of 43.3. The healthy were verified via
hospital examinations. The 139 DM patients included 54 early-
stage patients with an average duration of 2.1 years and 85 long-
term patients with an average duration of 4.9 years. The detailed

information of the subjects was shown in Table 1. During in vivo
experiment, every subject was required to place the left-hand
index finger in the collection hole of the specially designed shell to
capture a diffuse image, while the right index finger was used to
collect reference blood glucose concentration value by invasive
blood glucose measurement instrument. The reference blood
glucose concentration value for in vivo subjects was obtained
by using a commercial device (Rightest glucometer GM300).

The most intuitive and basic information representation
method of diffuse images is the gray value and gradient. High
gray value (high energy) and high gradients (high energy
changes) in the diffuse images can remove most of the
redundant information. The following factors are crucial
considerations for the selection of ROI size for diffuse images.
First, the specular reflection in the captured diffuse images
occupied a larger proportion and was an important factor
affecting the accuracy of this proposed method. The specular
reflection area almost did not carry tissue optical information,
which interfered with our choice of ROI area. Thus, we chose the
ROI with a special size from the rest region of the diffuse images
instead of the specular reflection region. In addition, every subject

TABLE 1 | The detailed information of the subjects from the healthy and the DM patients.

Gender (male/female) The healthy DM patients (early-state) DM patients (long-term)

Male Female Male Female Male Female

Number (people) 23 26 30 24 47 38
Average age (years) 25.5 24.5 35.2 40.1 46.8 47.3
Duration (years) — — 2.3 1.9 4.6 5.2

FIGURE 4 | The ROI of a diffuse image: (A) the original diffuse image; (B) the gray image; (C) the reflection image; (D) the ROI image.
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also had different finger sizes, so we need to keep the same
selection size in all diffuse images from subjects’ fingers. Finally,
we considered that the ROI had a certain brightness but did not
involve specular reflection, and also took into account the size of
the subject’s finger. So we selected a region with a size of 28 × 28
pixels centered on the maximum gray value of the diffuse image
as the ROI region after removing the specular reflection
information. The diffuse image obtained by a subject’s finger
and the ROI were shown in Figure 4. We got the ROIs with 28 ×
28 pixels of diffuse images from 188 subjects.

We approximately adopted the 4:1 ratio when dividing
into the training set and testing set from those ROIs. To train
the DAE, we selected an ROI with the size of 28 × 28 pixels as
the input, then extracted different dimensions from the DAE
middle layer as the deep features of diffuse images. We
extracted the deep features of 150 training subjects in
different dimensions and adopted the GBR algorithm to
establish the models of different dimension deep features,
the results from the 38 testing subjects were as shown in
Figure 5. The results showed that when the 1 × 16
dimensional vectors were selected as the deep features, the
difference between the predicted value and the reference
value was the smallest. Simultaneously, the prediction
accuracy of the prediction model corresponding to the
deep features of different dimensions were shown in
Table 2. The results were evaluated in terms of the mean

absolute error (MAE), root mean squared error (RMSE), and
mean squared error (MSE).

The results of Table 2 indicated that when we chose the 1 × 16
dimensional deep features, the MAE was the smallest (19.44 mg/dl).
Hence, we selected the 1 × 16 dimensional deep features as the input
to establish the GBR model to predict the blood glucose
concentration in this paper. We believed that the reason was the
uneven distribution of subjects’ blood glucose concentration. The
most range of the blood glucose concentration from the subjects was
concentrated in 90mg/dl–234mg/dl with a proportion of 87.5%. In
addition, the number of subjects also limited the dimensionality of
the deep features extracted. Indeed, the dimension of deep features
depends on the number of blood glucose samples used for training
and the range of concentration values of blood glucose samples. Due
to the limitation of sample size and concentration range, when the
dimension of the deep features is too small, the scattering
information of the diffuse images cannot be fully carried. When
the dimension of deep features is too abundant, the DAE network
will appear overfitting. These will lead to an increase in the
prediction error of blood glucose concentration.

We compared the performance of the proposed method with
several different multivariate calibration methods in different testing
subjects. The results were still evaluated in terms ofMAE, RMSE, and
MSE. In addition, we added the Pearson correlation coefficient (R) as
an evaluation indicator. Previous studies [29] had shown that the
prediction results of the support vector regression (SVR) model were
more accurate than the partial least squares regression (PLSR)
method. Our experimental results also confirmed this conclusion.

FIGURE 5 | The prediction result of different dimensional deep features (the ordinate is the difference between the predicted value and reference value, and the
abscissa is the number of samples).

TABLE 2 | The prediction results of different dimension of deep features.

Dimension
of deep features

MSE (mg/dl) RMSE (mg/dl) MAE (mg/dl)

1 × 3 65.34 34.38 26.64
1 × 8 50.04 30.06 23.58
1 × 16 38.70 26.46 19.44
1 × 32 55.08 31.50 24.12

TABLE 3 | Performances of the different algorithms.

Model method MSE (mg/dL) RMSE (mg/dL) MAE (mg/dL) R

PLSR 78.84 37.62 32.04 0.25
SVR 67.50 34.92 27.54 0.46
Our method 38.70 26.46 19.44 0.73
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The comparative results of 38 testing subjects were shown inTable 3.
The values of MAE, RMSE, and MSE indicated that the proposed
method achieved highly improved results as compared with the other
commonly used multivariate correction methods. Furthermore, the
results from the proposed model were consistent with the invasive
results with an R of 0.73. The 38 testing subjects were from different
individuals (including healthy and DM patients), which also
demonstrated the universal applicability of the proposed model.

To further verify the accuracy, we used Clarke error grid (CEG)
analysis to compare the results from the predicted blood glucose
concentration values of 38 subjects with the invasive reference
blood glucose concentration. Figure 6 presents the CEG analysis,
where the scatter plot can be divided into five regions. These
regions quantify the accuracy of the blood glucose concentration
reference values as compared to the predicted blood glucose
concentration values in terms of the different types of errors.
The CEG analysis results showed 78.9% of the estimated blood
glucose concentration values fell in zone A and 100% in the
clinically acceptable zones A and B, demonstrating the efficacy
of the proposed noninvasive blood glucose concentration
measurement method. Our method adopted significantly
improved the prediction accuracy as compared with the other
commonly used multivariate correction methods.

In fact, the number and the distribution of blood glucose
concentration values from subjects affected the accuracy of the
prediction model. The blood glucose concentrations obtained
from different subjects were densely distributed in the 90 mg/
dl–234 mg/dl range, sparsely distributed near the upper and
lower limits of the range. Therefore, the prediction
concentrations of the blood glucose had a larger error near

the upper and lower limits of 90 mg/dl–234 mg/dl range, which
increased the average error of the GBR model. By increasing
the number of subjects near the upper and lower limits of
blood glucose concentration values, the accuracy of the
prediction model can be further improved. Moreover, the
number of subject samples affected the selection of the
optimal dimension of the deep features extracted by the
DAE network, which determined the prediction accuracy of
the blood glucose concentration. Expanding the number of the
subject samples can obtain a more reliable dimension selection
of the deep features.

5 CONCLUSION

In this paper, a universal calibration model for the noninvasive
measurement of blood glucose concentration based on diffuse
images was presented. This model connecting the scattering
information and blood glucose concentration was established
by extracting the deep features of the acquired diffuse images.
First, a diffuse image of the left-hand index finger pulp from
each subject was collected via a special shell and recorded by
the CCD. After that, the deep features DAE network extracted
from the diffuse images were used in the GBR model to
establish the relationship between blood glucose
concentration and scattering information. Finally, in vivo
experimental results indicated the feasibility of the proposed
method for the noninvasive prediction value of blood glucose
concentration with an MAE of 19.44 mg/dl and an R of 0.73 in
1 × 16 dimensional deep features.

In this case, ambient temperature-controlled at 26řC and
relative humidity is 33%. The room temperature and
humidity during the measurement are in a controlled
manner. Indeed, there still has a limitation of our study
that the recruited subjects were all Asian. For future
works, we should be combined with other physiological
parameters (such as skin color, hydration, temperature,
and humidity, etc.) to improve accuracy and correlation
with blood glucose levels. We will also aim to collect more
diffuse images of subjects’ fingers, enrich the distribution of
blood glucose concentration values from DM patients and
healthy individuals to further improve the prediction
accuracy of the model. In addition, we will select the more
reliable dimension of deep features due to the increased
number of subject samples.
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