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Two-dimensional generalized XY spin model on a triangular lattice is studied by means of
Monte-Carlo simulations. The critical temperatures of Berezinskii-Kosterlitz-Thouless
(BKT) phase transition are obtained by the method of helicity modulus. It is found that
the results are consistent with those obtained by other methods. The vortex density and
the vortex-antivortex pair formation energy are also obtained. The result shows that the
critical temperature decreases with the increase of the generalization parameter q. While
the vortex-antivortex pair formation energy increases with the increase of q when q> 1.
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INTRODUCTION

The critical phase transition behavior of two-dimensional spin models has been the subject of intense
study in recent years. The two-dimensional (2D) XY spin model is one of the most intensively
studied due to it’s a paradigmatic example of phase transitions mediated by topological defects [1–4].
It is well known that there is a Berezinskii-Kosterlitz-Thouless (BKT) phase transition in the XY spin
model. The BKT phase transition is caused by the unbinding of vortex-antivortex pairs [3, 4]. The XY
model has a rich variety of applications in condensed matter physics and statistical physics. For
example, it can be used to describe magnetic films with planar anisotropy, two-dimensional solids,
thin-film super fluids or superconductors [5, 6].

Besides the two-dimensional XY model, transitions of the BKT type exist in other models such as
the classical Heisenberg antiferromagnet model [7], spin model of Long-Range ferromagnetic
interactions [8], the ice-type F model [9], 2D spin models with nonmagnetic impurities [10–12]
and even spin model with anisotropic interaction [13]. Thus a thorough and quantitative
understanding of XY model is very important for the expansion of theoretical physics
knowledge. Recently, a generalized XY model has been proposed and attracted a lot of interest
[14]. The generalized XY model Hamiltonian is described by

HG
xy � −J∑

〈i,j〉
(sin θi sin θj)q cos(φi − φj), (1)

where spin vector �Si consists of three spin components parameterized by usual spherical angles,
defined as �Si � (Sxi , Syi , Szi ) � (sin θi cosφi, sin θi sinφi, cos θi). q ∈ N is the generalization
parameter. J> 0 is a ferromagnetic interaction of nearest neighbours. Notice that the case q � 1
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corresponds to the usual XY model and the case q � 0 is the
planar rotator model with two-component spins. In this model,
an ordering transition taking place at finite temperature for 3D is
supported by mean field and two-site cluster approaches [14]. In
turn, different techniques, such as self-consistent harmonic
approximation (SCHA) and Monte Carlo (MC) simulation,
had been used to investigate this transition for all values of q.
It is found that the phase transition temperature of this phase
transition decreases with the increase of q, and it is confirmed that
this second-order phase transition is similar to XY type, that is, it
belongs to BKT type phase transition [15–17]. UsingMonte Carlo
simulation, some physical quantities such as vortex density,
specific heat, energy and critical temperature are obtained on
different lattices [15, 18]. Moreover, a first-order phase transition
is also proved to exist when the value of q is large [15, 17].
However, most of the previous work did not discuss the helicity
modulus and vortex in detail. In particular, vortex density and the
vortex-antivortex pair formation energy have an extremely
important reference for the study of BKT phase transition. In
this paper, we further expand research content and discuss in
detail the vortex density and helicity modulus.

METHOD AND RESULTS

A hybrid MC approach that includes Wolff cluster [19] and
Metropolis single spin updates [20] has been used to calculate
some thermodynamic quantities for the model defined by Eq. 1.
The initial spin configuration is constructed by randomly assigning a
spin value to each lattice point. The simulations were performed on a
triangular lattice with periodic boundary conditions for system size
N � L × L, where the largest size of lattice is considered as L � 80.
During the simulation, 104 MC steps are used for equilibration and
about 4 × 105 MC steps are used to get thermal averages at each
temperature. The thermodynamic quantities have been discussed in
detail in our previous work [18, 21]. In the present work, we mainly
focus on discussion of vortex density and helicity modulus in the
case of different q. For simplicity, we set J � 1 during the simulation.
It should be noted that in this paper, when the statistical errors are
less than the symbols, the error bars are not shown in the figures.

In the process of Monte Carlo simulation, different methods are
often used to determine the phase transition temperature (or critical
temperature) TC, such as finite size scaling method of susceptibility,
Binder fourth-order cumulant method, helicity modulus method and
so on. The helicitymodulus,ϒ, obtained by ameasure of the resistance
to an infinitesimal spin twist across the system along one coordinate, is
an efficient method to calculate the BKT phase-transition temperature
[22]. The difference between the internal energy obtained under
periodic and antiperiodic boundary conditions yields the
temperature derivative of helicity modulus [23]. An expression
applicable to any general model Hamiltonian is [24].

ϒ � 〈z2H/zΔ2〉
N

− β
〈(zHzΔ)2〉 − 〈zH

zΔ〉
2

N
(2)

where β � (kBT)−1 is the inverse temperature and kB � 1 for
simplicity. Δ is infinitesimal spin twist. For the generalized XY

model, defined by Eq. 1, following the derivation process of Ref.
[25], the expression of helicity modulus (in limit Δ → 0) on a
triangular lattice can be written as

ϒ(T) � − 〈H〉�
3

√
N

− 2J2�
3

√
kBTN2

〈⎡⎢⎢⎣∑
〈i,j〉

(êij · x̂)(sin θi sin θj)q sin(φi − φj)⎤⎥⎥⎦
2

〉

(3)
Here êij is the unite vector pointing from site j to site i. x̂ is a

selected basis vector in one coordinate. According to the
renormalization-group theory [2], there is a universal relation
between the helicity modulus and the phase-transition
temperature. The BKT transition is characterized by a jump in
the helicity modulus from 2kBT/π to zero at the critical temperature.
That is, the critical temperature TC can be estimated from the
intersection of the helicity modulus ϒ(T) and the straight line
ϒ � 2kBT/π. Taking q � 5 and 10 as an example, Figure 1 shows
the results of helicity modulus as a function of temperature. The
lattice size is L � 80. Through the intersection of the two lines, the
critical temperatures are estimated to be 0.804 (q � 10) and 0.892
(q � 5), respectively. Because the finite lattice sizes give rise to a
smoothing of the jump in helicity modulus, so the critical
temperatures of this method are often estimated higher than the
real values. Therefore, it is necessary to find more effective methods
to avoid the influence of finite-size effect. Through the solution of the
renormalization group equation, it is obtained that at the critical
temperature the helicity modulus can be described by the following
relationship with the lattice size [3].

ϒ � 2TC

π
[1 + 1

2
1

ln L + C
] (4)

where C is an undetermined fitting constant. According to finite-
size scaling formula of helicity modulus in Eq. 4, the critical

FIGURE 1 | Helicity modulus as a function of temperature for different q.
The lattice size is L � 80.
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temperature can be obtained by fitting the data under
different sizes.

Figures 2, 3 show the finite-size scaling plot of helicity
modulus for q � 5 and q � 10. The lines are fits to the
scaling relation of Eq. 4. Here, the lattice sizes are taken as
L = 16, 24, 32, 48, 64, and 80 respectively. Eq. 4 indicates that
the equation is valid only at the critical temperature point, that
is, the equation is not valid at other temperatures. According to
Eq. 4, the fitting curves at different temperatures can be
obtained by adjusting the value of parameter C. If the
simulated value at a certain temperature is in good
agreement with the fitting line, it indicates that the

temperature is the critical temperature. It can be seen from
the figure that the critical temperature can be directly obtained
by fitting the curve. For example, as shown in Figure 2, the
data at T � 0.88 is in good agreement with Eq. 4, except for the
data point of the smallest lattice L = 16. The data at other
temperatures are not consistent with Eq. 4. Therefore, the
critical temperature can be determined as TC � 0.88. The
critical temperatures are 0.79 (q � 10) and 0.88 (q � 5),
respectively, which are lower than the values 0.804 and
0.892 obtained by the intersection acquisition method
mentioned above. TC � 0.88 (q � 5) is consistent with the
result TC � 0.882 obtained from the finite scaling relation of
susceptibility [21]. In order to further verify the effectiveness,
we apply this method to the planar rotator model (i.e., q � 0)
and obtain the critical temperature is TC � 1.48 (1/TC � 0.676),
which is consistent with the previous Monte Carlo simulation
result 1/TC � 0.680 ± 0.002 [27]. This shows the method of
estimating the critical temperature by the finite-size scaling
formula of helictiy modulus is very effective.

It is well known that the XY model supports topological
excitation and shows a BKT phase transition related to the
unbinding of vortex–antivortex pairs. However, whenever
the BKT transition temperature is reached, the bound
pairs appear to dissociate. In the present work, each vortex
or antivortex was counted with L = 80. Each vortex core
consists of three spins on each unit triangular lattice. When
the sum of all spin angles on the unit lattice is equal to 2π, the
vortex increases by one. The vortex density ρ is obtained by
dividing all the vortex numbers by N. Figure 4 shows the
variation of vortex density with temperature for q � 5 and
q � 10. Obviously, the vortex density increases with the
increase of temperature, especially when it is close to the
critical temperature. Vortex pairs do not appear out of thin
air, but are formed under the action of so-called vortex-

FIGURE 2 | Application of the finite-size scaling of (T) to estimate the
critical temperature for q � 5. The lines are fits to the finite-size scaling relation
of Eq. 4.

FIGURE 3 | Application of the finite-size scaling of (T) to estimate the
critical temperature for q � 10. The lines are fits to the finite-size scaling
relation of Eq. 4.

FIGURE 4 | Vortex density ρ for q � 5, 10.
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antivortex pair formation energy. The vortex-antivortex pair
formation energy is the energy required to create a pair of
vortices. Around the critical temperature, the vortex density
and vortex-antivortex pair formation energy satisfy the
following relationship [26].

ρ ~ e−2μ/T (5)

where 2μ is the vortex-antivortex pair formation energy. As
an example, Figure 5 shows −ln ρ as a function of 1/T for
q � 5. In order to calculate the vortex-antivortex pair
formation energy, according to the previous work [26],
taking the temperature corresponding to the critical
temperature TC and TCV (TCV is the temperature of the
maximum specific heat) as the reference point, the

temperature is divided into three regions: high
temperature (TCV <T), intermediate temperature
(TC <T<TCV), and low temperature (T<TC) regions.
Using a linear fit to the data of intermediate temperature,
we obtain 2μ � 11.63 ± 0.03. Using the same method, we
obtain the value 2μ � 14.38 ± 0.05 for q � 10. The value is
higher than that at q � 5. We also calculated the vortex-
antivortex pair formation energy when q � 1 without
dilution, and its value is 2μ � 11.06 ± 0.04. The
corresponding critical temperature is 1.05, which is higher
than the critical temperature of the planar rotator model of
two spin components (TC � 0.89). The vortex-antivortex pair
formation energy of the planar rotator model is 2μ �
13.09 ± 0.22 . This result is consistent with the result 2μ �
12.8 of Ref. [26]. The last result of the relation between
vortex-antivortex pair formation energy with q is shown in
Figure 6. It can be seen from the figure that the vortex-
antivortex pair formation energy gradually increases with the
increase of q when q> 1. Figure 7 shows the critical
temperature for different q. The critical temperature
decreases with the increase of q.

There has been great interest in the discussion of the first-
order phase transition of the model. The previous work shows
that the 2D generalized XY model has both BKT phase
transition and first-order phase transition. When q is small,
the first-order phase transition phenomenon is not obvious,
or even there may be no first-order phenomenon. When q is
large enough, such as q> 6, the first-order phase transition
becomes more and more obvious [14–17]. We know that the
BKT phase transition is caused by the release of vortex anti-
vortex pairs at the critical temperature point. The change of
phase transition properties at large qmay be related to a large
number of almost instantaneous vortices at the transition
point. For small q, with the increase of temperature T,
vortex and vortex gradually enter the system. At the BKT
point, a continuous transition occurs through the separation

FIGURE 5 | The vortex density ρ vs. 1/T for q � 5. The solid line is linear fit
for 0.88<T <0.93.

FIGURE 6 | The vortex-antivortex pair formation energy for different q.

FIGURE 7 | The critical temperature for different q.
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of vortex anti-vortex pairs. For large q, the increase of vortex
density at low temperature is not enough to make the
dissociation mechanism work. However, with the increase
of temperature, at a certain temperature, they will suddenly
appear in large numbers and undergo a first-order phase
transition. As shown in Figure 4, the vortex density
increases almost precipitously with the increase of q. These
two kinds of phase transitions occur at almost the same
temperature point, so it is difficult to accurately judge the
phase transition properties [15, 16]. How to accurately
determine the first-order phase transition temperature may
be an interesting research in the future.

CONCLUSION

In this paper, with the application of MC simulation, the
helicity modulus and vortex density of a 2D generalized XY
model on a triangular lattice is discussed. The helicity modulus
and vortex density were obtained as a function of temperature
for q � 5 and q � 10. The critical temperature obtained by the
finite-size scaling relation of the helicity modulus is consistent
with the values obtained in our previous work. It is found that
the vortex-antivortex pair formation energy increases with the

increase of q, while the critical temperature decreases with the
increase of q.
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