
An Interactive City Choice Model and
Its Application for Measuring the
Intercity Interaction
Xiang-Yu Jia1,2, Er-Jian Liu1,2*, Chun-Yan Chen3, Zhengbing He4 and Xiao-Yong Yan2*

1Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport,
Beijing Jiaotong University, Beijing, China, 2Institute of Transportation System Science and Engineering, Beijing Jiaotong
University, Beijing, China, 3Traffic Control Technology Co., Ltd, Beijing, China, 4Beijing Key Laboratory of Traffic Engineering,
College of Metropolitan Transportation, Beijing University of Technology, Beijing, China

Measuring the interaction between cities is an important research topic in many disciplines,
such as sociology, geography, economics, and transportation science. The traditional and
most widely used spatial interaction model is the gravity model, but it requires the
parameters to be artificially set. In this paper, we propose a parameter-free interactive
city choice (ICC) model that measures intercity interaction from the perspective of individual
choice behavior. The ICC model assumes that the probability of an individual choosing to
interact with a city is proportional to the number of opportunities in the destination city and
inversely proportional to the number of intervening opportunities between the origin city
and the destination city, calculated using the travel time in the transportation network. The
intercity interaction intensity can be obtained by calculating the product of this probability
and the origin city’s population. We apply the ICC model to measure the interaction
intensity among 339 cities in China and analyze the impact of changes in the Chinese land
transportation network from 2005 to 2018 on the intercity and city interaction intensity. The
results show that our model provides an alternative method for measuring the intercity
interaction.
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1 INTRODUCTION

The rapid development of cities worldwide and the acceleration of urbanization have led to more
than half of the world’s population living in cities [1], and thus cities have become the main location
for human activities in today’s society [2]. The connections between cities through the transportation
network promotes the flow of people, goods, information, money, and skills among cities; such flow
between cities is called intercity interaction [3, 4]. Understanding and predicting intercity interaction
patterns has long been an important research topic in sociology, geography, economics,
transportation science, and many other disciplines [5, 6]. It also has great significance in the
rational formulation of urban development strategies [7, 8], the promotion of regional sustainable
development [9], communicable disease control [10–12], and other fields. As the intercity interaction
intensity increases, cities are no longer regarded as isolated individuals but as interdependent urban
systems [13]. Therefore, understanding the intercity interaction and establishing a model that can
accurately measure the interaction between cities are of great value for optimizing the spatial
structure of urban agglomerations [14, 15].
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The gravity model was the first model proposed to measure
intercity interaction [16]. The model assumes that the intensity of
interaction between two cities is proportional to the product of
their sizes (e.g., population, GDP) and inversely proportional to a
power law function of their distance. The gravity model is simple
in form and is widely used to predict intercity interactions, such
as intercity travel [17], commuting trips [18, 19], population
migration [20], and international trade [21]. However, this model
is based on analogy with Newton’s law of universal gravitation
and does not involve individual spatial choice behavior [5, 22]. It
is an important issue in social physics to characterize how
constituents (such as individuals, institutions, governments)
choose interactive objects from the perspective of human
choice behavior [2, 23]. Furthermore, the parameter of the
gravity model’s power law distance function is artificially
defined. For example, some researchers set the parameter to 1
[24–26], while others set it to 2 [27–29]. Therefore, it would be a
valuable contribution to establish a parameter-free model to
measure intercity interactions from the perspective of
individual spatial choice behavior.

Simini et al. took an important step forward in spatial
interaction modeling by establishing a parameter-free model
named the radiation model [30] to predict commuting trips
between counties in the U.S. This model assumes that the
individual will consider the employment opportunities
provided by the work location and the benefits that the
opportunities may bring to him/her when choosing a work
location. He/she will choose the work location nearest to his/
her home that offers a benefit greater than the best offer available
in his/her home county. Some researchers improve the radiation
model and propose various commuting prediction models, such
as the radiation model with selection [31], and the flow and jump
model [32]. Recently, many researchers have applied the
radiation model or improved radiation models to measure
intercity interaction intensity [33–35]. However, the radiation
model assumes that the individual will only choose the nearest
location with a higher benefit than his/her home, which reflects a
cautious tendency of individual choice behavior. It can predict
commuting trips but is not suitable for predicting general travel
[36] because travelers may choose not only the closest location
with a higher benefit than the origin but also other locations with
higher benefits than the origin and intervening destinations. To
solve this problem, Liu and Yan proposed another parameter-free
model, named the opportunity priority selection (OPS) model
[37], that adopts the perspective of individual destination choice
behavior. The OPS model assumes that when the individual
chooses a destination, he/she will choose a location with a
higher benefit than the benefit of the origin, and the benefits
of the intervening opportunities [38]. This reflects an exploratory
tendency in individual choice behavior and can accurately predict
human mobility within and between cities. Compared with the
radiation model, the OPS model can better describe individual
destination choice behavior between cities, which implies that the
OPS model is more suitable for measuring the intercity
interaction intensity. However, applications of the OPS model
to measure intercity interactions is still lacking.

In this paper, we establish an intercity interaction
measurement model named the interactive city choice (ICC)
model by improving the OPS model. We further apply this
model to measure the intercity interaction intensity in China
and analyze the impact of the change in China’s land
transportation network from 2005 to 2018 on the city
interaction intensity.

2 INTERACTIVE CITY CHOICE MODEL

The OPS model [37] assumes that when an individual chooses a
destination, similar to the classic radiation model [30] and the
population-weighted opportunities model [39, 40], he/she first
evaluates the benefit of the opportunities in each location, in
which the number of opportunities in a location is proportional to
the location’s population, and the benefit of opportunities is a
random variable with a continuous distribution. After evaluating
the benefit, the individual will select a location that presents
higher benefits than the origin and any intervening opportunities.
According to the above assumption, when an individual at
location i makes a choice for location j, the probability of
location j being selected (see Supplementary Appendix S1 for
details) is

Qij � mj

mi + sij +mj
, (1)

wheremi is the number of opportunities at location i, and sij is the
number of intervening opportunities (i.e., the sum of the number
of opportunities at all locations at a shorter distance to i than j
[38]; see Figure 1A).

From Eq. 1, we can see that the OPS model can calculate the
probability of an individual choosing a destination without any

FIGURE 1 | Schematic diagram of the calculation of intervening
opportunities. Each dot represents a location. Location i (blue dot) is the origin,
and location j (green dot) is the destination. (A) In the OPS model, the
intervening opportunity sij refers to the sum of the number of
opportunities at all locations (i.e., locations in the orange circle, except location
i and location j) whose distance d from location i is less than the distance dij
from location i to location j. (B) In the ICC model, intervening opportunity sij
refers to the sum of the number of opportunities at all locations (i.e., locations
in the orange area, except location i and location j) whose travel time t from
location i is less than the travel time tij from location i to location j, where the
travel time is obtained by calculating the shortest travel time path through the
transportation network.
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adjustable parameters. However, there are two problems in
applying the OPS model to measure intercity interactions. One
is that the intervening opportunities sij in the OPS model are
calculated by the geographic distance between two locations, as
shown in Figure 1A. However, in reality, locations are connected
by a transportation network. Most individuals compare which
locations are easier to reach by taking travel time, instead of
geographic distance, as the main factor. Therefore, the
intervening opportunities sij should be calculated by the travel
time between two locations [41], as shown in Figure 1B. The
other is that the OPS model assumes that the number of location
opportunities is proportional to its population. However, the
number of opportunities provided by each city is not directly
proportional to the population but is more related to the city’s
industrial scale, GDP or other economic indicators [42], among
which the most commonly used indicator is GDP [21]. Therefore,
it is more reasonable to use GDP to reflect the number of
opportunities.

To solve these two problems, we establish a probability model
for individuals to choose to interact with a city. We assume that
the set of locations for calculating intervening opportunity sij in
Eq. 1 is created using travel time (see Figure 1B) and that the
number of location opportunities is proportional to the city’s
GDP. Furthermore, if we know the total population ni of city i, we
can calculate the interaction intensity from city i to city j as

Tij � niQij � nimj

mi + sij +mj
, (2)

wheremi is the GDP of city i, and sij is the sum of the GDP of all
cities whose travel time from city i is shorter than that of city j
(see the orange area in Figure 1B). We name Eq. 2 the
interactive city choice (ICC) model. It should be noted that
the spatial interaction intensity Tij is not an actual flow volume
but a dimensionless value. Furthermore, according to the spatial
interaction intensity Tij, we can calculate the interaction
intensity of the city as

Ai �
∑
j≠i

Tij + ∑
k≠i

Tki

2
, (3)

where Ai is the interaction intensity of city i, ∑
j≠i

Tij is the sum of

the outgoing interaction intensity and ∑
k≠i

Tki is that of the

incoming interaction intensity [43]. As can be seen from Eqs.
2, 3, the city interaction intensity indicator Ai links three socio-
economic indicators, namely, the city’s population ni, gross
domestic product (GDP) mj and accessibility in the intercity
transportation network (reflected by the number of intervening
opportunities sij, as shown in Figure 1B). This means that, under
the premise of a fixed intercity transportation network, the more
population of a city, the higher its outgoing interaction intensity,
and the higher the GDP of a city, the higher its incoming
interaction intensity. On the other hand, under the premise
that the population and GDP of all cities are fixed, the higher
the accessibility of a city in the intercity transportation network,
the higher its interaction intensity.

3 APPLICATION OF THE ICC MODEL TO
MEASURING INTERCITY INTERACTION
INTENSITY
In this section, we apply the ICC model to measure the
interaction intensity between cities in China and analyze the
impact of the change in the Chinese land transportation network
from 2005 to 2018 on city interaction intensity. It should be noted
that China started to build high-speed railways in 2005; thus, we
select 2005 as the starting year. Because we can only download
Chinese economic and demographic data up to 2018, when we
started this work, we select 2018 as the ending year.

3.1 Data and Processing Methods
We select 339 Chinese cities, including 333 prefecture-level cities,
four municipalities (Beijing, Tianjin, Shanghai, and Chongqing)
and two special administrative regions (Hong Kong andMacao), as
the research objects.We download the population andGDP data of
the 339 Chinese cities in 2005 and 2018 from the official website of
the National Bureau of Statistics of China and the data of the cities’
central points, Chinese road networks and railway networks in
2018 from the OpenStreetMap website. The reason for selecting the
road and railway network data is that the total annual
transportation volume of these two land transportation modes
accounts for more than 84% of the total annual transportation
volume of all intercity transportation modes (including railway,
road, waterway and airway) in both 2005 and 2018, as shown in
Table 1. In these two types of data, roads include highways,
national roads, provincial roads, county roads, and township
roads; railways include high-speed railways and normal railways.
Since travel between any two cities can be realized through national
roads, we select the national road data as the basic land
transportation network data. Furthermore, we add three other
types of data (i.e., highways, normal railways, and high-speed
railways) that are designed to provide faster travel than national
roads in the land transportation network. We establish the 2018
land transportation network, in which the edges represent
highways, national roads, and normal railways or high-speed
railways. We add the city central point to the land
transportation network by connecting it to the nearest road
within the urban area. We also connect it to the nearest railway
if there is a railway station within the urban area. We also need to
assign the travel time value to each edge to calculate the intercity
travel time in the land transportation network.We know the length
of each edge in the land transportation network, so we only need to
set the speeds of these four transportation modes (i.e., national
road, highway, normal railway, and high-speed railway) to
calculate the travel time. According to the standards, including
Code for Design of Railway Line (TB 10098-2017) and Design
Specification for Highway Alignment (JTG D20-2017), the design
speed range of high-speed railway is from 250 to 350 km/h, of the
normal railway is from 80 to 200 km/h, of the highway is from 80 to
120 km/h and of the national road is from 60 to 100 km/h. For
simplicity, we use the median value of the speed range, i.e., 300 km/
h as the assumed speed for the high-speed railway, 140 km/h for the
normal railway, 100 km/h for the highway, and 80 km/h for the
national road. We then calculate the travel time of each edge by
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TABLE 1 | The proportion of annual passengers and freight transportation volume for various transportation modes in China.

Transportation mode 2005 Passenger transportation
volume (%)

2005 freight transportation
volume (%)

2018 Passenger transportation
volume (%)

2018 freight transportation
volume (%)

Railway 6.26 14.7 18.81 7.83
Road 91.9 72.35 76.17 76.73
Waterway 1.1 11.49 1.56 13.58
Airway 0.75 0.02 3.4 0.01

FIGURE 2 | Chinese land transportation network and selected important cities (A) 2005. (B) 2018. Each circle represents a provincial capital city or municipality.
The size and color of the circle represent the population and GDP of the city, respectively. Solid lines represent high-speed railways, dashed-dotted lines represent
normal railways, dashed lines represent highways, and dotted lines represent national roads.
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dividing its length by its assumed speed. We obtain the 2005 land
transportation network by deleting roads and railways built after
2005 in the 2018 land transportation network according to the 2005
Chinese road map and 2005 Chinese railway map, as shown in
Figure 2.

3.2 Calculation of the Intercity Interaction
Intensity
We apply the ICC model to calculate the intercity interaction
intensity in 2005 and 2018. We first calculate the travel time

between cities by finding the shortest intercity travel time path in
both the 2005 and 2018 land transportation networks. According
to the intercity travel time, we can obtain sij by summing the GDP
of all cities whose travel time from city i is less than the travel time
from city i to city j. We then calculate the intercity interaction
intensity in 2005 and 2018 according to Eq. 2. The results are
shown in Figure 3, from which we can see that the intercity
interaction intensity in the east of the Heihe-Tengchong line [44]
is higher than that in the west in both 2005 and 2018. Considering
Figures 2, 3 comprehensively, we can see that the interaction
intensity between large cities in 2018 is significantly higher than

FIGURE 3 | Distribution of interaction intensity among Chinese cities (A) 2005. (B) 2018. The black dashed line is the Heihe-Tengchong line. The thickness and
color of the other lines indicate the intercity interaction intensity.
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that in 2005. This increase is due to the more intensive
construction of high-speed railways and highways between
large cities during these 13 years. Additionally, the intercity
travel time has been greatly shortened with the development
of the land transportation network. We can see from Figure 4
that the proportion of short-time interactions increases and the
proportion of long-time interactions decreases from 2005 to
2018. The longest travel time was shortened from 54 h in 2005
to 43 h in 2018. Furthermore, as shown in the subgraph of
Figure 4, it only takes 7.5 h to fall within 95% of the total
national interaction intensity in the land transportation
network in 2018, while it took 13 h to reach that in 2005.

3.3 Calculation of the City Interaction
Intensity
We calculate the interaction intensity of Chinese cities in 2005
and 2018 according to Eq. 3. The results are shown in
Figure 5A,B, from which we can see that the 2 years show a
similar distribution of city interaction intensity, i.e., the cities with
high interaction intensity are mainly concentrated east of the
Chinese Heihe-Tengchong Line. This is mainly because these
cities have a more developed economy, more opportunities and a
more intensive surrounding land transportation network, as
shown in Figure 2. Furthermore, we calculate the difference in
city interaction intensity between 2005 and 2018, as shown in
Figure 5C. We can see that the interaction intensity of many
cities, e.g., Wuhan, significantly improves, and while the

interaction intensity of some cities, e.g., Hong Kong, decreases.
The reasons for this phenomenon are the changes in these cities’
GDP and the development of land transportation networks
(especially high-speed railway networks) from 2005 to 2018.
For example, Wuhan’s GDP increased from 223.823 billion
yuan in 2005 to 1484.729 billion yuan in 2018, with a growth
rate of 563.35%. In addition, the two national high-speed railway
arteries (i.e., Beijing-Guangzhou and Shanghai-Hanrong high-
speed railways) established after 2005 both pass through Wuhan.
The development of Wuhan’s GDP and transportation
infrastructure have led to a rapid increase in its attractiveness
for interaction, so the interaction intensity ofWuhan significantly
improves. In contrast, Hong Kong’s GDP increased from 1384.5
billion yuan in 2005 to 2400.098 billion yuan in 2018, with a
growth rate of 73.35%. It has the lowest GDP growth rate
compared with other 398 Chinese cities, which reduces its
attraction for interaction. In addition, we can see from
Figure 5C that the interaction intensity of most cities along
the high-speed railway increases, while that of cities far from the
high-speed railway generally decreases. This is mainly because the
travel time between cities along the high-speed railway and other
cities has been significantly reduced with the construction and
rapid development of the high-speed railway. Cities along the
high-speed railway will be chosen with higher probability by
those choosing to interact with a city.

We further rank the 339 cities according to their interaction
intensity in 2005 and 2018. The results are shown in Figure 6,
from which we can see that the ranking of city interaction

FIGURE 4 | Travel time distribution. The square dot and circular dot in the figure represent the proportion of the intercity interaction intensity with a travel time of t
hours in 2005 and 2018, respectively. The solid line and dotted lines in the subgraph represent the cumulative probability distribution of travel time in 2005 and 2018,
respectively.
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intensity changes greatly from 2005 to 2018. For example,
Guangzhou’s ranking rises from fourth place to third place,
Shenzhen’s ranking rises from ninth place to seventh place,
and Hong Kong’s ranking drops from third place to fifteenth
place. Although these three cities are geographically close and
their 2018 GDPs are similar (the GDPs of Guangzhou, Shenzhen
and Hong Kong are 2285.935, 2422.198, and 2400.098 billion
yuan respectively), they differ greatly in their city interaction
intensity due to their different positions in the land
transportation network. Guangzhou is one of three national
comprehensive transportation hubs with three national road arteries
(i.e., Beijing-Guangzhou Line, Guiyang-Guangzhou Line and Nan-
Guangzhou Line). Shenzhen is also a comprehensive transportation

hub that connects Hong Kong, Macao and mainland China. These
results once again demonstrate the important influence of
transportation network on the city interaction intensity.

We next apply the radiation model [30]

Tij � nimimj

mi + sij +mj( ) mi + sij( )
(4)

to calculate the intercity interaction intensity, and then use Eq. 3
to calculate the interaction intensity of each city in 2018. We list
the ranking of the interaction intensity of the top 20 Chinese cities
calculated by the ICC model and radiation model in Table 2,
from which we can see that the city interaction intensity obtained

FIGURE 5 | City interaction intensity and the difference between city interaction intensity in 2005 and that in 2018. (A) 2005 and (B) 2018 Chinese city interaction
intensity. The dotted line is the Heihe-Tengchong line and each circle represents a city. The color and size of the circle indicate the city interaction intensity. (C) The
difference between city interaction intensity in 2005 and that in 2018. Each circle represents a city and the size of the circle represents the absolute value of the
difference value.
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by the radiation model is quite different from the general
understanding of the importance of cities. For example,
Zhengzhou ranks 3rd while Shanghai only ranks 6th in the
results of the radiation model. Compared with the radiation
model, the ICC model’s results are more consistent with our
subjective perception, implying that the ICC model can better
reflect the comprehensive impact of the city’s population, GDP
and transportation network on the city interaction intensity.

4 CONCLUSION AND DISCUSSION

The measurement of intercity interaction has important
research significance. In this paper, we develop the ICC
model from the perspective of individual choice behavior,
which assumes that the probability of an individual choosing
to interact with a city is proportional to the number of
opportunities, as expressed by the GDP of the destination
city, and inversely proportional to the number of intervening
opportunities, calculated by the shortest travel time in the land
transportation network. Multiplying this probability by the
origin city’s population, one can obtain the intercity
interaction intensity. To demonstrate the advantage of the
ICC model, we apply the ICC model to measure the
interaction intensity among 339 cities in China. After
collecting and processing the big data related to intercity
interaction, we analyze the impact of the change in the land
transportation network from 2005 to 2018 on the intercity and
city interaction intensity. We find that the travel time between
cities has decreased and the interaction intensity between large
cities has increased due to the development of land
transportation. In particular, the interaction intensity of
cities along high-speed railways has greatly increased. These
results show that our model provides an alternative method for
measuring the intercity interaction.

The proposed ICC model not only helps us measure the
intercity interaction intensity but also offers potential
additional applications. For example, the ICC model provides
a new perspective for identifying suburbs, which is a hot topic in
geographical research. The traditional suburban identification
method usually refers to population density and the nature of

FIGURE 6 | Ranking of city interaction intensity. The circular dot and square dot in the figure represent the city interaction intensity in 2005 and 2018, respectively.
The horizontal axis represents the ranking of cities, and the vertical axis represents the city interaction intensity.

TABLE 2 | Ranking of population, GDP and city interaction intensity calculated by
the ICC model and radiation model.

Rank Population GDP ICC model Radiation model

1 Shanghai Shanghai Beijing Beijing
2 Beijing Beijing Shanghai Guangzhou
3 Chengdu Shenzhen Guangzhou Zhengzhou
4 Tianjin Hong Kong Wuhan Tianjin
5 Guangzhou Guangzhou Tianjin Chengdu
6 Shenzhen Tianjin Chengdu Shanghai
7 Baoding Suzhou Zhengzhou Wuhan
8 Wuhan Chengdu Shenzhen Hangzhou
9 Shijiazhuang Wuhan Nanjing Xi’an
10 Suzhou Hangzhou Changsha Shenzhen
11 Linyi Nanjing Xi’an Changsha
12 Zhengzhou Qingdao Suzhou Shijiazhuang
13 Nanyang Wuxi Hangzhou Nanjing
14 Xi’an Changsha Xuzhou Xuzhou
15 Hangzhou Ningbo Hong Kong Shenyang
16 Handan Zhengzhou Shijiazhuang Suzhou
17 Harbin Foshan Hefei Harbin
18 Qingdao Quanzhou Chungking Jinan
19 Weifang Nantong Qingdao Changchun
20 Wenzhou Chungking Foshan Handan
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residential land [34]. The ICC model introduces the spatial
interaction intensity between city districts, which can improve
the method of suburban identification. In addition, the ICC
model can calculate the interaction intensity within and
between urban agglomerations, providing valuable indicators
for a comprehensive evaluation of the degree of urban
agglomeration [33, 45], which is of great significance for urban
agglomeration sustainable development.

Although the ICC model can obtain reasonable results
when measuring intercity interaction intensity, it still has
room for expansion in practical applications. In this paper,
we use GDP, which is a key factor affecting the number of
opportunities, to reflect the number of opportunities. In
reality, there are many other factors, e.g., urban population,
industrial size and industrial structure, that also affect a city’s
opportunities. Therefore, we can use multiple factors to
calculate the number of opportunities in future
applications. In addition, we only use the travel time
calculated by the shortest time path algorithm in the land
transportation networks, including roads, and railways, to
measure the interaction intensity among 339 Chinese cities.
However, the importance of various transportation modes is
different in different countries or regions. For example,
airways are an important mode of passenger transportation
between the U.S. cities [46], and waterways are the main mode
of freight transport between European cities [47]. Therefore,
future research can consider extending the land transportation
network to a more comprehensive three-dimensional
transportation network including roads, railways, airways,
and waterways to make more reasonable measurements of
intercity interactions.
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