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Fourier ptychography (FP) is geared toward high-resolution imaging with a large field of
view efficiently. In the original illumination-based FP scheme, the aberrations in optical
systems can be well reconstructed, which plays a prominent role in simple and compact
optical arrangements. Unfortunately, the reconstruction strategy for recovering an optical
system’s pupil function fails to carefully consider the nature of the field-dependent pupil
function in the aperture-scanning FP scheme, which affects the quality of the
reconstructed image to a certain extent. Based on this observation, we report a phase
diversity-based FP (PDFP) scheme for varying aberration correction. We image USAF
resolution target with the proposed PDFP scheme and demonstrate our ability to correct
varying aberration and improve image quality. The reported approach allows aperture-
scanning FP technology to use simpler optical systems for imaging and may facilitate the
further development of FP in practical applications such as industrial inspection and long-
distance imaging.
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INTRODUCTION

In recent years, the photoelectric imaging system has been widely used in many fields, such as land,
sea, and air [1–4]. It has long been known that imaging a distant target has demonstrated typically
results in low spatial resolution as a result of the diffraction limit effect. It is very important to find a
long-range imaging technology that can effectively break through the diffraction limit without
relying on a large aperture. Fourier ptychographic microscopy (FPM) [5] is a very promising
technology, which breaks the trade-off between resolution and field of view (FOV) [6] with phase
recovery [7] and aberration correction [8]. The current FP platform has been successfully applied in
high-throughput imaging (digital pathology) [9], quantitative phase imaging [10, 11], 3-dimensional
imaging [12, 13], and biomedicine field [14].

The sample’s Fourier spectrum in the original FP demonstration is scanned by angularly varying
illumination using a LED array [5], generating an extended synthesized numerical aperture (NA) of
the optical system. Then we can reconstruct a high-resolution image breaking through the diffraction
limit of the low NA objective lens. However, the limitation of the illumination-based FP is that the
samples must be thin [8]. When the sample’s thickness does not satisfy the thin-sample requirement,
this one-to-one mapping relationship between the illumination angle and the shift of the Fourier
spectrum is invalid, leading to the ineffectiveness of the phase retrieval algorithm. Unlike the
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angularly varying illumination FP configuration, the optical field
exiting the sample (not enters it) is modulated by the scannable
aperture with aperture-scanning FP, in which a removable
mask is placed at the pupil plane of the optical system. Then
the sample’s thickness becomes irrelevant during
reconstruction, and the thin specimen requirement can be
circumvented [15, 16]. After reconstruction, the optical field

can be propagated back along the optical axis to any plane for
digital refocusing. Compared to the traditional illumination-
based FP model, the FP framework is extended for
macroscopic imaging settings by the aperture-scanning FP
scheme, and the previous work [17, 18] has shown that
aperture-scanning FP has good potential as a long-distance
imaging method.

FIGURE 1 | (A) The pupil functions corresponding to different apertures in the process of aperture scanning. (B) The recovered amplitude, phase, and pupil phase
by the conventional aberration correction Fourier ptychography (FP) algorithm.
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The original intention of Fourier ptychography (FP)-based
long-distance imaging is to use simpler optical devices to achieve
higher imaging quality. In reality, there is no perfect aberration-
free optical lens, especially for simpler optical systems, where
fewer optical surfaces also lead to more prominent aberration
problems, which come from imperfect design, manufacturing,
and alignment of optical elements. The measurement and
elimination of optical aberrations play a prominent role in the
computational imaging platform with a simpler and compact
optical arrangement. In the current illumination-based FP
implementation, the pupil aberration in each small FOV can
be regarded as spatially invariant and can be partially recovered in
the optimization process [19, 20]. The problem of aberration
correction is redefined as a computational problem that can be
solved by the acquired images, avoiding the challenges with
aberration correction, which is essential for a simpler
configuration optical imaging platform. However, the original
FP aberration recovery strategy assumes that the pupil function of
the system is fixed during the image acquisition process [20] and
does not consider the difference between the pupil aberration and
the scannable position in the aperture-scanning FP system, which
affects the quality of the reconstructed image to a certain extent.

As an example, we simulate the wave aberrations corresponding
to the same aperture at different positions during the aperture-
scanning process, as shown in Figure 1A. Figure 1B shows the
result of pupil phase reconstruction using the conventional
aberration correction FP algorithm. The results showed that
the pupil phase cannot be reconstructed correctly, which will
affect the quality of the reconstructed image.

METHODS

Based on this observation, we report a phase diversity (PD)-based
FP (PDFP) scheme for varying aberration correction, as shown in
Figure 2A. For the purpose of testing the reported method for
macroscopic imaging, the light field exiting the sample is collected
by the collimator where the light from objects is closer to real-
world scenes, passing through the scannable aperture (or a spatial
light modulator) and reimaged on the camera. A circular aperture
is placed at the pupil plane of the optical system, and the different
passbands of the optical field are transmitted to the image plane
by scanning the sub-aperture. A sequence of low-resolution
intensity images corresponding to different sub-apertures with

FIGURE 2 | Phase diversity-based Fourier ptychography algorithm flow. (A) Phase diversity-based Fourier ptychography method. (B) The phase diversity
algorithm. (C) Fourier ptychography algorithm with the corrected pupil functions.
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different spatial frequency information of the light field is
captured. To ensure acquiring redundant information to
recover information merely from intensity images by the
phase retrieval algorithm, the adjacent apertures should have a
certain degree of overlap. With the use of the proposed method,
the recovery of the full pupil function can be performed based on
the PD algorithm by simply acquiring an in-focus image and an
out-of-focus image with a big aperture that does not need to be
moved to multiple positions. The sub-aperture pupil functions
corresponding to different scannable positions are selected from
the full pupil function and embedded in the FP reconstruction
algorithm to correct the varying aberrations.

PD algorithm is an unconventional imaging technique
introduced by Gonsalves and Chidlaw [21], which uses a set
of focused images and defocused images for the characterization
of wavefront aberrations. The focused image is only degraded by
systematic aberrations, while the defocused image is also
affected by additional known defocus aberration. It should be
noted that the PD technique relies on finding the aberrations
that produce multiple images of the same sample with known
diversities at the pupil. In addition to the traditional defocus
diversities, the pupil differences can also come from wavelength
diversities, spiral phase-mask diversities, and so on [22]. The PD
algorithm can be applied to both point target and extended
target for aberration recovery, enabling near-diffraction-limited
imaging. Further details for the PD algorithm are available
in [23].

The recovery process of the PDFP scheme is briefly outlined as
follows. The algorithm sketch is shown in Figure 2.

1) Initialize the high-resolution image estimate: we assume the
high-resolution sample is o(x, y), and the field at the Fourier
plane is O(kx, ky) � F {o(x, y)}. The initial guess could be
random or the up-sampling of a low-resolution image.

2) Reconstruct the full pupil function: reconstruct the full pupil
function P(x, y) using the PD algorithm by acquiring an in-
focus image and an out-of-focus image with a big aperture, as
shown in Figure 2B.

3) Generate a low-resolution sample image: an x–y motion stage
is used to scan the small aperture at the Fourier plane, as
shown in Figure 2A, and we capture an intensity image
Icm,n(x, y) for each position of the sub-aperture. We select
small sub-regions (corresponding to different aperture
positions) of the initial guess’s Fourier spectrum and apply
the inverse Fourier transformation to generate a low-
resolution image φm,n(x, y) of the sample.

φe
m,n(x, y) � F −1{O(kx − kx,m,n, ky − ky,m,n)Pm,n(kx, ky)}

where F −1 is the inverse Fourier transform operator, and
(kx,m,n, ky,m,n) is the coordinates corresponding to the
scannable sub-aperture.

4) Replace by the intensity measurement: the sample’s amplitude
component |φe

m,n(x, y)| is sequentially updated with the
square root of the low-resolution intensity measurements
Icm,n(x, y) acquired by different sub-apertures.

φu
m,n(x, y) �

��������
Icm,n(x, y)

√ φe
m,n(x, y)∣∣∣∣φe
m,n(x, y)∣∣∣∣

5) Update the Fourier spectrum: we apply Fourier
transformation to this updated sample image φu

m,n(x, y)
and replace its corresponding region of the sample’s
estimate Fourier spectrum O(kx, ky). And the sub-aperture
pupil functions Pm,n(kx, ky) of the corresponding scannable
apertures could be intercepted from the full pupil function
P(x, y).

O(kx, ky) � F{φu
m,n(x, y)}Pm,n(kx, ky) + φe

m,n(x, y)[1
− Pm,n(kx, ky)]

6) Repeat for other apertures: repeat steps 2–5 for different
apertures and continue until the entire Fourier space has
been modified with all the captured low-resolution images.

7) High-resolution image: repeat steps 2–6 until a convergent
solution is achieved. At the end of the recovery process, the
converged Fourier spectrum solution is transformed back to
the spatial domain to obtain a high-resolution sample image.

A set of simulation experiments was carried out to evaluate the
reconstructed results by the conventional FP, aberration
correction FP, and our PDFP method, as shown in Figure 3.
The conventional FP algorithm does not perform aberration
correction, and the aberration correction FP algorithm is
based on the traditional EPRY algorithm [7]. The focused
image and defocused image are shown in Figures 3B,C.
Figure 3A shows the real pupil phase, and Figure 3D shows
the recovered pupil phase by the PD algorithm. In comparison,
the PD method could recover the pupil phase from the
measurements successfully. The low-resolution raw data are
shown in Figure 3E1. The recovered results by the
conventional FP, aberration correction FP, and our PDFP
method are shown in Figures 3F1–H1. Figures 3E2–H2 are
the close-ups of Figures 3E1–H1. Group 2 element 6 in Figures
3H1,H2 can be well resolved, which is impossible to discern in
the other results. It is clear that the resolution of the recovered
image resolution by our PDFP scheme is better than that of the
conventional FP and aberration correction FP method.

RESULTS

The experimental setup of the transmissive mode PDFP is shown
in Figure 4. For the illumination, light from a laser (λ = 650 nm,
bandwidth = 10 nm) was collimated into parallel light to
illuminate the sample. A collimator (f = 500 mm) and
illumination imaging lens (f = 75 mm) served as the forward
and inverse Fourier transforming equipment. We used a CCD
camera (6.5-μm pixel size, 16-bit dynamic range) to capture the
sample’s low-resolution intensity images. Moreover, an x–y
motion stage (repeat positioning accuracy is 3 μm) was used to
scan the variable circular aperture. For testing the resolution of

Frontiers in Physics | www.frontiersin.org March 2022 | Volume 10 | Article 8489434

Xiang et al. Phase-Diversity Based Fourier Ptychography

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


FIGURE 3 | The comparison of simulation experimental results by the conventional Fourier ptychography (FP), aberration correction FP, and the proposed phase
diversity-based FP (PDFP) method. (A) The real pupil phase. (B) The focused image. (C) The defocused image. (D) The recovered pupil phase by the phase diversity
algorithm. (E1) The low-resolution raw data. (F1) The recovered results with conventional FP. (G1) The correction results by aberration correction FP. (H1) The correction
results of our PDFP method. (E2–H2) Close-ups of panels (E1–H1).

FIGURE 4 | The phase diversity-based Fourier ptychography (PDFP) experimental setup.
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the system, a negative USAF1951 resolution target is used as the
sample. The big aperture was set to 9 mm, and one focused image
and one defocused image with a defocus distance of 0.35 mm
were captured, which are used to restore the full pupil function.
We chose a small aperture size of 2.5 mm (0.002 NA), where the
region of overlapping ratio (in one dimension) with its adjacent
aperture is 74%.We used 11 × 11 scanning steps to synthesize a 9-
mm aperture (equaling an NA of NAsyn = 0.009, corresponding
to 10.6-μm imaging resolution) and 121 low-resolution intensity
images were captured. The method of scanning the aperture
mechanically in our prototype is just a demonstration, and
devices such as digital micromirror devices or spatial light
modulators can be used instead [24; 25].

We compared the conventional FP, aberration correction FP,
and the proposed PDFP method by imaging a USAF resolution
target, as shown in Figure 5. The focused image and defocused
image are shown in Figures 5A,B. The recovered wavefront by

the PD algorithm is shown in Figure 5C. The raw image captured
by the experimental setup is shown in Figure 5D1. And the
resolution of this raw image (260-μm periodicity, corresponding
to 39-μm imaging resolution) is limited by the small circular
aperture. The reconstructed high-resolution images by the
conventional FP, aberration correction FP, and our PDFP
method are shown in Figures 5E1–G1. According to the
Nyquist sampling theorem, a 5.3-μm pixel size is needed to
fully characterize the image when the aperture is fully open
(9 mm, corresponding to 10.6-μm resolution). However, the
pixel size of our camera is 6.5 μm (typical specifications for
commercial CCD sensors). Due to pixel aliasing limitations,
the imaging resolution is 13 μm, which is twice of pixel size,
as shown in Figure 5H1. Figures 5D2–H2 show line profiles of
group 2 element 6 in Figures 5D1–H1. Figures 5D3–H3 show
line profiles of group 3 element 2 in Figures 5D1–H1. And group
2 element 6 (71-µm periodicity, corresponding to 10.65-μm

FIGURE 5 | The experimental results by the conventional Fourier ptychography (FP), aberration correction FP, and the proposed phase diversity-based FP (PDFP)
method. (A) The focused image. (B) The defocused image. (C) The recovered pupil phase. (D1) Low-resolution raw data. (E1) The recovered results with conventional
FP. (F1) The result by aberration correction FP. (F1) The correction results of our PDFP method. (D2–H2) Line profiles of group 2 element 6 panels (D1–H1). (D3–H3)
Line profiles of group 3 element 2.
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imaging resolution) can be resolved by our PDFP method, which
matches well with the theoretical resolution defined by the
synthesized NA, as shown in Figure 5G2. As we can see, due
to the influence of aberration, group 2 element 6 in
reconstruction results of the conventional FP and the
aberration correction FP cannot be resolved well, as shown
in Figures 5E2,F2. Moreover, the line profiles of group 3
element 2 by our PDFP method are significantly better than
the other results. From the comparison, it can be seen that the
reconstruction result of our PDFP method is better than the
traditional FP algorithm, and the pixel aliasing problem can be
avoided, resulting in image quality improved.

DISCUSSION

In summary, we implemented a PDFP imaging system that
reconstructs the high-resolution image with aberration
correction from a sequence of low-resolution intensity images.
This PDFP configuration has a few advantages: 1) the thin-
sample requirement of angularly varying illumination FP is
circumvented, extending the FP scheme to macroscopic
imaging settings. 2) System aberrations can be better corrected
by shifting optical design complexity to computational
algorithms, allowing the use of simpler optical systems with
fewer optical surfaces for imaging. 3) The “pixel aliasing
problem” can be solved by imposing a smaller aperture at the
Fourier plane of the optical system. And the sensor (CCD or
CMOS) with a larger pixel size can be used to provide better noise

performance or bring down the cost of the imaging system. This
method still has certain limiting factors in correcting aberrations,
its time efficiency is low, and it is not applicable to some time-
varying aberrations. This PDFP scheme reported in this work
expands the scope of application for aperture-scanning FP, and
its reflective mode can be used for semiconductor devices,
metallic structures, ceramic surfaces, synthetic aperture
imaging, and remote sensing.
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