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We employed the latest version of the world’s largest corporate financial database and
identified the following three statistical properties of the physical labor productivity of firms:
1) The probability density function (PDF) of labor productivity follows power-law and log-
normal distributions in the large- and mid-scale ranges. 2) Time-reversal symmetry was
observed in the correlation of labor productivities in two consecutive years, and the initial-
value dependence of the growth-rate distribution has regularity. These two properties
accurately derive the above two kinds of PDFs. 3) The dependence of labor productivity
distribution is negligible on the number of employees. This indicates a slight difference in
the distribution of labor productivity among large-, mid-, and small-sized firms.
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1 INTRODUCTION

In recent years, large-scale corporate financial data have been released to researchers. Although
traditional economics has dealt with the representative values of groups, such as the average values
of economic variables, it has become possible to directly analyze the distribution of variables
themselves Mantegna and Stanley [1]; Saichev et al. [2]; Garibaldi and Scalas [3]; Aoyama et al.
[4,5]. For example, the statistical properties observed in groups of firm-size variables, such as sales,
number of employees, assets, and profits, which represent a firm size, can be clarified (See Ref.
Ishikawa [6]).

Typical research on firm-size variables is the observation that the probability density function
(PDF) follows power-law Pareto [7]; Newman [8]; Clauset et al. [9] and log-normal Gibrat [10];
Badger [11]; Montroll and Shlesinger [12] distributions in large- and mid-scale ranges, and the
determination of their origins. In addition, although not covered in this paper, the analysis of such
network structures as inter-firm transactions and corporate shareholding has increased the
understanding of the microstructures of corporate connections (See Refs. Goto et al. [13];
Mizuno et al. [14]).

Furthermore, it has been reported that the productivity of firms calculated using the firm-size
variables also follows a power law in the large-scale range and a log-normal distribution in the mid-
scale range Mizuno et al. [15]; Head et al. [16]; Nigai [17]. However, to the best of our knowledge,
there has been insufficient discussion of the origin of the productivity distribution, such as labor
productivity, capital productivity, and total factor productivity. As an exception, it is important to
refer to the statistical physics approach to labor productivity distribution, which began with Aoki and
Yoshikawa’s study Aoki and Yoshikawa [18] that was eventually extended by Aoyama and Iyetomi’s
group Aoyama et al. [19,20]; Souma et al. [21]; Aoyama et al. [22]; Iyetomi [23]; Aoyama et al. [5,24];
Yoshikawa [25]. These works all tackle the power-law and downward-convex-shaped distributions in
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the large- and small-scale ranges of labor productivity
distribution by correlating the employees and labor
productivities of firms with the particles and energy levels of a
multisystem.

Now that comprehensive large-scale corporate financial data
are available, the importance of the above productivity analyses
has surpassed interest in the studies of firm-size variables
themselves. The most critical aspect of the economy is the
productivity of firms, because the productivity fuels its
development and its maintenance. In this paper, using the
knowledge we have gained in the analyses of firm-size
variables, we derive power-law distributions of productivity in
the large-scale range and log-normal distributions in the mid-
scale range from the short-term properties of productivity in two
consecutive years. At the same time, our observations of the
distribution of labor productivity conditional on the number of
employees show that there is almost no dependence of the
distribution of labor productivity on the number of employees.

Measuring the total factor productivity is difficult because it
involves estimating the degree to which firms’ production
depends on assets and labor Cobb and Douglass [26]. As an
approach to this problem, the authors propose a method to
determine the form of the Cobb-Douglas production function
and estimate the dependence of production on assets and labor
Ishikawa et al. [27] using the geomorphological index of surface
openness Yokoyama et al. [28,29]; Prima et al. [30]. This paper
does not deal with such difficult issues. Instead its analysis focuses
on physical labor productivity, which can be simply calculated
from the firm-size variables. This is because in large-scale
corporate financial databases, the data on the number of
employees exist up to several people, and coverage of the
small scale is higher than that of capital.

The following is the structure of this paper. Section 2 describes
the number of employees, the operating revenues, and the
physical labor productivity data of the firms covered in this
paper. Section 3 observes these data and describes the scatter
plots, the PDFs, and the initial-value dependence of the growth-
rate and the ratio distributions of firm-size variables. We show
that labor productivity follows power-law and log-normal
distributions in the large- and mid-scale ranges as well as in
the firm-size variables. In Section 4, we derive PDFs from the
time-reversal symmetry observed in the scatter plot of the firm-

size variables and the initial-value dependence of the growth-rate
distribution by statistically describing the observations in Section
3. This is the first time that our approach to such firm-size
variables as the number of employees and operating revenues has
been applicable to labor productivity. In this sense, this paper
considers labor productivity as a firm-size variable. Furthermore,
the quasi-inversion symmetry observed in the scatter plot of the
number of employees and operating revenues indicates that the
dependency of the labor productivity distribution on the number
of employees is negligible. We also confirm this property in the
empirical data. Finally, Section 5 summarizes the results of this
paper, discusses them, and presents future issues.

2 DATA

This section describes the data employed in our paper. ORBIS, a
corporate financial database from Bureau van Dijk BvD [31], is
one of the world’s largest publicly available sources for
researchers. The latest ORBIS 2020 edition shows results from
386, 461, 729 firms worldwide. However, the amount of data for
2020 is small because it is still being collected. For example,
Table 1 shows the number of firms that have both number of
employees and operating revenues data in Japan, Spain, and
France for each year. Bureau van Dijk signed exclusive deals
with worldwide data vendors to provide data for the last 10 years
of each firm. As a result, the amount of available data prior to
2010 drastically decreased.

In this paper, we analyze physical labor productivity, which is
the sales (operating revenue) per unit number of employees of
each firm:

c � Y/L . (1)
Here, operating revenue means the amount of sales (revenue)

in a firm’s core business. Because of physical labor productivity,
we denote the number of employees (NE) as L and the operating
revenue (OR) as Y. The unit of L is employee. The unit of Y is one
thousand of US dollars, calculated using the exchange rate at the
time. Therefore, the unit of c is one thousand of US dollars per
employee. Furthermore, to link the distribution of labor

TABLE 1 | Number of Japanese, Spanish, and French firms that have both
number of employees and operating revenues data in ORBIS 2020 edition.

Year JP ES FR

2020 160,686 6 984
2019 915,665 398,169 79,219
2018 252,788 569,535 129,580
2017 309,480 581,037 164,684
2016 425,744 581,110 197,006
2015 461,886 570,550 241,932
2014 403,673 565,709 304,729
2013 352,003 566,316 300,719
2012 306,709 570,951 296,388
2011 218,117 583,880 361,157

TABLE 2 | Number of Japanese firms that have both number of employees and
operating revenues data in two consecutive years in ORBIS 2020 edition.

Year 1 Year 2 NE and OR

2019 2020 19,963
2018 2019 132,595
2017 2018 192,895
2016 2017 236,520
2015 2016 353,403
2014 2015 393,556
2013 2014 345,579
2012 2013 302,049
2011 2012 214,675
2010 2011 88,484
2009 2010 17,641
2008 2009 6,203
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productivity cwith its time variation in two consecutive years, this
paper analyzed the data of 393, 556 firms that contain the number
of employees and operating revenues data in 2014 and 2015 when
the data volume is the largest (Table 2). Note that the observation
of labor productivity c in two consecutive years is to confirm the
time-reversal symmetry, not to view the flow.

3 DATA OBSERVATIONS

In this section, we observe the statistical properties of the 2014
and 2015 operating revenues and labor productivity data of
Japanese firms in the corporate financial database introduced
in Section 2. In Section 3.1, we observe the data correlations of
two consecutive years or of different data of the same year in
scatter plots. We simultaneously observe the PDFs of the data.
Section 3.2 discusses the initial-value dependences of the growth-
rate and the data’s ratio distributions.

3.1 Scatter Plots and PDFs
First, we observed the correlations between the operating
revenues of Japanese firms and their labor productivity.
Figure 1 is a scatter plot of the operating revenues of 393, 556
Japanese firms in 2014 and 2015 listed in the database. The
horizontal and vertical axes represent the operating revenues in
2014 (Y2014) and in 2015 (Y2015). Both logarithmic axes are used.
In Figure 1, the PDF of Y2014 is also plotted by◦ when Y2014 ∈
[2n−1, 2n) (n = 1, 2, . . . , 27). The scale is on the right vertical axis.

As described in Section 1, a power-law distribution is observed
in the large-scale range of firm-size variables, such as operating
revenues Pareto [7]; Newman [8]; Clauset et al. [9]:

P(x)∝x−μ−1 for x0 ≤x . (2)
Here we denote Y2014 = x. P(x) is a PDF, μ is called Pareto’s

index, and x0 is the lower bound of the large-scale range.

Applying the least squares method to range 215 (~ 104.5) ≤
Y2014 ≤ 227 (~ 108.1), we estimate μY = 0.90 ± 0.01.

Similarly, a log-normal distribution is observed in the mid-
scale range of firm-size variables (operating revenues in this case)
Gibrat [10]; Badger [11]; Montroll and Shlesinger [12]:

P(x)∝x−μ−1 exp −α ln2 x

x0
[ ] for xmin ≤ x≤x0 , (3)

FIGURE 1 | Scatter plot of Japanese firms’ operating revenues in 2014
and 2015 (Y2014, Y2015): Small black dots indicate a firm. PDF of Y2014 is also
plotted by ◦ when Y2014 ∈ [2n−1, 2n) (n = 1, 2, . . . , 27).

FIGURE 2 | Scatter plot of Japanese firms’ labor productivity in 2014
and 2015 (c2014, c2015): Small black dots indicate firms. PDF of c2014 is also
plotted by ◦ when c2014 ∈ [2n−1, 2n) (n = − 1, 0, 1, . . . , 19).

FIGURE 3 | Scatter plot of Japanese firms’ number of employees and
operating revenues in 2014 (L2014, Y2014): Small black dots indicate firms.
Ratio of value on horizontal axis to value on vertical axis of each firm is labor
productivity (c2014 = Y2014/L2014). As the scale, six lines of c2014 = 10i (i =
0, 1, . . . , 5) are drawn.
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where xmin is the lower bound of the mid-scale range and α is a
parameter indicating a reciprocal of the spread of the log-normal
distribution. Applying the least squares method to range 25 (~
101.5) ≤ Y2014 ≤ 215 (~ 104.5), we obtain αY = 0.27 ± 0.01.

Figure 2 is a scatter plot of the labor productivity 1) in 2014
and 2015. The horizontal and vertical axes represent it in
2014 (c2014) and 2015 (c2015). Both logarithmic axes are used.
In Figure 2, the PDF of c2014 is also plotted by ◦ when c2014 ∈
[2n−1, 2n) (n = − 1, 0, 1, . . . , 19). In the distribution of labor
productivity, a power-law distribution 2) is observed in the large-
scale range as well as in such firm-size variables as operating
revenues. In this case, we denote c2014 = x. Applying the least
squares method to range 211 (~ 103.3) ≤ c2014 ≤ 219 (~ 105.7), we
estimated μc = 1.79 ± 0.04. Similarly, we found that a log-normal
distribution (3) is observed in the mid-scale range of the labor
productivity. Applying the least squares method to range 25 (~
101.5) ≤ c2014 ≤ 211 (~ 103.3), we obtained αc = 0.64 ± 0.03.

Figures 1, 2 are scatter plots of firm-size variables for two
consecutive years, and Figure 3 is a scatter plot of the number of
employees and operating revenues for the same year (2014). The
horizontal and vertical axes represent the number of employees
(L2014) and the operating revenues in 2014 (Y2014). Both
logarithmic axes are used. In this figure, the ratio of the value
on the horizontal axis to the value on the vertical axis of each firm
(Y/L) is labor productivity (c). In Figure 3, six lines of c = Y/L =
10i (i = 0, 1, . . . , 5) are drawn as a scale of labor productivity.

Figure 4 is a scatter plot of labor productivity and the number
of employees for the same year (2014), slightly rewriting Figure 3.
The horizontal and vertical axes represent the labor productivity
(c2014) and the number of employees (L2014) in 2014. Both
logarithmic axes are used. In Figure 4, six lines of c = Y/L =
10i (i = 0, 1, . . . , 5) are also drawn as in Figure 3. In Figure 4, the
PDF of c2014 is also plotted by ◦ when c2014 ∈ [2n−1, 2n) (n = − 1, 0,

1, . . . , 19), similarly to Figure 2. The PDFs in Figures 2, 4 are
identical.

3.2 Initial-Value Dependences of
Growth-Rate and Ratio Distributions
Next from the data of Figures 1–3, we observed the distributions
of the ratio between the values of the horizontal and vertical axes
when conditioned by the value of the former.

First, we put the data from Figure 1 into five bins, each of
which has a logarithmically equal-sized horizontal axis: Y2014 ∈
[100.5(m−1)+2, 100.5 m+2) (m = 1, 2, . . . , 5). Figure 5 plots the five

FIGURE 4 | Scatter plot of Japanese firms’ labor productivity and
number of employees in 2014 (c2014, L2014): Small black dots indicate firms.
As in Figure 3, there are six lines: c2014 = 10i (i = 0, 1, . . . , 5). As in Figure 2,
PDF of c2014 is plotted by ◦when c2014 ∈ [2n−1, 2n) (n = − 1, 0, 1, . . . , 19).

FIGURE 5 | Five distributions of growth rates (RY = Y2015/Y2014) of data in
each of five bins: Y2014 ∈ [100.5(m−1)+2, 100.5m+2) (m = 1, 2, . . . , 5) for scatter
plot of operating revenues in two consecutive years (Figure 1): Horizontal and
vertical axes use logarithmic growth rate rY = log 10RY and conditional
PDF q (rY|m).

FIGURE 6 | Five distributions of growth rates (Rc = c2015/c2014) of data in
each of five bins: c2014 ∈ [100.5(m−1)+1.5, 100.5m+1.5) (m = 1, 2, . . . , 5) for scatter
plot of operating revenues in two consecutive years (Figure 2): Horizontal and
the vertical axes use logarithmic growth rate rc = log 10Rc and conditional
PDF q (rc|m).
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distributions of the growth rates (RY = Y2015/Y2014) for them in
each mth range. In Figure 5, the horizontal and vertical axes use
logarithmic growth rate rY = log 10RY and conditional PDF q
(rY|m).

Similarly, we put the data from Figure 2 into five bins, each of
which has a logarithmically equal-sized horizontal axis: c2014 ∈
[100.5(m−1)+1.5, 100.5 m+1.5) (m = 1, 2, . . . , 5). Figure 6 plots five
distributions of the growth rates (Rc = c2015/c2014) for the data in
each mth range. In Figure 6, the horizontal and vertical axes also
use logarithmic growth rate rc = log 10Rc and conditional PDF q
(rc|m).

Figures 5, 6 show the growth-rate distributions by the initial
conditions of the firm-size variables in two consecutive years.
Similarly, we put data from Figure 3, a scatter plot between the
number of employees and the operating revenues for the same
year into seven bins, each of which has a logarithmically equal-
sized horizontal axis: L2014 ∈ [100.5(m−1)+0.5, 100.5 m+0.5) (m = 1, 2,
. . . , 7). Figure 7 plots the seven distributions of the ratio,
identical to the labor productivity (c2014 = Y2014/L2014), for the
data in each mth range. In Figure 7, the horizontal and vertical
axes also use logarithmic ratio log 10c2014 and conditional PDF q
(log 10c2014|m). Here, it is important that the growth rate (RY, Rc)
of the operating revenues or the labor productivity in Figures 5, 6
is replaced by labor productivity 3) in Figure 7.

4 STATISTICAL PROPERTIES AND THEIR
RELATIONS

In the previous section, we observed the correlations of the
operating revenues of Japanese firms in two consecutive years
and their labor productivity, their PDFs, and the initial-value
dependence of the growth-rate distributions. This section shows
that these PDFs can be derived from the time-reversal symmetry
observed in the correlation of firm-size variables and the

initial-value dependence of the growth-rate distributions. This
method was first presented by Fujiwara et al. in the large-scale
range of firm-size variables Fujiwara et al. [32,33], and we
extended it to the mid-scale range Ishikawa [34,35]; Ishikawa
et al. [36]; Ishikawa [6]. In this paper, we show for the first time
that the PDF of labor productivity can be derived in the same way
as other firm-size variables. In addition, we discuss the quasi-
inversion symmetry observed in the scatter plot between the
number of employees and the operating revenues for the same
year and the dependency of the distribution of labor productivity,
which is the ratio of the values on the horizontal axis to those on
the vertical axis, on the number of employees.

4.1 Time-Reversal Symmetry of the Joint
Probability Density Function
Figures 1, 2 are scatter plots of Japanese firms’ 2014 and 2015
operating revenues (YT, YT+1) and labor productivity (cT, cT+1).
Figure 1 shows a very strong correlation between operating
revenues in two consecutive years. Figure 2 also shows a strong
correlation between labor productivity in two consecutive years.
Figures 1, 2 also show that their correlations are symmetric with
respect to the interchange of the vertical and horizontal axes (xT↔
xT+1), i.e., time-reversal symmetry Fujiwara et al. [32,33].

Time-reversal symmetry is expressed using a joint PDF PJ
(xT, xT+1):

PJ(xT, xT+1)dxTdxT+1 � PJ(xT+1, xT)dxT+1dxT . (4)
Here PJ must have the same functional form on both sides.

4.2 Initial-Value Dependences of
Growth-Rate Distributions and Gibrat’s Law
Next we consider the dependence of the growth-rate distributions
on the initial value (value on the horizontal axis) in Figures 1, 2.
Figure 5 is the initial-value dependence of the growth-rate
distribution of operating revenues (Y) in two consecutive
years. This figure shows the following properties.

Conditional PDF q (r|xT) for logarithmic growth rate r has a
maximum at r = 0, a downward convex decreasing function for
r > 0, and a downward convex increasing function for r < 0 using
the logarithmic axes. q (r|xT) with these properties is most simply
expressed by Ishikawa et al. [36]:

log10q(r|xT) � c(xT) − t+(xT)r + ln 10 u+(xT)r2 for r> 0 ,

(5)
log10q(r|xT) � c(xT) + t−(xT)r + ln 10 u−(xT)r2 for r< 0 .

(6)
Since q (r|xT) is PDF, we must cut off the upper and lower

bounds of the r range in Eq. 5 and Eq. 6. However, the cut off is
not explicitly written to avoid excessive complexity. In this paper,
we also use the q (r|xT) conditional on initial value xT and the q (r|m)
conditional on bin number m containing xT in the same sense.

Figure 6 shows the initial-value dependence of the growth-
rate distribution of labor productivity (c) in two consecutive

FIGURE 7 | Seven distributions of ratio (c2014 = Y2014/L2014) of data in
each of seven bins: L2014 ∈ [100.5(m−1)+0.5, 100.5m+0.5) (m = 1, 2, . . . , 7) for
scatter plot of different two kinds of firm-size variables in same year (Figure 3).
The unit of operating revenue is one thousand of US dollars, calculated
using the exchange rate at that time.
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years. PDF q (r|xT) is also maximized at r = 0. Using the
logarithmic axes, the PDF is a decreasing function for r > 0
and is an increasing function for r < 0. The curvature is slightly
smaller than in Figure 5. If we approximate the curvature to 0, we
can express it by zeroing out the second term in Eq. 5 and Eq. 6
for r: u±(xT) = 0.

A property common to Figures 5, 6 is that as initial-value xT
increases, the change in q (r|xT) decreases. Interestingly, as the
initial value increases, the growth-rate distribution becomes
almost independent of the initial value. This property is called
Gibrat’s law Gibrat [10]; Sutton [37]. This state can be written in
Eq. 5 and Eq. 6 as u±(xT), t±(xT), and c (xT) are constants.

The significant difference between Figures 5, 6 is the direction
in which q (r|xT) changes as initial-value xT increases. In Figure 5,
q (r|xT) decreases as xT increases, whether r > 0 or r < 0. Their rate
of decrease is larger for r > 0 than for r < 0. On the other hand, in
Figure 6, as initial value xT increases, q (r|xT) decreases for r > 0,
but increases for r < 0. The rate of change is similar for r < 0 and
r > 0. We discuss how this difference occurs in Section 4.3.

4.3 Time-Reversal Symmetry, Initial-Value
Dependence of Growth-Rate Distribution,
and PDF
Here we derive log-normal distribution (3) and power-law
distribution (2) from the time-reversal symmetry (4) and the
initial-value dependence of the conditional growth-rate
distribution (5) (6).

Time-reversal symmetry (4) can be rewritten using variables
(xT, R (= xT+1/xT)):

PJ(x, R)dxdR � PJ(Rx, R−1)d(Rx)d(R−1) . (7)
From now on, we write xT as x for simplicity. Measures in Eq.

7 are organized so that the time-reversal symmetry becomes:

PJ(x, R) � R−1 PJ(Rx, R−1) . (8)
Using conditional PDF: Q (R|x) = PJ (x, R)/P(x), this

expression can be written:

P(x)
P(Rx) � R−1Q(R−1|Rx)

Q(R|x) . (9)

Using the relationship between growth rate R and logarithmic
growth rate r = log 10R,

log10q(r|x) � log10Q(R|x) + r + log10(ln 10) , (10)
the initial-value dependence (5) and (6) can be expressed in Q
(R|x):

Q(R|x) � d R −1−t+(x)+u+ lnR for R> 1 , (11)
Q(R|x) � d R −1+t−(x)+u− lnR for R< 1 . (12)

Here we ignored the x dependency of c(x) in Eqs. 5, 6. In
Figures 5, 6, q (r|m) at r = 0 is almost independent of m.
Therefore, in the range of x considered in these figures, this
treatment of c(x) is a valid approximation. At the same time,
ignoring the x dependencies of u±(x) in Eq. 5 and Eq. 6, we

address the simplest approximation to introduce the downward
convex curvature into a conditional PDF. See our previous studies
Ishikawa et al. [36] and Ishikawa [6] that do not ignore the x
dependence of u±(x).

Substituting Eq. 11 and Eq. 12 into Eq. 9 for R > 1 yields

P(x)
P(Rx) � R 1+t+(x)−t−(Rx)− u+−u−{ }lnR . (13)

This result expands as R = 1 + ϵ (ϵ≪ 1) near the time-reversal
symmetry axis of R = 1. The zeroth order of ϵ yields only a trivial
expression. Then from the linear terms of ϵ, we obtain

1 + t+(x) − t−(x)[ ]P(x) + x
dP(x)
dx

� 0 . (14)

Using this expression, rewriting the derivative of P(x) to P(x)
yields the second and third terms of ϵ:

x
dt+(x)
dx

+ dt−(x)
dx

{ } + 2 u+ − u−{ } � 0 , (15)

2
dt+(x)
dx

+ dt−(x)
dx

+ x 2
d2t+(x)
d2 x

+ d2t−(x)
d2x

{ } � 0 . (16)

No useful information can be obtained from the fourth or
higher terms of ϵ.

t±(x) is determined from simultaneous differential Eq. 15 and
Eq. 16:

t+(x) � α+ ln
x

x0
+D1 , (17)

t−(x) � α− ln
x

x0
+D2 , (18)

where α±, D1, and D2 are integral constants. Substituting these
equations into Eq. 14 and assuming μ = D1 − D2, a log-normal
distribution (3) is obtained. Here α in Eq. 3 is given:

α � α+ − α−
2

. (19)

In addition, u± is connected by

u− � u+ + α+ + α−
2

. (20)

The same argument yields identical results for R < 1, obtained
near R = 1. By setting μ = D1 − D2, these results always satisfy Eq.
13. In other words, these results are equivalent expressions that
have a necessary and sufficient relationship with Eq. 13.

If the growth-rate distribution can be approximated by a
straight line on the logarithmic axes, as in Figure 6, we
believe that there is no quadratic term in r in Eq. 5 and Eq. 6.
That is, u± = 0. In this case, by Eq. 20, α+ = − α−. This situation
creates the difference between Figures 5, 6 that is described in
Section 4.2. In addition, α+ > α− in Figure 5 corresponds to the
positive value of α connected by Eq. 19. These analytical
conclusions can be confirmed by empirical data as follows.

In Figure 5, we confirm α+ > α− > 0 as in αY+ � 0.90 ± 0.01,
αY− � 0.28 ± 0.08. In contrast, Figure 6 shows αc+ � 0.54 ± 0.04,
αc− � −0.57 ± 0.11, and their absolute values agree within the
margin of error. That is, we confirmed α+ = − α− > 0. Here the
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subscripts of Y and c identify the kind of variables, α±. These
values were evaluated by the least squares method by applying Eq.
17 and Eq. 18 to the same ranges as applying the log-normal
distribution (3) to the PDFs in Figures 1, 2. Figure 8 shows the
t±(xT) data for estimating αc± as an example.

We can also obtain (αY+ − αY−)/2 � 0.31 ± 0.04 and (αc+ −
αc−)/2 � 0.55 ± 0.06 from the above values. These values agree
within the error with αY = 0.27 ± 0.01 and αc = 0.64 ± 0.03,
measured in the mid-scale range of the log-normal distribution in
Figures 1, 2. In other words, not only the empirical data of
operating revenues but also those of labor productivity accurately
support the conclusion of the analytical discussions in Eq. 19 and
Eq. 20.

In the large-scale range, all of the x dependencies of the
growth-rate distributions (5) and (6) disappear. This is
Gibrat’s law. This corresponds to a situation where t± does not
have x dependency, which is actually observed in Figure 8 and
achieved by setting α± to zero in Eq. 17 and Eq. 18. At x = x0, the
mid-scale log-normal distribution (3) is switched to the power-
law distribution (2) in the large-scale range. Note the following
points. To derive a power-law distribution (2), it is not necessary
to assume Eq. 5 and Eq. 6; it is sufficient to use Gibrat’s law where
the growth-rate distribution is independent of the initial value.
For a proof of this, see Fujiwara et al. Fujiwara et al. [32,33], upon
which the above discussion is based. Their proof requires a
reflection law corresponding to μ = D1 − D2.

4.4 Quasi-Inverse Symmetry, Initial-Value
Dependence of Ratio Distribution, and PDF
In the previous subsection, we considered changes in the firm-size
variables in two consecutive years. In this subsection we focus on
the distribution of labor productivity, as the ratio of number of
employees to operating revenues, which are the firm-size
variables in the same year.

This paper presents the distribution of labor productivity in
two ways. One is derived from the time-reversal symmetry in
labor productivity in two consecutive years (Figure 2) and the
initial-value dependence of the growth-rate distribution
(Figure 6). The other appears as a distribution of ratios
(Figure 4) under the quasi-inversion symmetry of the number
of employees and operating revenues in the same year (Figure 3).
In this case, the initial-value dependency of the distribution of the
ratio is directly the employee number dependency of the labor
productivity distribution. These will be discussed in detail below.

First, consider the properties observed in the scatter plot.
Figure 3 is a scatter plot between number of employees (L)
and operating revenues (Y) for Japanese firms in 2014. They are
correlated similar to the vertical and horizontal axes in Figures 1,
2. Figure 3 also shows that the correlation is symmetric with
respect to line log 10Y = log 10L + log 10a (where a is a parameter).
The authors call this quasi-inversion symmetry Ishikawa et al.
[38]. In Figure 3, parameter a can be evaluated as log 10a = 2.47 ±
0.13 using the index of the surface openness Yokoyama et al.
[28,29]; Prima et al. [30].

This quasi-inversion symmetry can be expressed using a
joint PDF:

PJ(L, Y)dLdY � PJ
Y

a
, aL( )d Y

a
( )d aL( ) . (21)

Figure 4 is a scatter plot between labor productivity 3) and
number of employees (L) of Japanese firms in 2014. This is a
revision of Figure 3 using Eq. 1: c = Y/L. This diagram is useful
for understanding how the labor productivity distribution (◦ in
Figure 4) consists of firms with a certain number of employees.

Next we consider the properties of the distribution of ratios.
Figures 5, 6 are the initial-value dependence of the growth-rate
distribution of the firm-size variables in two consecutive years.
On the other hand, Figure 7 shows the distribution of the ratio of
the number of employees to operating revenues in the same year,
that is, the labor productivity distribution itself, and the
dependency on the number of employees. This is of great
interest in Figure 7 because the dependence of labor
productivity on the number of employees is a critical
economic issue. The greatest characteristic of Figure 7 is that
the shape of the distribution of labor productivity is almost
independent of the number of employees. This is Gibrat’s law
between different firm-size variables in the same year. In addition,
the right side of the distribution in Figure 7 decreases according
to a power-law function; the left side has a wider tail. Figure 7
shows that this tail consists of firms withm = 1, 2 or 100.5 (~ 3.2) ≤
L < 101.5 (~ 31.6) employees. This can also be observed in
Figure 7, which shows that in firms with m = 3, 4, / or 101.5

(~ 31.6) ≤ L employees, the left tail decreases according to a
power-law function.

In Figure 7, the maximum value of q (log 10c|L) is around
log 10c ~ 2.5. This corresponds to a shift of the quasi-inverse
symmetry in Figure 3: log 10Y ↔ log 10L + log 10a above the
inverse symmetry by log 10a = 2.47 ± 0.13. The labor productivity
distribution in Figures 2, 4 is obtained by superimposing the
seven distributions in Figure 7. Furthermore in Figure 7, the

FIGURE 8 | Values of t±(xT) evaluated by applying Eq. 17 and Eq. 18 to q
(r|xT) in Figure 6. Here to simplify understanding the figure,m = 6, 7 are added
to m = 1, 2, . . . , 5 in Figure 6.
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maximum of q (log 10c|L) is not sharp like in Figures 5, 6. This
reflects the fact that the correlation between the number of
employees and operating revenues in the same year is not as
strong as the correlation between the firm-size variables in two
consecutive years.

This property is observed in countries other than Japan.
Similar properties can be also observed in countries where
comprehensive corporate financial data is available, such as
Spain and France (Figures 9, 10). The unit of operating
revenue in these countries is also one thousand of US dollars,
calculated using the exchange rate at that time.

5 RESULTS AND DISCUSSION

Employing the latest version of ORBIS, the world’s largest
corporate financial database available to researchers, we
discuss the statistical properties of physical labor productivity
using number of employees and operating revenues. In this paper,
we regarded physical labor productivity, which is the operating
revenues per unit employee of each firm as one of firm-size
variables.

It has long been known that the time-reversal symmetry
observed in the joint PDF of firm-size variables in two
consecutive years and the initial-value dependence of the
growth-rate distribution lead to PDFs in the range of large-
and mid-scale firm-size variables. As well as those, we first
confirm that the joint PDF of labor productivity in two
consecutive years shows time-reversal symmetry. We also
confirm that the initial-value dependence of the growth-rate
distribution is also regular, as was the case with other firm-
size variables. We show analytically that power-law and log-
normal distributions in the large- and mid-scale labor
productivity can also be derived from these two properties and
confirm the analytic results with empirical data.

Furthermore, we found a significant difference between the
initial-value dependence of the distribution of the growth-rate
distributions of the operating revenues and those of the labor
productivity. As the initial value increases, both the positive and
negative growth-rate distributions of the operating revenues
decrease. Similar properties are observed in the growth-rate
distribution of the number of employees, although not covered
in this paper. On the other hand in the latter case, as the initial
value increases, the positive growth-rate distribution decreased
while the negative distribution increases at the same rate of
change. This is similar to what we observed in our previous
study with positive net income data Ishikawa [34,35] where the
properties observed in positive net income were also observed in
labor productivity. This suggests that such a property exists in the
firm-size variables, including net income and labor productivity,
which are composed of subtraction or division of firm-size
variables.

By exploiting the fact that the quasi-inversion symmetry
observed in the correlation between the number of employees
and the operating revenues in the same year is directly related to
the labor productivity distribution, which is their ratio, we also
show that the shape of the labor productivity distribution is
basically independent of the number of employees. This means
that the shape of the labor productivity distribution is identical
regardless whether the firm size is large, medium, or small. This
conclusion is different from the argument in economics that
larger firms have higher labor productivity. However, it is the
same conclusion derived by Aoyama et al. whose analysis divided
a large amount of corporate financial data into large firms and
small and medium firms by the number of employees Aoyama
et al. [20,39]. In this paper, we show that even when the number
of employees is subdivided, the shape of the distribution of labor
productivity agrees very accurately.

Aoyama et al. went further and focused on the shape of the
downward convex observed in the small-scale range of the labor
productivity distribution. The analysis in our paper shows that

FIGURE 9 | Dependence of labor productivity on number of employees
in Spanish firms in 2014: Bins were sorted identically as in Figure 7. The unit of
operating revenue is one thousand of US dollars, calculated using the
exchange rate at that time.

FIGURE 10 | Dependence of labor productivity on number of employees
in French firms in 2014: Bins were sorted identically as in Figure 7. The unit of
operating revenue is one thousand of US dollars, calculated using the
exchange rate at that time.
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this downward convex form consists of firms with
approximately 30 or fewer employees. In this small-scale
range, the symmetry axis with respect to the time reversal is
unclear, and the dependence of the growth-rate distribution on
the initial value cannot be expressed in the form employed in
this paper. Therefore, discussing the PDF of small-scale labor
productivity is difficult by simply extending the approach in our
paper to the small-scale range. This idea is related to the fact that
small-scale labor productivity is mainly composed of firms
whose number of employees and operating revenues are on
the small scale, i.e., the completeness of firms constitutes small-
scale labor productivity. Note however, that Aoyama et al.
discussed the relationship between labor productivity and the
average number of employees, not the distribution of labor
productivity itself.

To further develop our paper, the analytical relationships of
PDFs can be derived using simple relationship rc = rY − rL among
the logarithmic growth rate of the number of employees, the
operating revenues, and labor productivity (rL, rY, rc). This paper
focuses on labor productivity, although capital productivity and
total factor productivity can be also discussed in the same
manner. Since its purpose was discussing the relationship
between the statistical properties of firm-size variables, we did
not analyze the relationship by industry or time. These analyses
are of great economic importance in the future.
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