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We introduce a novel type of twisted partially coherent beams with a nonconventional
correlation function, named the twisted Hermite-Gaussian correlated Schell-model
(THGCSM) beam. The condition that a twist phase can be imposed on a partially
coherent beam is addressed for Schell-model fields endowed with rectangular
symmetry. Further, the analytical formula for the THGCSM beam propagating in free
space has been derived with the help of the generalized Collins formula. The propagation
properties, such as the spectral density and the spectral degree of coherence (SDOC) of
the THGCSM beam, also have been studied in detail by some numerical examples. The
numerical results show that the twist phase plays a role in resisting beam splitting,
caused by the correlation structure, and induces the rotation of the distribution of the
SDOC on propagation. Moreover, it is interesting to find that when the beam carries a
twist phase, this will endow the beam the ability to maintain its distribution of the SDOC
on propagation and enhance the self -reconstruction capability of the SDOC. Our results
may provide new insights into nonconventional partially coherent beams with twisted
phase and may be useful in some applications, such as optical communications and
information recovery.

Keywords: self-reconstruction, spectral degree of coherence, twist phase, propagation properties, partially
coherent

INTRODUCTION

Coherence is one of the most notable features of a laser beam. These light beams (i.e., partially
coherent beam) have attracted intensive attentions due to their wide applications in inertial
confinement fusion, ghost imaging, sub-Rayleigh imaging, particle trapping, free space optical
communications and optical scattering [1–8]. Furthermore, Gori et al. [9, 10] proposed the
sufficient conditions for designing a real genuine cross-spectral density function or matrix of a
partially coherent beam. Based on the above works, a variety of partially coherent beams with
nonconventional correlation functions (i.e., the correlation function doesn’t satisfy the Gaussian
distribution) have been introduced theoretically and generated experimentally [11–27]. It is
found that beams with nonconventional correlation functions will exhibit unique properties on
propagation, such as self-splitting, self-reconstruction, locally sharpened and laterally shifted
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intensity maxima [13, 22, 27], which are useful in multi-
particles trapping, atoms guiding, image transfer and
recovery. Moreover, the beam profiles in the focal plane (or
far fields) can be controlled by endowing the beam with a
specific correlation function [15–19, 26], for example, dark-
hollow beam profiles (or an optical cage) can be formed near
the focal plane when the correlation function satisfies a
Laguerre–Gaussian distribution [18]. A Multi-Gaussian
correlated Schell-model beam would generate a rectangular
intensity profile in the focal plane, and a ring-shaped beam
and controllable intensity lattices also can be achieved with the
help of the correlation functions [15, 26]. In addition,
partially coherent beams with prescribed correlation
functions can be applied to reduce scintillation in
turbulence [28], overcome the classical Rayleigh diffraction
limit [29], coherence-based optical encryption [30], robust
microscopy imaging [31], robust far-field imaging [32], and
optical beam shaping [33].

On the other hand, partially coherent beams with a twist
phase (i.e., twisted partially coherent beam) carry orbital
angular momentum (OAM) [34]. Twist phase as a
“genuinely two-dimensional” phase can’t exist in a
coherent beam and its value is bounded in strength. Twist
phase was introduced by Simon et al. in 1993 and has been
demonstrated in an experiment by Friberg [35, 36]. Due to the
intrinsic chiral property of the twist phase the rotation of the
beam spot on propagation is induced, and both the
distribution of the SDOC, the degree of polarization and
the state of polarization of the beam on propagation are
affected [37, 38]. Besides, light beams with a twist phase
have advantages in resisting coherence (or turbulence)-
induced degeneration, depolarization and overcoming the
classical Rayleigh limit [37, 39]. It is shown in [40, 41] that
using a twist phase can greatly increase the amount of OAM of
a partially coherent vortex beam and enhance its self-
reconstruction capability.

Recently, some new ways have been introduced to generate
twisted Gaussian Schell-model beams and measure their
orbital angular momentum [42, 43]. The problem of when
a twist phase can be imposed on a partially coherent beam,
generated from a Schell-model source with axial symmetries,
was explored in [44, 45]. Two approaches have been proposed
to devise genuine twist beams with and without symmetry [46,
47]. In this paper, we devised a newly twisted partially
coherent beam named the twisted Hermite-Gaussian
correlated Schell-model (THGCSM) beam. The condition
that the THGCSM beam will be bona fide is met, and the
propagation properties of the THGCSM beam have been
investigated in detail. Our results show that the twist phase
plays a role of preventing deterioration of the intensity
distribution and induces rotation of the distribution of the
SDOC around the axis on propagation. Furthermore, the twist
phase also will enhance the ability of the beam to maintain the
distribution of the SDOC and its self-reconstruction
capability, which will be useful for optical information
processing and recovery.

THEORY OF THE TWISTED
HERMITE-GAUSSIAN CORRELATED
SCHELL-MODEL BEAM

Twisted Schell-Model Beams With
Rectangular Symmetry
Based on the unified theory of coherence and polarization, the
statistical properties of a partially coherent beam can be
characterized by the cross-spectral density (CSD) [48]. For
Schell-model fields, endowed with rectangular symmetry, the
cross-spectral density (CSD) of the beam can be expressed as

W0 (r1, r2) � τp(r1)τ(r2) u(|x1 − x2|) u(∣∣∣∣y1 − y2

∣∣∣∣), (1)
where r1 = (x1, y1), r2 = (x2, y2) are two arbitrary transverse
position vectors, τ (ri) denotes the transmission function of an
arbitrary (complex) amplitude filter and u (|x1-x2|)u (|y1-y2|) is
the spectral degree of coherence. When the beam carries a twist
phase, the CSD is defined as

W0u (r1, r2) � τp(r1)τ(r2) u(|x1 − x2|) u(∣∣∣∣y1 − y2

∣∣∣∣)
exp( − ikμ0r1 × r2), (2)

where the last exponential term represents the twist phase, with μ0
being the twist factor. According to the Refs. [44, 45], the CSD
will be bona fide, if and only if the corresponding uniform source,
defined as

Wu (r1, r2) � u(|x1 − x2|) u(∣∣∣∣y1 − y2

∣∣∣∣) exp( − ikμ0r1 × r2),
(3)

is bona fide too. Then, we find that the uniform source satisfies
the following formal integral relationship

∫ d2ρWu(r1, ρ)Tu(ρ, r2) � ∫ d2ρTu(r1, ρ)Wu(ρ, r2), (4)

for any pair (r1, r2), ρ = (ρx, ρy) is an arbitrary transverse position
vector, and Tu � exp(−ikμ0r1 × r2) denotes the twist phase. To
prove this, on substituting Eq. 3 into Equation 4, the l. h. s of Eq.
4 reads as follows

∫ d2ρWu(r1, ρ)Tu(ρ, r2) � ∫ d2ρ u(∣∣∣∣x1 − ρx
∣∣∣∣) u(∣∣∣∣∣y1 − ρy

∣∣∣∣∣)
exp( − ikμ0(r1 − r2) × ρ), (5)

For the r. h. s of Eq. 4 we obtain:

∫ d2ρTu(r1, ρ)Wu(ρ, r2) � ∫ d2ρ u(∣∣∣∣ρx − x2

∣∣∣∣) u(∣∣∣∣∣ρy − y2

∣∣∣∣∣)
exp( − ikμ0(r1 − r2) × ρ), (6)

Then, taking into account that exp[−ikμ0(r1 − r2) × ρ] � exp

[−ikμ0(r1 − r2) × (ρ − (r2 − r1))],
Eq. 6 can be expressed as follows

∫ d2ρTu(r1, ρ)Wu(ρ, r2) � ∫ d2ρ u(∣∣∣∣ρx − (x2 − x1) − x1

∣∣∣∣)
u(∣∣∣∣∣ρy − (y2 − y1) − y1

∣∣∣∣∣)
× exp[ − ikμ0(r1 − r2)
× (ρ − (r2 − r1))]. (7)
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On letting ρ = ρ − (r2−r1), Eq. 7 can be recast as

∫ d2ρTu(r1, ρ)Wu(ρ, r2) � ∫ d2ρ u(∣∣∣∣ρx − x1

∣∣∣∣) u(∣∣∣∣∣ρy − y1

∣∣∣∣∣)
exp[ − ikμ0(r1 − r2) × ρ]. (8)

Thus, the Equation 4 has been proved. Moreover, it has been
mentioned in [45], when the Equation 4 is satisfied, the uniform
sourceWu defined by Eq. 3 and the twist phase Tu share the same
coherent modes, defined as

Φj,m(r) �



u

π

√ [(j − |m|)!(j + |m|)!]
1/2(r 



u
√ )2|m| exp(i2mφ)L2|m|

j−|m|(ur2)
exp(−ur2

2
), (9)

with u = kμ0, k = 2π/λ is the wavenumber with wavelength λ, and
j = 0, 1/2, 1, . . . , m = -j, j+1, . . . , j. Here, L2|m|

j−|m| is the Laguerre
polynomials with the radial index j-|m| and the angular index
2|m|, while exp (i2mφ) represents the vortex phase.

If the uniform source Wu is bona fide, the sufficient condition
is that the eigenvalue sequence {λj,m} should be nonnegative.
These eigenvalues are defined as

λj,m � ∫∫d2r1r2Wu(r1, r2)Φj,m(r1)Φp
j,m(r2). (10)

On substituting equations 3 and (9) into Equation 10, and on
letting r1 − r2 � r, we have

λj,m � ∫ d2ru(x)u(y) ∫ d2r2

exp( − ikμ0r × r2)Φj,m(r + r2)Φp
j,m(r2). (11)

Use the Following Expression [45]

∫ d2r2 exp( − ikμ0r × r2)Φj,m(r + r2)Φp
j,m(r2) � Lj+m(ur2),

(12)
with Ln(x) � Ln(x) exp(−x/2) , and λj,m � λj+m � Λb. After
some operation, we have

Λb � ∑b
k0�0

∫ u(x)L−1/2
k0 (ux2) exp(−ux2

2
)dx

× ∫ u(y)L−1/2
b−k0(uy2) exp(−uy2

2
)dy. (13)

Eq. 13 is one of the main results of this paper, which can be
used to assess the conditions when the Schell-model beams
with rectangular symmetry can carry the twist phase.

Analytical Formula for a Twisted
Hermite-Gaussian Correlated Schell-Model
Beam
In this section, we introduce a new kind of twisted partially
coherent beam with nonconventional correlation function,
named the twisted Hermite-Gaussian correlated Schell-
model (THGCSM) beam. As a natural extension of the

Hermite-Gaussian correlated Schell-model (HGCSM) beam
[22], the CSD in the source plane (z = 0) is defined as

W(r1, r2) � exp(r12 + r22

4σ2
0

) H2m[(x2 − x1)/ 

2

√
δ0]

H2m[0]

exp[ − (x2 − x1)2
2δ20

] ×
H2n[(y2−y1)


2
√

δ0 ]
H2n[0]

exp[ − (y2 − y1)2
2δ20

] exp( − ikμ0r1 × r2), (14)

where r1 = (x1, y1), r2 = (x2, y2) are two arbitrary transverse
position vectors in the source plane, σ0 and δ0 represent the beam
width and the spatial coherence width, respectively. H2m and H2n

are the Hermite polynomial of order 2m and 2n, respectively.
After some algebra, Equation 14 can be expressed in the
following alternative form

W(r1, r2) � m!



π

√
Γ(m + 1/2)

n!



π

√
Γ(n + 1/2) exp(r21 + r22

4σ20
)L−1/2

m

[ − (x2 − x1)2
2δ20

] exp[ − (x2 − x1)2
2δ20

] × L−1/2
n [ − (y2 − y1)2

2δ20
]

exp[ − (y2 − y1)2
2δ20

] exp( − ikμ0r1 × r2). (15)

As mentioned in section 2.1, the THGCSM beam will be
bona fide, if and only if the corresponding uniform source,
defined as

Wu0(r1, r2) � L−1/2
m [ − (x2 − x1)2

2δ20
] exp[ − (x2 − x1)2

2δ20
]

× L−1/2
n [ − (y2 − y1)2

2δ20
] exp[ − (y2 − y1)2

2δ20
]

exp( − ikμ0r1 × r2). (16)

is bona fide too. On substituting Equation 15 into Equation 10,
and after some tedious integrations and algebraic manipulations,
we have

Λb � ∑b
k0�0

2δ20
1 + uδ20

Γ(m + k0 + 1/2)Γ(n + b − k0 + 1/2)
m!k!n!(b − k0)!

( uδ20
1 + uδ20

)m+n(1 − uδ20
1 + uδ20

)b

× 2F1[ −m,−k0;−m − k0

+ 1
2
;−(1 + uδ20)(1 − uδ20)]× 2F1[ − n, k0 − b; k0 − b − n

+ 1
2
,−(1 + uδ20)

1 − uδ20
], (17)

where 2F1 is a hypergeometric function. So, in order forWu to
be bona fide (i.e., λj,m should be nonnegative), the parameter
u = kμ0 in Eq. 17 must be bounded by the following
inequality:

uδ20 ≤ 1. (18)
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FIGURE 1 | Density plot of the normalized spectral density of a focused THGCSM beam with m = 1, n = 0 for different values of the twist factor μ0 at several
propagation distances.

FIGURE 2 | Density plot of the normalized spectral density of a focused THGCSM beam with m = 1, n = 1 for different values of the twist factor μ0 at several
propagation distances.
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FIGURE 3 | Modulus of the SDOC between two points ρ and−ρ of the THGCSM beam with m = 1, n = 0 for different values of the twist factor μ0 at several
propagation distances.

FIGURE 4 | Modulus of the SDOC between two points ρ and −ρ of the THGCSM beam with m = 1, n = 1 for different values of the twist factor μ0 at several
propagation distances.
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Thus, the THGCSM beam will be bona fide, if and
only if the Equation 18 is satisfied. Then, the propagation
of the THGCSM beam through an ABCD optical system can
be investigated with the help of the generalized Collins
formula [38, 40].

W(ρ1, ρ2; z) � 1

(λB)2 exp[ − ikD

2B
(ρ21 − ρ22)]∫∞

−∞
∫∞

−∞
W(r1, r2)

× exp[ − ikA

2B
(r21 − r22)] exp[ikB (r1 · ρ1 − r2 · ρ2)]d2r1d

2r2,

(19)
where ρ1 = (ρx1, ρy1) and ρ2 = (ρx2, ρy2) are two arbitrary transverse
position vectors in the observation plane, and A, B, C, D are the
transfer matrix elements of an optical system. On substituting
Equation 14 into Equation 19, we obtain the analytical formulae
for the CSD of a THGCSM beam in the output plane as follows:

W(ρ1 , ρ2; z) � π2

λ2B2α1α2
exp⎡⎣ − β2x + β2y

4α2
⎤⎦ exp[ − ikD

2B
(ρ21 − ρ22)] exp[ − k2

4α1B
2(ρ1 − ρ2)2]

× ∑m
k1�0

∑n
k2�0

∑k1
p1�0

∑k2
p2�0

m!



π

√
Γ(m + 1/2)

n!



π

√
Γ(n + 1/2)

(2k1)(2k1 − 2p1)!p1!

(2k2)(2k2 − 2p2)!p2!

(−1)k1+k2
k1!k2!

×
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ n − 1

2

n − k2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ m − 1
2

m − k1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠( 1

2δ20
)k1+k2( βx

2α2
)2k1( βy

2α2
)2k2(α2

β2x
)p1⎛⎝α2

β2y
⎞⎠p2

,

(20)
with

α1 � 1
2σ20

; α2 � 1
8σ20

+ 1

2δ20
+ k2μ20

4α1
+ k2A2

4α1B2
, (21)

βx �
ik(ρx1 + ρx2)

2B
+ k2μ0(ρy1 − ρy2)

2α1B
+ k2A(ρx1 − ρx2)

2α1B2
, (22)

βy � ik(ρy1 + ρy2)
2B

− k2μ0(ρx1 − ρx2)
2α1B

+ k2A(ρy1 − ρy2)
2α1B2

(23)

FIGURE 5 | Density plots of the normalized spectral density and the modulus of the SDOC (|η(ρ,−ρ)|) of a focused HGCSM beam for different values of the spatial
coherence width δ0 in the focal plane.
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The spectral density of the THGCSM beam at point ρ in the
receiver plane is defined as

S(ρ, z) � W(ρ, ρ, z). (24)
The spectral degree of coherence (SDOC) of the

THGCSM beam at a pair of transverse points with
position vectors ρ1 and ρ2 in the output plane can be
expressed by the formula

η(ρ1, ρ2; z) � W(ρ1, ρ2; z)




















W(ρ1, ρ1; z)W(ρ2, ρ2; z)√ (25)

Based on the obtained formulae above, we can study the
propagation properties of a THGCSM beam in a convenient way.

NUMERICAL SIMULATION OF A THGCSM
BEAM
Paraxial Propagation of the THGCSM Beam
Through an ABCD Optical System.
In this section, we study the paraxial propagation of the
THGCSM beam through an ABCD optical system by applying
the formulae derived in section 2. In the following examples, we
consider the beam propagating in free space after passing through
a lens with focal length f = 400mm, which is located at z � 0. The
parameters of the beam and the transfer matrix are defined as λ =
632.8 nm, σ0 = 1 mm, δ0 = 0.5 mm, A � 1 − z/f, B � z , C �
−1/f , and D � 1. According to Equation 24, we calculate the
normalized spectral density of a focused THGCSM beam at
several propagation distances with different values of the twist
factor μ0, as shown in Figures 1, 2. One can find that when μ0 =
0 m−1 (see the first row), the THGCSM beam reduces to a
HGCSM beam, and with the increase of the propagation
distance, the intensity distributions of the HGCSM beam
gradually change from one beam spot into two spots or four
beam spots as expected [22]. From the second and third rows of
Figures 1, 2, it is interesting to find that a twist phase does not
seem to cause the beam to rotate during the transmission, no
matter what the value of the parameters m n is. This result is
quite different from that obtained in former works [37, 38],
where it was shown that the twist phase would induce the beam
to rotate on propagation. This phenomenon will be explained
in Figure 8, by investigating the self-reconstruction
characteristics of the beam spectral density. In addition, the

FIGURE 6 | Modulus of the SDOC (|η(ρ,−ρ)|) of the THGCSM beam for different values of the twist factor μ0 in the source and focal plane, respectively.

FIGURE 7 | Illustration of a THGCSM beam self-healing process.
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twist phase has the effect of hindering the beam spot to split on
propagation, and the larger the value of the twist factor is, the
beam spot will split more difficult. This means that the twist
phase plays a role preventing deterioration of the intensity
distribution. Thus, the twist phase can be used to control the
intensity distribution of a THGCSM beam on propagation in
free space.

Then, the evolution properties the SDOC of a focused
THGCSM beam on propagation also have been investigated.
Figures 3, 4 show the modulus of the SDOC between two
points ρ and -ρ (i.e., |η(ρ,-ρ)|), at several propagation
distances with different values of the twist factor μ0. The first
row of the Figures 3, 4 show the variation of the SDOC of a
focused HGCSM beam versus the propagation distances z. It is
found that the distribution of the SDOC of the HGCSM beam
exhibits an array distribution in the source plane (i.e., z = 0 mm),
and the number of the beamlets increase as the values of the beam
order m or n increase.

When the propagation distance z increases, the profile of
the SDOC firstly remains invariant, and then becomes one
beam spot in the focal plane. This means that the information
regarding the SDOC is increasingly lacking with increasing
propagation distance. The second and the third rows of the
Figures 3, 4 show the influence of the twist phase on the
evolution properties of the SDOC. We find that the twist phase
induces a rotation of the SDOC on propagation, such that
when μ0 > 0, the distribution of the SDOC rotates anti-
clockwise, and when μ0 < 0, the distribution of the SDOC
rotates clockwise. The SDOC rotates faster with increasing
twist factor μ0, and the rotation angle varies between −π/2 or π/

2 in the focal plane. These phenomena can be explained by the
fact that the twist phase imposes angular momentum on the
beam. Further, one can still determine the structure of the
SDOC even in the focal plane. Thus, the twist phase can be
used to maintain the beam’s information of the correlation
function.

In order to investigate the influence of the spatial coherence
width and the twist phase on the beam propagation properties,
the density plots of the normalized spectral density and the
modulus of the SDOC have been studied, as shown in Figures
5, 6. In Figure 5, we calculated the density plots of the
normalized spectral density and the modulus of the SDOC
(|η(ρ,−ρ)|) of a focused HGCSM beam (i.e., THGCSM beam
with μ0 = 0) for different values of the spatial coherence width
δ0 in the focal plane. One can find that with the increase of the
spatial coherence width, the beam profile of the HGCSM
beam will evolve from the original array beam shape to a
Gaussian beam profile (i.e., the self-splitting properties of the
HGCSM beam on propagation gradually disappear) as
expected in [22].

Moreover, regardless of the value of the spatial coherence
width, the distribution of the SDOC is always maintained as a
beam spot. Therefore, the ability to obtain information about the
correlation function of the beam in the far field (or focal plane)
cannot be improved by changing the coherence length or the
order m n of the beam.

Further, we calculated the modulus of the SDOC (|μ(ρ,-
ρ)|) of the THGCSM beam in the source and focal plane,
respectively. It is interesting to find that with the increase of
the twist factor, the strength of the sidelobes of the SDOC are

FIGURE 8 | Density plot of the normalized spectral density of a focused THGCSM beam with m = 1, n = 1 obstructed by a SSOO with center angle α = π/3 for
different values of the twist factor μ0 at several propagation distances.
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enhanced. This exciting new finding may help us to find a
new way to improve the reliability of the correlation
function.

Self-Reconstruction Characteristics of the
THGCSM Beam
In this section, we focus on the Self-reconstruction behavior
of the THGCSM beam when the THGCSM beam is partially
blocked by a sector-shaped opaque obstacle (SSOO) in the
source plane. Figure 7 shows the illustration of a THGCSM
beam self-healing process. A beam in the input plane (z = 0)
is disturbed by a partially opaque obstacle in the input plane
and is propagating through an ABCD optical system
consisting of a lens and the free space behind the lens.

Figure 8 shows the changes of the density plot of the
normalized spectral density of a focused THGCSM beam
obstructed by a SSOO for different values of the twist factor
at several propagation distances. From the first row of the

Figure 8, one can see that with the increase of the
propagation distance z, due to the effect of the correlation
function, the beam splits into four beamlets as expected in
[22]. The second and third row of the Figure 8 show the effect of
the twist phase on the normalized spectral density. By
comparing the condition μ0 = 0.2 m−1 and the condition μ0 =
−0.2 m−1, we can find that the twist phase would induce the
rotation of the beam on propagation: the distribution of the
spectral density rotates clockwise when μ0 > 0, the distribution
of the spectral density rotates anti-clockwise when μ0 < 0. This
phenomenon is consistent with former results [37, 38].
Therefore, the twist phase actually still causes the beam to
rotate during propagation, but it is not noticeable when the
beam is intact (Figures 1, 2).

Moreover, Figure 9 shows the Self-reconstruction
characteristics of the normalized spectral density and the
modulus of the SDOC (|ηρ,−ρ)|) when the beam is obstructed
by a SSOO for different values of the center angle α in the focal
plane. To assess the influences of the twist parameter on the self-

FIGURE 9 | Density plot of the normalized spectral density and the modulus of the SDOC (|η(ρ,−ρ)|) of a focused THGCSM beam withm = 1, n = 1 obstructed by a
SSOO for different values of twist factor μ0 and center angle α in the focal plane.
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reconstruction capability quantitatively, a parameter named the

degree of self-reconstruction DP

(i.e., Dp �
[∫∫ 〈Iwt(ρ)〉〈Iob(ρ)〉d2ρ]2

∫∫ 〈Iwt(ρ)2〉d2ρ∫∫ 〈Iob(ρ)2〉d2ρ
, with Iwt and Iob stand for

the beam intensities without and with obstruction, respectively) is
used to characterize it [41]. It is interesting to find that even if the
beam has been obstructed by a SSOO, one still can determine the
information of the correlation function of an obstructed THGCSM
from its SDOC distribution in the focal plane. In addition, with the
increase of the center angle, the self-reconstruction capability also
decreased (see the evolution of the quantity DP in the left upper
corner of the figure). Our results can find application in
information transmission and recovery.

CONCLUSION

In summary, we have introduced a new class of partially coherent
twisted beam, named twisted Hermite-Gaussian correlated Schell-
model (THGCSM) beam, and investigated its propagation
properties through an ABCD optical system. The problem of
when a twist phase can be imposed on Schell-model source
fields with rectangular symmetries was solved. Based on the
derived assessment condition, the condition that the THGCSM
beamwill be a bona fide one, also has been explored. The analytical
expression for the CSD function of the THGCSM propagation
through an ABCD optical system has been derived with the help of
the generalized Collins integral formula. Based on the derived
formula we have examined the evolution properties of the
THGCSM beam. Our simulation results indicate that the
evolution properties of the beam are closely related to the twist
phase, e.g., with an increasing twist phase, the self-splitting
properties of the beam gradually weaken on propagation.
Further, the evolution of the SDOC also has been studied.
Apart from inducing the rotation of the SDOC on propagation,

the twist phase can greatly enhance the ability of the SDOC to
maintain its profile on propagation, even in the focal plane. This
provides a way to improve the reliability of the correlation function.
Moreover, the self-reconstruction characteristics of the THGCSM
beam have been explored in detail, and one can find that even if the
beam has been obstructed by an opaque obstacle, one still can
determine the information relating to the correlation function of an
obstructed THGCSM from its SDOC distribution in the focal
plane. Our results are anticipated to find applications in optical
communications and information recovery.
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