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Intercalated transition metal dichalcogenides have been widely used to study the magnetic
and magnetoelectric transport properties in a strong anisotropic and spin–orbit coupling
environments. In this study, ferromagnetic FeTa3S6 (also known as Fe1/3TaS2) single
crystals were grown by using the chemical vapor transport method, and its magnetic and
magnetoelectric transport properties were measured. The results show that FeTa3S6 has
ferromagnetic ordered below 37K, with sharp switching of magnetization, butterfly-shaped
double-peak magnetoresistance and anomalous Hall effect, and the magnetization and
resistance have strong anisotropy. When a magnetic field is oriented parallel to the c-axis,
the magnetoresistance exceeds 10% at a temperature of 10K, and negative
magnetoresistance is generated when the magnetic field is larger than the switching
field. When the direction of the magnetic field of 9T rotates from out-of-plane to in-plane,
the anisotropic magnetoresistance exceeds 40%, and the angle-dependent Hall
resistance presents a novel trend, which may be due to the existence of a topological
Hall effect or other magnetic structures in the FeTa3S6 thin film. When the magnetic field of
9T rotates in the ab-plane of the sample, the in-plane anisotropic magnetoresistance
conforms to the form of sin2φ. The experimental results of this study provide important
information for the study of magnetic and magnetoelectric transport properties of
intercalated transition metal dichalcogenides.
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INTRODUCTION

In recent decades, transition metal dichalcogenides (TMDs) have attracted research interest due to
their unique properties and potential applications in a broad range of areas [1–7]. TMDs are a class of
layered materials whose crystal structures can be classified as, depending on the local coordination of
chalcogen atoms around the central transition metal, 1H (trigonal prismatic), 1T (octahedral), 1T’
(distorted octahedral), 2H (hexagonal), 3R (rhombohedral), and Td (orthorhombic) phases, and
most of them are two-dimensional (2D) van der Waal materials [8–11]. The intercalation or doping
of atoms or molecules can cause significant changes in the physical properties of TMDs [12–22]. For
example, Cu or Pd intercalation induces superconductivity in 1T-TiSe2 [18, 19], and 3d transition
metal intercalation leads to different kinds of long-range magnetic order in TMDs (such as TiS2)
[20]; among the compounds with Cr-intercalated NbS2, Cr1/3NbS2 is a chiral helimagnet, which
confirms the strong coupling between neighboring layers [21, 22].
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FexTaS2 is a transition metal dichalcogenide of magnetic
element intercalation 2H-TaS2, which exhibits abundant
magnetic properties [23–34]. It is in the spin glass state for
x < 0.2, ferromagnetic for 0.2 ≤ x ≤ 0.4, and antiferromagnetic
for x > 0.4 [23, 24]. In the ferromagnetic state, Curie temperature
changes irregularly with the change in Fe concentration x. When
x is equal to 1/4 or 1/3, FexTaS2 forms commensurate 2 × 2 or
√3 × √3 superlattices, respectively [25, 26]. Curie temperature
reaches the maximum 160K for x = 1/4 [23, 27]. The quenched
crystal has a giant magnetic coercivity at a temperature of 2K [28].
Very large magnetoresistance (≈140%) is discovered in single
crystal Fe0.297TaS2, attributed to the Fe concentration departure
from 1/4 or 1/3, which caused misalignment of magnetic
moments [27]. Recently, Dzyaloshinskii–Moriya interaction
(DMI) confirmed in topological structures such as magnetic
skyrmions was also confirmed in Fe0.28TaS2 nanoplates; this
shows a large topological Hall effect, which confirms the DMI
in a transition metal dichalcogenide by dual intercalation
[29–32]. In addition, the ferromagnet FexTaS2 also exhibits
many peculiar magnetic properties, such as sharp switching of
magnetization [26], strong magnetocrystalline anisotropy [33],
butterfly-shaped double-peak magnetoresistance [27],
anomalous Hall effect [34], and anisotropic magnetoresistance
effect [33].

The anisotropic magnetoresistance effect is one of the most
basic properties of magnetoelectric transport; the resistivity
changes with the relative angle between the magnetization
direction and the current direction [35, 36]. In ferromagnets,
the anisotropic magnetoresistance effect is caused by the
spin–orbit interaction, which induces the mixing of spin-up
and spin-down states. This mixing depends on the
magnetization direction and gives rise to a magnetization
direction-dependent scattering rate [37]. Although some
physical properties of FexTaS2 have been studied to a certain
extent, detailed studies on the magnetic properties and
magnetoelectric transport properties of FeTa3S6 are still
relatively lacking. There is no report about the anisotropic
magnetoresistance effect of FeTa3S6 by measuring the angle-
dependent magnetoresistance. Here, we successfully grew
FeTa3S6 single crystals, studied their magnetic properties and
magnetoelectric transport properties, and further measured their
angle-dependent magnetoresistance and Hall resistance. These
results show that FeTa3S6 has rich potential applications in the
field of magnetic properties and spintronics, which is worthy of
further theoretical and experimental research.

EXPERIMENTAL SECTION

High-quality FeTa3S6 single crystals were prepared by using the
chemical vapor transport (CVT) method. High-quality pure Fe
(102.1 mg, 99.9%), Ta (667.3 mg, 99.9%), and S (235.0 mg, 99.5%)
were mixed (molar ratio of 1.5:3:6) and then sealed under vacuum
in a quartz tube with the addition of I2 (200 mg, 99.99%) as the
transport agent. Then the quartz tube was placed horizontally in a
two-temperature zone tube furnace, and the raw materials
were placed in the high-temperature zone. In 10 h, the

temperature in the high-temperature zone increased to
1273K, and the temperature in the low-temperature zone
increased to 1173K. After 7 days, FeTa3S6 single crystals
were grown in the low-temperature zone [38]. The crystals
were cleaned by ultrasonication in supersaturated aqueous
solution of KI, deionized water, and alcohol, and finally, the
single crystals are a regular polygon with a size of
millimeters [39].

The structure of FeTa3S6 single crystals was characterized by
using an X-ray diffractometer (XRD, Advance D8). The elemental
composition of the FeTa3S6 crystals was confirmed by using an
energy-dispersive spectrometer (EDS) of a scanning electron
microscope (SEM, TESCAN MIRA 3). Magnetization
measurements of the bulk FeTa3S6 sample and magnetoelectric
transport properties of the device were performed using an
integrated physical property measurement system (PPMS,
EvercoolⅡ-9T, Quantum Design). The six-terminal Hall
electrode is prepared on a silicon wafer by photolithography
and thermal evaporation. The FeTa3S6 thin film was mechanically
exfoliated by a scotch tape from a single bulk crystal FeTa3S6, and
then we used polydimethylsiloxane to transfer to the electrode
through a 2Dmaterial alignment transfer platform. The thickness
of the thin film was measured by using an atomic force
microscope (AFM) [40].

RESULTS AND DISCUSSION

Figure 1shows the characterization and magnetization
measurement results of FeTa3S6 single crystals. Figure 1A
demonstrates a sharp diffraction peak in the (00l)
direction in the XRD pattern (JCPDS No. 22-0360), the
result shows that the sample has excellent crystallinity, the
inset is an optical image of FeTa3S6 single crystal, and it is a
regular polygonal flake with metallic luster. Figure 1B
presents the EDS pattern of the sample, and the actual
element ratio of Fe:Ta:S is 1:3:6 (FeTa3S6). Figure 1C and
Figure 1D exhibit the temperature dependence of the
magnetization measured at an applied magnetic field of
0.1T oriented parallel to the c-axis and along the ab-plane
with both zero-field cooling (ZFC) and field cooling (FC),
respectively. The huge difference in magnetization measured
in the two directions is due to the strong magnetocrystalline
anisotropy of FeTa3S6 (the c-axis is the magnetic easy axis)
[25]. The inset in Figure 1C shows the dM/dT curve of ZFC,
and the Curie temperature of FeTa3S6 is confirmed to be 37K
through the minimum point in this figure, which is consistent
with previous research reports [22, 41]. Figure 1E and
Figure 1F display the field-dependent magnetization
(M-H) at different temperatures with the magnetic field
perpendicular and parallel to the ab-plane, respectively.
When the temperature is 10 K, the magnetic field is along
the c-axis, the magnetization of FeTa3S6 reaches saturation at
about 1T magnetic field, and its large coercivity may come
from its huge uniaxial anisotropy [42, 43]. While the
magnetic field is along the ab-plane, the magnetization of
FeTa3S6 cannot reach saturation at 5T magnetic field, and the
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appearing of a weak magnetic hysteresis loop may be due to
the fact that the ab-plane of the sample is not completely
parallel to the magnetic field [36].

Figure 2 exhibits the magnetoelectric transport measurement
results of the FeTa3S6 device. Figure 2A is the AFMmeasurement
result of the thickness of a FeTa3S6 thin film on the electronic
device, showing that the thickness is about 180 nm, and the inset
is the optical image of the device. Figure 2B shows the
temperature dependence of resistance under zero field and
magnetic field of 5T. Resistance decreases with decreasing
temperature, showing metallic behavior, and the resistance of
the ferromagnetic state drops rapidly near the Curie temperature
due to the loss of spin disorder scattering [36]; the inset is a
schematic diagram of the device measurement configuration.
Magnetoresistance Rxx is a crucial measurement for inferring
information about the interaction between itinerant charge
carriers and magnetic degrees of freedom in magnetic
materials [35], defined as

MR � ΔRxx

Rxx(H � 0) �
Rxx(H) − Rxx(H � 0)

Rxx(H � 0) , (1)

where Rxx(H) is the resistance value when the magnetic field
is H. Figure 2C displays the magnetoresistance of the FeTa3S6
device measured at the selected temperature by applying a
magnetic field along the c-axis. Figure 2D shows the
magnetoresistance at 10 K, and the magnetoresistance can

reach more than 10%. When the temperature is below the
Curie temperature, and the magnetic field H increases from
0T to 3T, the magnetoresistance first increases steadily and
reaches the maximum value at the switching field, then
decreases within a very narrow magnetic field interval, and
then almost linearly decreases until the magnetic field is 3T. If
the measuring magnetic field is increased, the magnetoresistance
will continue to decrease. The sudden change of
magnetoresistance at the switching field can be attributed to
the domain reorientation parallel to the direction of the field [25],
and the domain nucleation and domain wall propagation are the
cause for the formation of the butterfly-shaped double-peak
magnetoresistance [44]. When the magnetic field is 3T, the
magnetoresistance is negative, and the negative
magnetoresistance reaches a peak near the Curie temperature,
which is mainly due to suppression of spin disorder resistivity
with the magnetic field [45]. Figure 2E presents the Hall
resistance of the FeTa3S6 device measured at the selected
temperature when the magnetic field is along the c-axis (for
clarify, the data are equally spaced in the vertical direction).
Obvious hysteresis loops caused by the anomalous Hall effect can
be observed below the Curie temperature, which originates from
the spontaneous ferromagnetic order caused by the intercalation
of Fe atoms [28]. When the magnetic field is larger than the
switching field or the temperature is higher than the Curie
temperature, only the nearly linear Hall resistance contributed

FIGURE 1 | (A) XRD pattern of a FeTa3S6 single crystal, and the inset is an optical image of the FeTa3S6 single crystal; the scale is 1 mm. (B) EDS pattern of the
FeTa3S6 single crystal, and the inset shows the actual atomic ratio. (C) Temperature-dependent magnetization measured of zero-field cooling (black) and field cooling
(red) with H‖c, and the inset shows the dM/dT curve of zero-field cooling with H‖c. (D) Temperature dependence of the magnetization measured of zero-field cooling
(black) and field cooling (red) with H‖ab. (E) Field-dependent magnetization (M-H) at different temperatures with H‖c. (F) Field-dependent magnetization (M-H) at
different temperatures with H‖ab.
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FIGURE 2 | (A) Profile line information extracted from AFM image on the edge of the FeTa3S6 thin film, and the inset shows the optical image of the FeTa3S6 device.
(B) Temperature-dependent resistance with zero field and 5T magnetic field, and the inset shows a schematic diagram of the device measurement configuration. (C)
Magnetoresistance measured at selected temperature with applied magnetic field H‖c. (D)Magnetoresistance measured at T = 10K with applied magnetic field H‖c. (E)
Hall resistance measured at selected temperature with applied magnetic field H‖c. (F) Determine the switching field of the FeTa3S6 sample by Rxy-H (black), MR
(red), and M-H (green).

FIGURE 3 |Measured angle-dependent magnetoresistance with the magnetic field rotates in the ac-plane (A,B) and bc-plane (C,D) at 10, 20, 40, 60K. The insets
in (B,D) show the schematic of the corresponding measurement configuration. The measured angle-dependent Hall resistance with the magnetic field rotates in the ac-
plane (E) and bc-plane (F).
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by the normal Hall effect is observed. These results indicate that
the spin–orbit coupling of FeTa3S6 is very strong [35]. As shown
in Figure 2F, the observed switching field is very close in the
magnetization measurements of FeTa3S6 and the magnetoelectric
transport property measurements of the device. When the
magnetic field changes, the spin direction of FeTa3S6 switches
rapidly at the switching field, indicating that the crystal may be a
nearly single-domain ferromagnet [25].

Figures 3A–D present the measurement results of the angle-
dependent magnetoresistance of FeTa3S6 when the magnetic field
H is gradually rotated in the ac and bc planes, that is, from the
c-axis to the ab-plane. The current I is inputted along the a-axis,
the angle between the external magnetic field and the normal of
the sample plane is defined as θ, and the interval of measured
angle is 2°. The angle-dependent magnetoresistance at different
temperatures is measured at T = 9T, where
ΔRxx � Rxx(θ) − Rxx(θ � 0). The magnetoresistance shows a
changing trend with a period of 180°. When the magnetic field
is rotated in the ac and bc planes, the magnitude of Rxx is almost
the same at the same angle, and the difference may be caused by a
slight misalignment of the angle. It can be seen in this figure that
Rxx reaches its maximum at θ = 90° and 270°, and Rxx reaches its
minimum at θ = 0°, 180°, and 360°, which means that the
magnetoresistance is maximum when the magnetic field is
parallel to ab-plane, and the magnetoresistance is minimum
when the magnetic field is perpendicular to ab-plane, which is
consistent with the property of conventional metal ferromagnets
[46]. Experimental data suggest an inversion symmetry for this
sample; AMR has a two-fold symmetry and is dominated by M
and c-axis when field rotates in ac and bc planes [47]. At low
temperatures (approximately below the Curie temperature),
the curve has a sharp peak at θ = 90° and 270°, and it is caused
by the sudden flip of the magnetization when the magnetic
field is parallel to the sample [48], which causes the curve not
to conform to the form of sin2θ. It shows that the
magnetization of the sample is not strictly saturated under
the magnetic field of 9T, except for magnetic field oriented
parallel to the hard axis and the easy axis [49]. In addition, the

largest magnetoresistance exceeding 40% was observed at T =
40 K (near the Curie temperature). As the temperature
increases, the curve peak disappears and turns into a
smooth curve. Figures 3E,F show the measured angle-
dependent Hall resistance of FeTa3S6 by the same
measurement method. The angle-dependent Hall resistance
at different temperatures is measured at T = 9T, where
ΔRxy � Rxy(θ) − Rxy(θ � 0). The Hall resistance shows a
non-periodic curve that is symmetric along the axis of θ =
180°. The maximum and minimum values of Hall resistance
are both around θ = 90° and 270°. The discontinuities at low
temperatures are caused by the sudden flip of the
magnetization across the parallel positions (θ = 90° and
270°) [48]. We found that the peak at the maximum value
at the parallel position is very close to the peak of the
magnetoresistance measurement; the reason may be due to
the deviation of the angle between the two terminals of the Hall
bar of the device. Due to the huge perpendicular magnetic
anisotropy of FeTa3S6, the influence of longitudinal
magnetoresistance in the measurement of Hall resistance
has not been completely eliminated by data processing. The
novel change trend of the angle-dependent Hall resistance may
be due to the presence of other Hall effects (such as topological
Hall effect) in addition to the normal Hall effect and the
anomalous Hall effect [28, 48]. It is also possible that there
are field-induced magnetic structures in the FeTa3S6 thin film
[50], which requires further study.

Figure 4A shows the in-plane anisotropic magnetoresistance
of the FeTa3S6 device measured at different temperatures with the
fixed 9T magnetic field rotates in the ab-plane, where current I is
applied along the a-axis, φ is defined as the angle between the
direction of the b-axis and the applied magnetic field in the ab-
plane, and the interval of measured angle is 2°, where
ΔRxx � Rxx(φ) − Rxx(φ � 0). The observed AMR is dominated
by magnetization when field is in the ab-plane. Thus, the AMR
follows the standard cosine-square law [51]. Due to the defined
angle between H and a-axis, the magnetoresistance conforms to
the form of sin2φ. The maximum resistance is at φ = 90° and 270°,

FIGURE 4 | (A)Measured angle-dependent magnetoresistance at 10, 20, and 40 K with the fixed 9T magnetic field rotates in the ab-plane, and the inset shows a
schematic of the measurement configuration. (B) Fitting results of in-plane anisotropic magnetoresistance.
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and the minimum resistance is at φ = 0°, 180°, and 360°, which
means that the magnetoresistance is highest when the magnetic
field is parallel to the current, and the magnetoresistance is the
lowest when the magnetic field is perpendicular to the current. As
shown in the figure, FeTa3S6 in-plane anisotropy
magnetoresistance is very small, indicating that the in-plane
anisotropy of this uniaxial ferromagnet is very weak. The
anisotropic magnetoresistance effect comes from the interplay
of the magnetic order and spin–orbit interactions [52]. The fitting
formula of anisotropic magnetoresistance can described as
follows:

Rxx � R⊥ + (R‖ − R⊥)sin
2 φ, (2)

Where R⊥ and R‖ represent the magnetoresistance of the in-
plane magnetic field perpendicular and parallel to the current,
respectively. Figure 4B shows the fitting results of the in-plane
magnetoresistance angle curve (for clarify, the data are equally
spaced in the vertical direction), the hollow point curve is the
experimental data, and the solid point curve is the fitting result. It
can be found that the measured curve is relatively consistent with
the fitting curve, and part of the slight deviation may be because
the sample placement is not completely parallel to the magnetic
field; therefore, the data are to be mixed with out-of-plane
magnetoresistance components [53].

CONCLUSION

We successfully prepared ferromagnet FeTa3S6 single crystals.
XRD, SEM and Curie temperature measurements prove their
elemental composition. The magnetic and the magnetoelectric
transport properties of the devices were measured. The results
show that FeTa3S6 exhibited sharp switching of magnetization,
butterfly-shaped double-peak magnetoresistance, anomalous
Hall effect, and anisotropic magnetoresistance effects at low
temperatures. The magnetoresistance exceeds 10% at T = 10 K,
and the maximum anisotropic magnetoresistance exceeds 40%
when the magnetic field of 9T rotates from out-of-plane to in-

plane. The novel change in trend of the angle-dependent Hall
resistance may be attributed to the existence of the topological
Hall effect or the existence of other magnetic structures. The
specific reasons need to be further studied. In addition, in-
plane anisotropic magnetoresistance in the form of sin2φ was
measured. In the future, we will explore the magnetoelectric
transport properties of limit thickness FeTa3S6 films by
exfoliating thinner samples, and further study the
magnetoresistance and Hall effect of FeTa3S6 to provide
potential application opportunities for FeTa3S6 in promising
fields such as magnetoelectricity and spintronics.
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