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This paper proposes a new memristor model and uses pinched hysteresis loops (PHL) to
prove the memristor characteristics of the model. Then, a new 6D fractional-order
memristive Hopfield neural network (6D-FMHNN) is presented by using this memristor
to simulate the induced current, and the bifurcation characteristics and coexistence
attractor characteristics of fractional memristor Hopfield neural network is studied.
Because this 6D-FMHNN has chaotic characteristics, we also use this 6D-FMHNN to
generate a random number and apply it to the field of image encryption. We make a series
of analysis on the randomness of random numbers and the security of image encryption,
and prove that the encryption algorithm using this 6D-FMHNN is safe and sensitive to
the key.
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1 INTRODUCTION

The artificial neural network (ANN) system is composed of many neurons with adjustable
connection weights, and has distributed information storage, good self-organization and self-
learning ability, and large-scale parallel processing. ANN realizes intelligence by imitating
various working and learning modes of the human brain and biological system, so it has a wide
application prospect in many fields such as signal processing and pattern recognition, intelligent
control, fault diagnosis, and information optimization [1–5].

In recent decades, more and more attention has been paid to the study of chaotic systems, and
various chaotic systems with complex dynamics have been proposed [6–11]. As a new science, chaos
has been widely used in secure communication [12–14], electronic circuit [15–18], random number
generator [19–23], and image encryption [24–34]. Through the study of the brain, scientists found that
there are complex chaotic phenomena in the human brain [35], which explain the irregular movement in
the human brain. Inspired by this, Aihara et al. proposed a chaotic neural network model based on
previous derivation and animal experiments in 1990. The chaotic neural network is a highly nonlinear
dynamic system, so the neural network is closely related to chaos. Therefore, the chaotic neural network is
considered to be one of the intelligent information processing systems that can realize its real-world
computing. It has a good application prospect in the fields of algorithmoptimization, information storage,
associative memory, pattern recognition, and so on [36–41].

In 1971, Professor Leon O. Chua proposed the existence of memristor [42]. It wasn’t until 2008
that HP LABS implemented the first true memristor [43]. With the physical realization of memristor,
the research of memristor has attracted extensive attention again [44–48]. Adding memristor in the
construction of nonlinear systemmakes the chaotic system based on memristor have richer dynamic
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behavior, and the generated chaotic signal has better pseudo-
random characteristics, whichmakes it have higher research value in
the fields of image encryption, spread spectrum communication, and
secure communication [49–53]. Because memristor has memory
function and its resistance value is accurate and continuously
adjustable, which is similar to the function of biological neural
synapse, the neural network circuit based on memristor is closer to
the brain in function and can fully realize human consciousness in
theory, making memristive neural network (MNN) become a new
research hotspot [54–59]. In [55], the authors studied the dynamic
characteristics of a small neural network with three neurons under
electromagnetic radiation. The intensity of electromagnetic
radiation will change the number of equilibrium points in the
neural network, resulting in the diversity of attractor trajectories. In
[58], a full circuit of MNN based on weighted and simultaneous
disturbance training was proposed. A synaptic circuit is designed
using a pair of memristors, and then a complete neural network
circuit is designed.

Since the value of the next state of fractional-order chaotic system
is related not only to the current state but also to all previous states, its
dynamic characteristics are more complex than the integer order
chaotic system. In recent years, various fractional-order chaotic
systems have been widely proposed [17, 60–63]. With the
deepening of research, researchers add fractional-order to the
neural network model and find that the results are more similar
to the activities of human brain neurons, which extends the
application field of fractional-order neural network system.
However, for the study of MNN, most of the results are in the
integer order range [55–59, 64]. In [65], a fractional-ordermemristive
Hindmarsh-Rose (H-R) model was proposed. Without small
parameter constraints, the fractional-order memristive H-R model
had periodic and chaotic bursts, which showed that small parameters
make the membrane potential activity simpler. In [66], a simplified
fractional-order neural network with discontinuous conductivity
function based on memristor was proposed. It was essentially a
switching system with irregular switching law, which was composed
of eight fractional-order neural network subsystems.

In this paper, a new memristor model is proposed and applied to
the fractional-order Hopfield neural network (FHNN) to study its
dynamic characteristics such as bifurcation and coexistence. In
addition, the newly proposed fractional memristor Hopfield neural
network (FMHNN) is also applied in the field of image encryption.

2 A NEW MEMRISTOR MODEL

2.1 Mathematical model
In studying the relationship between four circuit variables which are
voltage, current, magnetic flux, and electric charge, we know that
resistance represents the relationship between voltage and current,
capacitance represents the relationship between charge and voltage,
and inductance represents the relationship betweenmagnetic flux and
current. According to the duality property, there should also be a
circuit element that represents the relationship between charge and
magneticflux. In 1971, the concept of amemristorwas proposed. This
component establishes a connection between charge and magnetic
flux and the relationship is described in the form of Eq. 1 [42].

W � dq

dφ
(1)

Since then, many scholars have devoted themselves to the
research of memristor. The concept of memristor has been
extended to any device with two ends representing pinched
hysteresis loops (PHL). For the first-order general memristor,
its mathematical model can be described by Eq. 2 [56]:

i � G x( )v
dx

dt
� g x, v( )

⎧⎪⎨⎪⎩ (2)

where vm and im represent the input voltage and input current of the
memristor, respectively. G is a function of x, known as
memductance, which is an internal state variable. g (x, vm) is a
Lipschitz function. According toEq. 2, we take a − b|x| − c sin(x) as
memductance to construct a new memristor model Eq. 3:

i � a − b x| | − c sin x( )( )v
dx

dt
� v

⎧⎪⎨⎪⎩ (3)

where a, b,and c are memristor parameters. In this paper, a, b, and
c are 0.3, −0.18, and 0.2 respectively.

2.2 Pinched hysteresis loops
It was indicated that if an electrical element is a memristor, it
must satisfy two conditions in literature [67]:

(1) When driven by a periodic voltage or current source, the
device must exhibit PHL in the voltage-current plane and the
PHL always passes through the origin.

FIGURE 1 | PHL varying with the frequency of the excitation voltage (A).
PHL with excitation voltage amplitude (B). Voltage and current sequence
diagram (C).
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(2) As the frequency of the periodic driving signal increases, PHL
should show shrinkage, that is, the area of PHL should
constantly decrease. PHL should shrink to single-function
as the frequency of the drive signal approaches infinity.

Based on Eq. 3, we draw the voltage-current relationship
image of the memristor model (Figure 1A, Figure 1B) and
the time sequence diagram of voltage and current Figure 1C
by MATLAB R2019 simulation software. Figure 1A shows
that when the excitation voltage is v(t) � sin(Ft) and the
initial value is x(0) � 0, the memristor exhibits PHL, and the
area of PHL shrinks continuously with the increase of
frequency f, which meets the two conditions of the
memristor. Figure 1B shows that when the excitation
voltage is v(t) � A sin(t) and the initial value is x(0) � 0,
the PHL area of the memristor increases with the increase of
the amplitude A, which is also consistent with the
characteristics of the memristor.

3 THREE MEMRISTOR-COUPLED FHNN
MODEL

3.1 Integer order mathematical model
Hopfield neural network (HNN) is particularly suitable for
simulating various complex dynamical behaviors in the brain,
especially chaotic behaviors, due to its significant nonlinearity
and flexible mathematical expressions. Its mathematical model
can be described by Eq. 4 [68, 69]:

Ci
dxi

dt
� −xi

Ri
+∑n

j�1
wij tanh xj( ) + Iiext (4)

where Ci, Ri, xi are membrane capacitance, membrane resistance
and membrane potential of neuron i respectively. wij is the
synaptic weight between neuron i and the neuron j and tanh
(xi) is the neuron activation function. Iiext is an electrical current
generated by an external stimulus. According to the neural
network model described by Eq. 4, HNN of three neurons can
be concretized by Eq. 5

C1
dx1

dt
� −x1

R1
+∑3

j�1
w1j tanh xj( ) + I1

C2
dx2

dt
� −x2

R2
+∑3

j�1
w2j tanh xj( ) + I2

C3
dx3

dt
� −x3

R3
+∑3

j�1
w3j tanh xj( ) + I3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)

In this paper, the coefficients C1, C2, C3, R1, R2, R3 are set as 1,
respectively, and the weight wij can be expressed by the weight
matrix Eq. 6. It should be noted that the weight used by HNN in
this paper is different from that in literature [69].

W �
3.8 −1.9 0.7
2.8 0 1
−5.6 1.9 0

⎛⎜⎝ ⎞⎟⎠ (6)

Because HNN is multiple neurons connected to each other,
electromagnetic induction current will appear between HNN
neurons due to the existence of membrane potential difference
between neurons. In order to establish a mathematical model and
study the influence of induced current between neurons on the
dynamic behavior of HNN, this paper uses a magnetically
controlled memristor to connect multiple neurons and uses
the current flowing through the memristor to simulate the
induced current between neurons [69]. Based on the above
analysis, we can establish an improved HNN model.

dx1

dt
� −x1 + 3.8 tanh x1( ) − 1.9 tanh x2( )

+0.7 tanh x3( ) + h1 − h3

dx2

dt
� −x2 + 2.8 tanh x1( ) + tanh x3( )

+h2 − h1

dx3

dt
� −x3 − 5.6 tanh x1( ) + 1.9 tanh x2( )

+h3 − h2

dφ1

dt
� x1 − x2 − φ1

dφ2

dt
� x2 − x3 − φ2

dφ3

dt
� x3 − x1 − φ3

h1 � kG φ1( ) x1 − x2( )
h2 � kG φ2( ) x2 − x3( )
h3 � kG φ3( ) x3 − x1( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

FIGURE 2 | Schematic diagram of the connection topology of a
trimemristor-coupled HNN model.
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The mathematical model of Eq. 7 describes the situation in which
induced current exists between three neurons inHNNmodel, and the
bidirectional induced current is generated by simulating
electromagnetic induction by interconnecting neurons with three
memristors. With the addition of three memristors, a 6Dmemristive
Hopfield neural network (6D-MHNN)model isfinally established. In
order to intuitively understand the 6D-MHNNmodel given by Eq. 7,
Figure 2 presents the general schematic diagram of the extension
connection between neuron and memristor in this model.

3.2 Fractional mathematical model
The concept of fractional calculus has been put forward for a long time
and has become a powerful tool to study fractional differential
equations and fractal functions. Since fractional order is more
accurate than integer order in simulating real dynamic system, this
paper will construct a fractional Hopfield neural network based onEq.
7. At present, there are many definitions of fractional calculus, but this
paper adopts Caputo’s definition of fractional derivative [70, 71].

Definition 1. Caputo fractional derivative is defined as follows:

Dq
t0 � Jm−q

t0 Dm
t0
x t( ) �

1
Γ m − q( ) ∫

t

t0

t − τ( )m−q−1x m( ) τ( )dτ

dmx t( )
dtm

, q � m

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(8)

where Γ(•) represents Gamma function. According to the definition
of Caputo fractional derivative, the mathematical model Eq. 9 of
fractional memristor Hopfield neural network (FMHNN) can be
obtained by setting the order of Eq. 7 derivative as α.

dαx1

dt
� −x1 + 3.8 tanh x1( ) − 1.9 tanh x2( )

+0.7 tanh x3( ) + h1 − h3

dαx2

dt
� −x2 + 2.8 tanh x1( ) + tanh x3( )

+h2 − h1

dαx3

dt
� −x3 − 5.6 tanh x1( ) + 1.9 tanh x2( )

+h3 − h2

dαφ1

dt
� x1 − x2 − φ1

dαφ2

dt
� x2 − x3 − φ2

dαφ3

dt
� x3 − x1 − φ3

h1 � kG φ1( ) x1 − x2( )
h2 � kG φ2( ) x2 − x3( )
h3 � kG φ3( ) x3 − x1( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where α is the order of the derivative, G(φ) � a − b|φ| − c sin(φ).

3.3 System stability analysis
It is necessary to analyze the stability of equilibrium point of
HNN dynamic system, so we make the left side of Eq. 9 all equal
to 0, thus obtaining Eq. 10, and then solve the roots of the
equations to obtain the equilibrium point.

0 � −x1 + 3.8 tanh x1( ) − 1.9 tanh x2( ) + 0.7 tanh x3( )
+kG φ1( ) x1 − x2( ) − kG φ3( ) x3 − x1( ) . . . , . . . 1( )
0 � −x2 + 2.8 tanh x1( ) + tanh x3( )
+kG φ2( ) x2 − x3( ) − kG φ1( ) x1 − x2( ) . . . , . . . 2( )
0 � −x3 − 5.6 tanh x1( ) + 1.9 tanh x2( )
+kG φ3( ) x3 − x1( ) − kG φ2( ) x2 − x3( ) . . . , . . . 3( )
0 � x1 − x2 − φ1 . . . , . . . 4( )
0 � x2 − x3 − φ2 . . . , . . . 5( )
0 � x3 − x1 − φ3 . . . , . . . 6( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(10)

Observe Eq. 10. It is easy to find that Eq. 11 can be obtained by
adding equation (1), (2) and (3) in Eq. (10).

x2 � tanh x1( ) + 1.7 tanh x3( ) − x3 − x1

φ1 � x1 − x2

φ2 � x2 − x3

φ3 � x3 − x1

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (11)

By substituting Eq. 11 into Eq. 10, x2, φ1, φ2, φ3 can be
eliminated and a binary system of equations, Eq. 12, can be
obtained.

0 � −x1 + 3.8 tanh x1( ) − 1.9 tanh a( ) + 0.7*tanh x3( )
+kG x1 − a( ) x1 − a( ) − kG x3 − x1( ) x3 − x1( ) . . . , . . .H1
0 � −x3 − 5.6 tanh x1( ) + 1.9 tanh a( )
−kG a − x3( ) a − x3( ) + kG x3 − x1( ) x3 − x1( ) . . . , . . .H2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(12)

Because it is difficult to directly solve the root of Eq. 12, the
graphic method is adopted in this paper. MATLAB is used to
draw the trajectory diagram of the two equations (Figure 3A,
Figure 3B, Figure 3C), and then numerical analysis is used to
obtain the analytical solution of the equations.

The approximate range of x1, x3 can be easily obtained
from the figure, and a more accurate solution can be obtained
by using Fsolve function of MATLAB. After solving the root
[x1, x2, x3, x4, x5, x6] of Eq. 10, put each solution into the
Jacobi matrix of Eq. 9, and then obtain each eigenvalue from
the characteristic polynomial; the results are shown in
Table 1.

4 DYNAMICS ANALYSIS OF 6D-FMHNN

At present, related scholars usually use the phase diagram
method, Lyapunov exponent method, and bifurcation diagram
method to analyze the dynamics of chaotic system, etc. In
addition, the attractor basin can easily find the coexistence
attractor of the system. Therefore, this paper will use the
FDE12 algorithm in MATLAB to solve the fractional
differential equation, Eq. 9, and thus draw the bifurcating
diagram, phase diagram, and attraction basin.
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4.1 Dynamics of variable order
When the initial value of the system Eq. 9 is unified as [0.1, 0.1,
0.1, 0.1, 0.1, 0.1], bifurcation diagrams on the memristor coupling
strength k are drawn respectively with order α = 0.7, α = 0.8, α =
0.9, α = 1 displayed on Figure 4A, Figure 4B, Figure 4C, and
Figure 4D. It can be seen from the figure that when the order α is
0.7, no matter how k changes, the system will not appear as chaos.
When the order is 0.8–0.9, the value of the memristor intensity k
determines whether the system behaves periodic or chaotic.
When the order is 0.8, 0.07 ≤ k ≤ 0.1, the system is chaotic.
When the order is 0.9, 0.007 ≤ k ≤ 0.025, or 0.07 ≤ k ≤ 0.08, the
system is chaotic. When the order is one, k has to be a very small
number of values for the system to be chaotic.

In addition, this paper also studies the bifurcation diagram of
6D-FMHNN (Figure 4E) on order α when the memristor
coupling strength k is 0.02 and the initial value of the system

is [0.1, 0.1, 0.1, 0.1, 0.1, 0.1]. As can be seen from the observation in
the picture that with the increase of order, the system changes from
periodic one-limit cycle to periodic two-limit cycle and then to
periodic four limit cycle. Until α = 0.88, the system becomes
chaotic. However, as α continues to rise, the system appears as
inverse period-doubling and degenerates into a periodic four-limit
cycle. After degenerating into a period, it becomes chaotic again
after a = 0.93.

In conclusion, the order has a great influence on the dynamic
behavior of 6D-FMHNN. When α > 0.8, the chaos phenomenon
of the system is more significant.

4.2 Dynamics of fixed order
In this part, the order α of differentiation in Eq. 9 is fixed as 0.88.
First, set the initial value of the system as [0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
0.1], and explore the change of system bifurcation behavior when
the memristor coupling strength k changes (Figure 5A).
Secondly, k is fixed at 0.015 and the initial value of the system
was set as [x1(0), 0, 0, 0, 0, 0, 0], and the bifurcation diagram of
the initial value x1 of the system was drawn in Figure 5B.
Observation can be found from Figure 5A that, like the
general partial illustrations, with the rise of k, the system
transitions from the initial period-1 limit cycle to period-2

limit cycle and then to period-4 limit cycle. When k = 0.02,
the system starts to become chaotic. However, as k continues to
rise, the system gradually degenerates into a periodic limit cycle of
four times and bifurcates inversely when k = 0.08 and then enters
a chaos state. As can be seen from the observation in the picture
from Figure 5B that when the initial value of the system x1
changes between [ − 1, 0), the system is always a periodic four-
limit cycle; when x1 changes between (0, 1], the system presents
chaos. In general, the system is sensitive to initial values and
memristor coupling strength k.

4.3 A variety of coexisting attractors
Coexisting attractor means that different initial states of a system
correspond to two different attractors. When the order of the
system is determined to be 0.88 and the memristive coupling
strength k is −0.05, the initial values of the system are [ − 0.1, 0, 0,

FIGURE 3 | Trajectory diagram of H1 and H2 (A) when the memristor
coupling strength k is −0.08; (B) when the memristor coupling strength k is 0;
(C) when the memristor coupling strength k is 0.08.

TABLE 1 | The results of equilibrium point analysis when k is taken as −0.08, 0 and 0.08 respectively

Equilibrium point The eigenvalue The stability

P1:(−0.552 0, −0.294 3, 1.980 8, −0.257 7, −2.275 2, 2.532 9) −1, −0.925 5, −1.004 3 ± 0.0 673i, 0.236 1 ± 1.2 995i Unstable node-focus
P2:(0,0,0,0,0,0) −1, −1, −1, 0.858 6, −0.101 3 ± 1.6 907i Unstable node-focus
P3:(0.460 0, 0.183 7, −1.828 0, 0.276 3, 2.011 8, −2.288 1) −1, −0.900 0 ± 0.1 067i, −0.995 3, 0.315 1 ± 1.3 617i Unstable node-focus

P1:( −0.485 6, −0.300 2, 1.970 3, −0.185 4, −2.270 5, 2.455 9) −1, −1, −1, −0.893 9, 0.460 9 ± 1.2 402i Unstable node-focus
P2:(0,0,0,0,0,0) −1, −1, −1, 0.915 2, −0.057 6 ± 1.6 858i Unstable node-focus
P3:(0.485 6, 0.300 2, −1.970 3, 0.185 4, 2.270 5, −2.455 9) −1, −1, −1, −0.893 9, 0.460 9 ± 1.2 402i Unstable node-focus

P1:( −2.056 1, −3.215 2, 6.003 5, 1.159 1, −9.218 7, 8.059 6) −1, −0.076 6, −0.811 6, −0.956 2, −0.987 9, −1.305 8 Stable saddle point
P2:( −1.165 6, −1.932 4, 3.973 9, 0.766 76, −5.906 3, 5.139 5) −1, −0.273 6, 0.459 3, −0.934 4, −1.073 2, −1.471 8 Stable saddle point
P3:( −0.407 3, −0.269 63, 1.919 1, −0.137 67, −2.188 7, 2.326 4) −1, −0.821 4, −1.021 3 ± 0.0 275i, 0.691 3 ± 1.2 287i Unstable node-focus
P4:(0,0,0,0,0,0) −1, −1, −1, 0.972 0, −0.014 0 ± 1.6 801i Unstable node-focus
P5:(0.476 37, 0.392 47, −2.072 5, 0.083 896, 2.465, −2.548 8) −1, −0.839 8, −1.001 5, −1.169 8, 0.675 1 ± 1.1 341i Unstable node-focus
P6:(1.463 2, 2.356 6, −4.621 2, −0.893 34, 6.977 8, −6.084 5) −1, 0.322 9, −0.711 3, −0.928 4, −1.202 7 ± 0.0 927i Unstable node-focus
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0, 0, 0, 0] and [0.1, 0, 0, 0, 0, 0, 0], respectively. At this time, the
system has two periodic coexistence phenomena (Figure 6A).
When the order of the system is determined to be 0.88 and the
memristive coupling strength k is 0.015, the initial values of the
system are [ − 0.1, −0.1, −0.1, −0.1, −0.1, −0.1] and [0.1, 0.1, 0.1,
0.1, 0.1, 0.1], respectively. At this time, the system shows the
coexistence of chaos and period (Figure 6B). When the order of
the system is 0.88 and the memristive coupling strength k is 0.02,

the initial values of the system are [ − 0.1, −0.1, −0.1, −0.1, −0.1,
−0.1, −0.1] and [0.1, 0.1, 0.1, 0.1, 0.1, 0.1], respectively. At this
time, two chaotic attractors coexist in the system (Figure 6C).
When the order of the system is determined to be 0.88 and the
memristive coupling strength k is 0.025, the initial values of the
system are [ − 0.1, −0.1, −0.1, −0.1, −0.1, −0.1] and [0.1, 0.1, 0.1,
0.1, 0.1, 0.1], respectively; two chaotic attractors coexist in the
system (Figure 6D). In addition, this paper also draws the
attraction basin corresponding to the initial state of [x1 (0), x2
(0), 0, 0, 0, 0] when the system order is determined to be 0.88 and
the memristor resistance coupling strength k is 0.02 Figure 6E

5 APPLICATION IN IMAGE ENCRYPTION

5.1 Random sequence generation
Suppose the size of the image to be encrypted is M × N, then we
need to generate a random sequence of length 3 ×M ×N, which is

FIGURE 4 | The bifurcation diagram of 6D-FMHNN with respect to
parameter k (A) when the differential order is 0.7; (B) when the differential
order is 0.8; (C) when the differential order is 0.9; (D) when the differential
order is 1 and the bifurcation diagram of 6D-FMHNN with respect to
order when the memristor coupling strength k is 0.02 (E).

FIGURE 5 |When the differential order α is 0.88, the bifurcation diagram
of parameter k (A) and the bifurcation diagram of initial value ×1 (0) (B).

FIGURE 6 | Coexisting attractors and attraction basin. (A) Coexistence
of two cycles with k = −0.05; (B) coexistence of cycle and chaos with k =
0.015; (C) coexistence of two chaos with k = 0.02; (D) coexistence of two
chaos with k = 0.025; (E) the attraction basin corresponding to initial
state [×1 (0); ×2 (0); 0; 0; 0; 0].
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respectively used in the forward diffusion and reverse diffusion of
the two diffusion algorithms and the scrambling algorithm.
Step 1: Let the input initial value of 6D-FMHNN system be [x1, x2,
x3, x4, x5, x6], and first iterate T wheel to eliminate the initial
disturbance of the system.
Step 2: After iterating round T to eliminate the initial disturbance of
the system, we conduct a slight disturbance of the initial value of
every B iteration to ensure the pseudo-randomness of the sequence.
Step 3: After iterating round C, of course, we need to guarantee
C × B × 6 ≥ 3 × M × N, and we get a random sequence
[X1,X2,X3,X4,X5,X6]T where Xi = [xi1, xi2, xi3, . . . , xij, . . . , ],
i = 1, 2, 3, 4, 5, 6, and j = 1, 2, 3, . . . , L. Considering the 3 ×M × N
is not necessarily divisible exactly by 6, so L≥ 3 × M × N

6 .
Step 4: We reduce [X1,X2,X3,X4,X5,X6]T to a one-dimensional
vector X, and then we take X(1 : 3 × M × N) so that we get the
random sequence we need.

5.2 Image encryption and decryption
process
5.2.1 Image encryption steps
The steps of image encryption can be divided into four steps.
Step 1: By iterating the 6D-FMHNN system, the sequence with 3
×M ×N length was denoted as X, and the dimension of the image
to be encrypted with M × N size was reduced to a one-
dimensional vector.
Step 2: Make two additive mode diffusions, so that the
information of each pixel point spreads to the whole image.
The diffusion algorithm is shown in Eq. 13:

Ci � mod Ci−1 + Si + Ai, 256( )
Ci � mod Ci+1 + Si + Ai, 256( ){ (13)

whereA is the image to be diffused, S is the random sequence with
length M × N, and C is the encrypted image; so the inverse
transformation of Eq. 13 is Eq. 14.

Ai � mod 256 × 2 + Ci − Ci−1 − Si, 256( )
Ai � mod 256 × 2 + Ci − Ci+1 − Si, 256( ){ (14)

In this paper, S = X (1: M × N) is taken for the first diffusion
and S = X (M × N + 1: M × N × 2) for the second diffusion.
Step 3: Shuffling pixel positions, in other words, exchanging
information between two pixels via Eq. 15 mapping.

swap A i( ), A j( )( )
j � S i( ){ (15)

which is a random sequence of numbers of lengthM ×N, and S(i)
∈ [1, M × N], for any n ≠ m, S(n) ≠ S(m). S can be generated by
normalizing X (1:M × N) and removing repeated elements in the
sequence and adding missing elements in [1,M × N] at the end of
the sequence.
Step3Perform two more multiply mode taking diffusion
operations [72], and the diffusion algorithm is shown in Eq. 16:

Ci � Ci−1 × Si × Ai

Ci � Ci+1 × Si × Ai
{ (16)

Therefore, the inverse transformation corresponding to Eq. 16 is
shown below as Eq. 17:

Ai � Ci ÷ Si ÷ Ci−1
Ai � Ci ÷ Si ÷ Ci+1

{ (17)

whereA is the image to be diffused, S is the random sequence with
length M × N, and C is the encrypted image. In this paper, S = X
(M × N + 1: M × N × 2) is taken for the first diffusion and S = X
(M × N × 2 + 1: M × N × 3) for the second diffusion.

5.2.2 Image decryption step
Since the decryption operation is the reverse operation of the
encryption operation, this article will not be detailed to
save space.
Step 1: iterate the 6-day FMHNN system to get the sequence with
length 3 ×M × N, denoted as X, and reduce the dimension of the
image to be decrypted with size M × N to a one-dimensional
vector.
Step 2: Carry out the inverse operation Eq. 17 of multiplication
for mold diffusion twice.
Step 3: Perform the same pixel scrambling Eq. 15 again.
Step 4: Perform the inverse operation Eq. 14 of two additive mode
diffusions.

5.3 Safety analysis
5.3.1 Randomness test of chaotic sequences
To test the randomness of the random sequence generated in part
5.1 of this article, we need to use NIST SP800-22. In this paper,
the parameter k of Eq. 9 is 0.02, the order α is 0.88, and the initial
value is [1–6]. NIST SP800-22 has a total of 15 test methods to test
the randomness of a sequence, so the software has 15 standards
for the randomness of the sequence. After the execution of each
test method, a p-value between [0, 1] will be generated, and if the
p-value is greater than the preset threshold, it indicates that the
test has passed. In this paper, the default threshold of the software
is 0.01, and the sequence length 106 is set to one input stream, and
there are 10 such input streams. Table 2 shows the results of
15 tests.

5.3.2 Experimental results of image encryption
The encryption pictures in this paper come from USC-SIPI
database, and the operating system of the test platform is
Windows 10 64-bit, the test software is MATLAB 2019, and
the processor of the test machine is quad-core Intel Core I5-
7300HQ@2.50Ghz. The memory is 16 GB DDR4 RAM. The
parameter k of 6D-FMHNN system is 0.02, the order is 0.88,
and the initial value is [1–6]. The original, encrypted, and
decrypted images of some images are shown in Figure 7. The
attacker is unable to obtain any useful information from the
encrypted images shown in Figure 7, indicating that the
encryption algorithm proposed in this paper is effective.

5.3.3 Image histogram analysis
Histogram is a graph drawn after the frequency of each gray value
in the image is counted. In order not to leave an attacker with any
useful statistics, an ideal encryption algorithm would distribute
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the pixel depth of the image evenly, as shown in the histogram, so
that the squares are basically flush. Figure 8 shows the histogram
of pixel depth distribution of the original image and the
encrypted image of some images. It can be seen from the
figure that the histogram of plaintext image shows obvious

statistical law, and the uniformity of pixel depth distribution of
the image after encryption is significantly improved. In order
to quantitatively analyze the uniformity of histogram
distribution, chi-square test (Eq. 18) and variance were
used to evaluate. chi-Square values of the histogram before
and after encryption were calculated, and the pictures involved
in the calculation include 4.1.05, 4.1.06, 4.1.08, 4.2.01, and
4.2.03. The chi-square values of the histogram of plain image
are 300,852.0781, 66009.6797, 334,267.1406, 343,393.1465,
and 187,356.5723, respectively. In addition, the chi-square
values of the histogram of encrypted image are 272.0469,
253.1797, 284.3828, 231.0273, and 254.0137, respectively,
and under the condition that the degree of freedom is 255
and the significance level is 1% and 5%, the corresponding chi-
square test critical values are x2

0.01(255) � 310.457 and
x2
0.05(255) � 293.247 8, respectively. It is not difficult to see

from the table that the gray value distribution of the encrypted
image is quite uniform compared with that of the unencrypted
image, so it is difficult for the attacker to attack by using
histogram. Secondly, by changing the initial value of the
encryption key, namely 6D-FMHNN system, the variance of
the image histogram after encryption is calculated to evaluate
whether the quality of the key has an impact on the encryption
effect. It can be seen from Table 3 that the encryption

TABLE 2 | Statistical table of the results of testing the randomness of random
sequences using NIST SP800-22

Test name p-Value Result

The frequency test 0.534 1 Pass
Frequency test within a block 0.350 5 Pass
The cumulative sums test 0.534 1 Pass
The runs test 0.534 1 Pass
Tests for the longest-run-of-ones in a block 0.534 1 Pass
The binary matrix rank test 0.739 9 Pass
The discrete Fourier transform test 0.350 5 Pass
The nonoverlapping template matching test 0.499 4 Pass
The overlapping template matching test 0.534 1 Pass
Maurer’s “universal statistical” test 0.350 5 Pass
The approximate entropy test 0.035 2 Pass
The random excursions test (x = -1) 0.413 0 Pass
The random excursions variant test (x = 1) 0.655 7 Pass
The serial test 0.442 3 Pass
The linear complexity test 0.739 9 Pass

FIGURE 7 | Image encryption experiment results: original image (A), encrypted image (B), decrypted image (C).
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algorithm in this paper has good encryption effect for different
keys.

x2 � ∑255
L�0

O − E( )2
E

(18)

In this paper, O represents the observed count of each
gray value, and E represents the expected count of each
gray value.

5.3.4 Correlation analysis
Correlation analysis is the analysis of multiple factors with
correlation, so as to measure the correlation of these factors.
In this paper, it specifically refers to analyzing the correlation
of the color depth of two adjacent pixels in an image. There is a
strong correlation between the color depths of two adjacent
pixels of an unencrypted image, and an ideal encryption
algorithm should be able to hide this correlation;

otherwise, it would be a breach for an attacker. In this
paper, the correlation coefficient is calculated to measure
the correlation of images, and the calculation formula is
shown in Eq. 19 [24]:

Rxy � cov x, y( )�����
D x( )√ �����

D y( )√
D x( ) � 1

N
∑N
i�1

xi − E x( )( )2

cov x, y( ) � 1
N

∑N
i�1

xi − E x( )( ) yi − E y( )( )
E x( ) � 1

N
∑N
i�1

xi

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

where y is the adjacent pixel of x, and N is the number of pixel
pairs randomly selected from the image, that is, the correlation
coefficient of the image, which is closer to 0, the better. In this
paper, 5,000 pixels are randomly selected from the image and
the correlation coefficients in the vertical, horizontal, and
diagonal directions are calculated, respectively. The results are
shown in Figure 9, Table 4, and Table 5. It can be found from
Figure 9 and Table 4 that the adjacent pixels of the unencrypted
picture have a strong correlation, which basically disappears after

FIGURE 8 | Histogram comparison of the original image and the encrypted image; (A) original image; (B) histogram of original image; (C) encrypted image; (D)
histogram of encrypted image.

TABLE 3 | Statistical table of histogram variance after encryption with
different keys

Image key1 key2 key3 key4 key5

Boat 945.218 8 949.671 9 1085.765 6 986.976 6 991.648 4
House 1069.765 6 923.453 1 1078.828 1 894.554 7 947.140 6
4.1.03 238.750 0 297.890 6 247.171 9 235.328 1 289.539 1
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encryption.Table 5 compares the correlation coefficients between this
paper and other literatures. It can be found that our encryption
algorithm has lower correlation coefficients in horizontal, vertical, and
diagonal directions.

5.3.5 Information entropy analysis
Shannon defined information entropy as the occurrence probability
of discrete random events, which is an important indicator to
measure the randomness of information. It is generally believed
that the greater the information entropy is, the greater the
uncertainty is, so it can be used to measure the randomness of
the image, and its calculation formula is given by Eq. 20 [74]:

H � −∑L
i�1

P i( )log2P i( ) (20)

where i is the gray value, P(i) is the probability of gray value i,
and L is the maximum gray value of pixel. For the image with

256 Gray level, the ideal value of H is 8. The larger the value H
is, the more random the image information distribution is, and
the better the encryption effect is. In this paper, the information
entropy of some pictures that include boat, house, 4.1.03,
4.1.05, 4.1.06, 4.1.07, 4.1.08, 4.2.01, 4.2.03, and 4.2.05, before
and after encryption is calculated. Information entropy of
original image is 7.1914, 7.3602, 5.6002, 6.4007, 7.1816,
5.8346, 6.2700, 6.6530, 7.6444, and 6.5768 respectively.
Corresponding to it, information entropy of encrypted
image is 7.9994, 7.9993, 7.9974, 7.9971, 7.9972, 7.9969,
7.9969, 7.9993, 7.9994, and 7.9993, respectively. In order to
compare with other literatures, we especially calculate the
information entropy of Lena graph, and the result is 7.9993.
In contrast, the information entropy is 7.9987, 7.2072, 7.9992,
and 7.9974, respectively, in [24], [25], [73], and [74]. We can
see from the comparisons that the image encryption algorithm
in this paper has information entropy which is closer to the
ideal value compared with other literatures.

FIGURE 9 | The correlation of adjacent pixels in picture House where (I) and (II) are the plaintext picture and ciphertext picture, respectively: (A) the correlation of
two horizontal adjacent pixels, (B) the correlation of two vertical adjacent pixels, and (C) the correlation of two diagonal adjacent pixels.
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5.3.6 Differential attack analysis
Differential attack means that the attacker will make subtle
changes to the plaintext image, such as changing the gray
value of a pixel, and then encrypt the image before and after
the change, respectively, and find the relationship between the
plaintext and ciphertext by comparing the two encrypted images.
Therefore, an ideal encryption algorithm must be able to resist
differential attacks, that is, even a change of a pixel will cause a
huge difference between the encrypted images before and after. In

order to quantitatively measure the ability of encryption
algorithm to resist differential attack, the number of pixels
change rate (NPCR) and the unified average changing
intensity (UACI) are used in this paper [75]. NPCR reflects
the ratio of the number of different pixel values in the same
position of two images to all pixels, and UACI reflects the average
change intensity of the difference between the data of two
encrypted images. The calculation formula of the two
indicators is shown in Eq. 21 [25]:

TABLE 4 | Correlation coefficients of different images before and after encryption

Plain image The vertical The horizontal The diagonal Encryption image The vertical The horizontal The diagonal

Boat 0.972 6 0.940 3 0.928 9 boat 0.016 8 0.001 6 -0.000 5
house 0.957 8 0.949 5 0.926 2 house 0.006 0 -0.003 6 0.013 6
4.1.03 0.924 6 0.973 7 0.898 1 4.1.03 0.013 3 -0.008 0 -0.010 5

TABLE 5 | Comparison of correlation coefficient with other literature

Image Direction Plaintext image Encrypted image

our [24] [25] [33] [73]

Lena Horizontal 0.984 3 -0.002 0 0.005 3 0.016 2 0.007 4 0.038 1
Vertical 0.970 9 0.003 3 0.008 9 0.003 8 0.003 2 0.029 1
Diagonal 0.966 0 -0.003 7 0.012 6 0.002 3 0.012 1 0.002 7

FIGURE 10 | Key sensitivity analysis result graph, including (A) original Lena graph, (B) ciphertext encrypted with key1, (C) ciphertext encrypted with key2, (D)
difference graph of two ciphertexts, (E) result graph of decryption with wrong key, and (F) result graph of decryption with correct key.
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NPCR C1, C2( ) � ∑M
i�1

∑N
j�1

D i, j( )
M × N

× 100%

UACI C1, C2( ) � ∑M
i�1

∑N
j�1

C1 i, j( ) − C2 i, j( )∣∣∣∣ ∣∣∣∣
M × N × T

× 100%

D i, j( ) � 0, ifC1 i, j( ) � C2 i, j( )
1, ifC1 i, j( ) ≠ C2 i, j( )

⎧⎨⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(21)

whereM and N are the size of the image, T is the maximum gray
value of the image, and C1C2 is the original encrypted image and
slightly modified encrypted image, respectively. The ideal values
for NPCR and UACI are 99.609% and 33.463 5%, respectively.
Using Eq. 21, UACI and NPCR of a series of images were
calculated in this paper and compared with other literatures.
The results are 99:6075% and 33:4667%, respectively. In [24], the
results are 99:6352% and 33:5,614%. In [25], the results are 99:
609% and 33:4907%. In [73], the results are 99:6114% and 33:
4523%. In [74], the results are 99:5,956% and 33:4535%. It is
obvious that the image encryption algorithm in this paper has
UACI/NPCR which is closer to the ideal value compared with
other literatures.

5.3.7 Key sensitivity analysis
The general method for attackers to crack keys is brute force
cracking, that is, to try all possible keys one by one. Because
existing encryption algorithms generally have sufficient key
space, which means that brute force cracking takes a long
time; even for computers with powerful computing power,
brute force cracking is not practical. However, if the
encryption algorithm does not have key sensitivity, in other
words, the ciphertext obtained by encrypting the same
image with two similar keys is also similar, the attacker will
take advantage of this vulnerability, optimize the brute force
cracking algorithm, and quickly crack the key. In this paper,
key1 = [1–6] and key2 = [1 + 10–10, 2, 3, 4, 5, 6] are used to
encrypt the same image, respectively, to obtain ciphertext 1
and ciphertext 2 (Fig. 12), and the NPCR and UACI values of
ciphertext 1 and ciphertext 2 are calculated as NPCR = 99.612
4% and UACI = 33.441 0%, respectively, which means that the
two ciphertexts have great differences. In addition, key2 is used
in this paper to decrypt the ciphertext of key1, and the results
obtained are shown in Figure 10. Therefore, this algorithm has
good key sensitivity.

6 CONCLUSION

This paper proposes a new memristor model and uses PHL to
prove the memristor characteristics of the model. In addition, we
propose a new 6D-FMHNN by using this memristor to simulate
the induced current caused by potential difference between
neurons and studies the dynamic behavior of 6D-FMHNN,
such as bifurcation characteristics and coexistence attractor
characteristics. 6D-FMHNN is chaotic and periodic due to
different order, parameter, and initial value. Because this 6D-
FMHNN has chaotic characteristics, it can be used to generate
random sequences, so we also use this 6D-FMHNN to generate
random numbers and apply them to the field of image
encryption. This paper makes a series of analysis on the
randomness of random numbers and the security of image
encryption, and proves that the encryption algorithm using
this 6D-FMHNN is safe and sensitive to the key. In the future,
we will look for FMHNN that can generate multiple scrolls or
multiple attractors.
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