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Melanoma is fatal for skin cancer. One of the essential predictive points in melanoma
progression is the development of dysplastic nevi. This study observes subcutaneous
blood vessels, lymphatic vessels, and skin thickness in a mousemodel of dysplastic nevi in
vivo through noninvasive, high-resolution, and multi-contrast optical coherence
tomography (MCOCT). The subcutaneous microenvironment of the mice showed
increased density of lymphatic vessels, dilated walls, and increased thickness of ears
during the change of dysplastic nevi; and fragmentation of blood vessels at the later stage
of the experimental period. Compared with conventional OCT only provides structure
anatomy, MCOCT provides more extensive information for disease analysis and has the
potential to detect progressive changes in dysplastic nevi.
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INTRODUCTION

Melanoma is the least common and most deadly of all skin cancers. To reduce mortality, early
detection of patients with potentially highly metastatic melanoma is the primary modality for
surgical excision or targeted therapy [1]. Melanoma is caused by skin cells that begin to develop
abnormally. Exposure to ultraviolet light from the sun is thought to cause most melanomas.
However, there is evidence suggesting that somemelanoma formation is known to be associated with
mutations in several primary oncogenes, which transform melanocytes into benign melanotic nevi
with histological features such as dysplastic nevi [2,3]. Moreover, David E Elder [4] describes the
clinical symptoms of dysplastic nevi and its association with melanoma.

Dysplasia nevi are characterized by clinically atypical and histological structural disorders and cell
abnormalities. They are defined histologically and clinically as benignmelanocyte-formedmoles, and
these moles contain the same genes as those in melanoma mutations such as v-Raf murine sarcoma
viral oncogene homolog B1 (BRAF) and neuroblastoma RAS viral oncogene homolog (NRAS). Thus,
dysplastic nevi are often used as a marker for increased risk of melanoma in the clinical setting. The
progression of nevi is usually arrested by various tumor suppressor mechanisms, such as growth
arrest regulated by Pten protein in the mitogen-activated protein kinase (MAPK) cell messaging
pathway. However, these melanocytic nevi may progress to melanoma with a high mortality rate if
mutations in genes in the tumor suppressor mechanism, result in the inactivation of specific proteins.
In addition, vascular endothelial growth factor (VEGF) has been found to be released by tumor cells.
The binding of VEGF to receptors in the lymphatic vessels and vascular endothelium promotes
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lymphatic vessel neogenesis [5–7] and angiogenesis [8–10]. These
make vascular and lymphatic vessel changes an important entry
point for melanoma research. Therefore, in the study of
melanoma and other diseases, invasive methods such as
injecting fluorescent markers to mark blood vessels [11] and
lymphatic vessels [12] or using immunostaining sections [13]
have been used in the past, which may cause side effects such as
pain and anxiety to the patients. Therefore, noninvasive imaging
systems are increasingly used in cancer research and clinical care
[14–17].

Currently, noninvasive diagnostic tools commonly used for
skin cancer diagnosis include reflected confocal microscopy

(RCM), high-frequency ultrasonography, hyperspectral
imaging (HSI), diffuse reflectance spectroscopy (DRS) and
optical coherence tomography (OCT) [18–24]. The resolution
of RCM is about 1 μm, and the penetration depth is limited by
about 200 μm. The resolution of high-frequency ultrasonography
can reach 80–200 μm depending on the center frequency. OCT
has the advantage of high penetration depth compared with RCM
and high resolution compared with high-frequency ultrasound
scanning. The OCT technique was initially meant for imaging
human retinas and has become a critical diagnostic technology in
ocular diseases. The advances of fast and high-resolution OCT
instruments during the past 10 years have opened new fields of

FIGURE 1 | (A) Schematic diagram of MCOCT system. Within 0–18 weeks of the experimental period, (B) skin appearance, (C) subcutaneous vessels, (D) OCT
maximum intensity projection (MIP) imaging, and (E) thickness map were taken.
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applications and perspectives for further development of OCT
imaging [25–27]. Thus, OCT has become an evolving imaging
technology in the field of oncology due to its noninvasive, real-
time two-dimension (2D) and three-dimension (3D) imaging
capability with high-resolution (10–20 μm) and adequate depth
of 1.5–2 mm without contrast agent and radiation. The images
can be compared to corresponding histopathological sections and
are potential for early cancer detection, differentiation, and
screening or monitoring cancer therapy. Moreover, functional
extension of OCT combines the advantages of OCT with
additional image contrast obtained by using the Doppler flow,
spectroscopy, or polarization as a contrast source [28–30].

Therefore, in this study, we used a multi-contrast OCT
(MCOCT), including conventional intensity OCT and
functional extension of OCT (i.e., OCT angiography and
lymphangiography), into skin cancer study, mainly focused on
the study of nevus-to-melanoma transition in a dysplastic nevi
mouse model. Furthermore, we longitudinally monitored the
micro-environmental changes in the skin during the
progression from dysplastic nevus to melanoma by using the
noninvasive features of the MCOCT to obtain angiographic,
lymphatic vascular, and thickness information, to improve the
accuracy of melanoma diagnosis.

MATERIALS AND METHODS

Figure 1A shows a schematic diagram of the MCOCT system.
The MCOCT system was developed in-house [31], where the
light source has a central wavelength of 1,275 nm and a
spectral bandwidth of 240 nm, delivering the axial
resolution of ~ 5 μm in the air. A 3D data set consists of

400 steps and covers the image volume of 4*4*2 mm3. The ear
thickness was measured as the distance between the corneum
stratum and the articular cartilage in each 2D cross-sectional
image. The top boundary and dermis-cartilage junction were
determined using the method described in the literature [32].
Therefore, operator-dependence manual boundary-
determined steps were not necessary. The enface
angiography and lymphangiography were obtained using
the optical microangiography algorithm [33] and lymphatic
segmentation algorithm [32], respectively. During the
acquisition of MCOCT images, the mouse was anesthetized
using 1% isoflurane, and the ear was fixed on the stage using
double-sided tape. All animal procedures were reviewed and
approved by the Institutional Animal Care and Use
Committee (IACUC) of National Yang Ming Chiao Tung
University, where these experiments were performed.

BRAFV600E induced and Pten-deficient metastatic
melanoma mouse model was used in this study [34]. Mice
were treated topically on the ear with 4-Hydroxytamoxifen (4-
OHT) to elicit BRAFV600E and silence Pten expression. We
monitored the microenvironment changes in the outer one-
third of four mice ears, including two 4-OHT drug-induced
mice as experimental group and two without drug induction
as the control group. Figure 1 shows the schematic diagram of
the animal experiment timeline. MCOCT images were
scanned at week 0, followed by two consecutive weeks of 4-
OHT induction. Tissue sections were taken at week 22 after
the death of the induction and control groups of mice. Skin
tissues were fixed overnight in 10% neutral buffered formalin
at 4°C and then transferred to 70% ethanol before being
processed and embedded in paraffin. Paraffin-embedded
specimens were cut into 5-μm sections and stained with

FIGURE 2 | Dysplastic nevi mouse-ear (A) appearance photography and (B) microPET imaging. C: control (left), I: 4-OHT induced (right). Standardized uptake
values (SUV) mean in ear of 4-OHT induced mouse, indicated by yellow arrow, was summarized in the table.
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hematoxylin and eosin (H&E) and anti-S100 antibodies.
Micro-PET imaging was performed at 8–14 weeks of the
experimental period. The uptake of 18fluorodeoxyglucose
(18 F-FDG) into cancer cells, which have a higher demand
for glucose than noncancer cells, can be detected using micro-
PET. Within 0–18 weeks of the experimental period, skin
appearance (Figure 1B), subcutaneous vessels (Figure 1C),
and (Figure 1D) OCT maximum intensity projection (MIP)
imaging were taken. The blue part of Figure 1D shows the
location of the lymphatic vessels. Figure 1E is the thickness
map where pseudo color represents the distance between the

corneum stratum and the articular cartilage in each two-
dimension cross-sectional OCT image.

RESULTS

Figure 2 shows a representative dysplastic nevi mouse-ear
appearance photography 1) and microPET imaging 2). We found
that 4-OHT induced dysplastic nevi mice showed nevi in their ears
from week 5 to week 6, and the number of nevi increased with the
increase of weeks, and a more prominent black spot appeared in the
ear of mice at week 10, as shown in Figure 2A, indicated by yellow
arrows. Therefore, based on the changes in the skin appearance of
mice, we suspect that weeks 5-6 are the weeks when nevi are
produced after drug-induced nevi in dysplastic nevi mice, and
weeks 8-9 are the critical weeks when nevi gradually turn into
melanoma. To verify the transformation of dysplastic nevi into
malignant melanoma, microPET imaging was performed starting
from week 8. Figure 2B shows the 18 F-FDG amassments in one
representative 4-OHT inducedmice inweek 8, week 9, andweeks 11,
12, 14. Compared with the control group (C: left figure in b), a tumor
was found in the induced group (I: right figure in b).

Figure 3 is the H&E and S100-stained section of dysplastic
nevus mice 1) and control mouse 2) at week 22. Compared with
dysplastic nevus mice and control mice, staining with S100
antibody showed an increased number of melanocytes in
dysplastic nevus mice, indicated by red circle. H&E-stained
section of dysplastic nevus mice also exhibits accumulation of

FIGURE 3 | H&E and S100-stained section of (A) dysplastic nevus mice
at week 22, and (B) control mouse at week 22.

FIGURE 4 | Longitudinal tracking of blood vessels, lymphatic vessels using MFOCT in a dysplastic nevi mouse ear. (A) Photograph, (B) angiography, (C) combined
angiography and lymphangiography, and (D) combined angiography, lymphangiography, and thickness map. (E) The cross-section OCT image shows the anatomy
structure at the dotted line in (D).
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melanin. Here histology confirms the melanoma appearance at
the endpoint (week 22).

We imaged subcutaneous vessels before 4-OHT induction
(week 0) and during 18 consecutive weeks after induction.
Figure 4 shows 1) photographs, 2) depth-coded vascular
imaging, 3) combined vascular imaging and lymphatic
vessel imaging, and 4) combined vascular imaging,
lymphatic vessel imaging, and thickness maps at week 0,
week 5, week 9, week 13 and week 18. Moles are detectable
starting at week five and become evident at week 13, which is
indicated by the red circle on the photograph. At each
imaging, the lymphatic vessels developed more distinctly
over time as the size of the nevus continued to grow. On
the other hand, the vascular pattern becomes irregular and
disorganized, and at weeks 13 and 18, the capillaries increase
in density and are distinguishable from the vessels of normal
tissue at week 0. After the growth of dysplastic nevi, larger
vessels remained relatively unchanged compared to smaller
capillaries. Structural changes are noted in the angiogram at
week 18 and are indicated by white arrows. The thickness of
the ear varies from 200 to 400 μm at week 0 and finally
thickens from 400 to 700 μm at week 18. At week 18, the
thickness of the ear is not uniformly distributed throughout
the imaging area, with some areas thicker than others ( ~
700 μm). Figure 4E demonstrates the 2D cross-sectional OCT
images where a red square indicates suspicious melanoma
sites at week 18. From the superimposition of angiography
and lymphography with the thickness maps at week 18, the
increase in capillaries of the fragmented morphology
corresponds to areas with thicker thickness and more
altered surrounding lymphatic vessels. The above results of
microvascular and microstructural changes observed at
18 weeks of in vivo follow-up suggest that it is possible to
see a progression from dysplasia to melanoma using MCOCT.

DISCUSSION AND SUMMARY

The current methods for detecting melanoma in the skin
include visualization (ABCD law), dermoscopy, and
pathological biopsy. However, these methods still have
several drawbacks, as the visualization can only be used as
a preliminary observation, and it is based on the subjective
judgment of the doctor to distinguish the lesion from the
malignancy, which lacks objectivity and accuracy.
Pathological biopsy is the best way to determine whether a
melanoma is malignant or not [35], but it has limitations such
as the inability to make quantitative and continuous
observations and being performed on suspicious but still
benign lesion [36]. Although the dermoscopy is a non-
invasive method, it still lacks the ability to quantify and
objectively diagnose the lesions. In addition, in medical
diagnosis, not only the structural characteristics are used as
a criterion, but also the function of the tissue is often observed.
This is because functional changes usually occur earlier than
structural changes, which may be changes in blood flow,
collagen fiber content, water content, etc. in the diagnosis

of skin diseases. Therefore, more and more non-invasive
imaging modalities are developed to aid in skin disease
diagnosis and the decision to biopsy [37, 38].

In this study, dysplastic nevi mice with partial deletion of
Pten can develop nevi changes or even melanoma if induced
with the 4-OHT drug. MCOCT is a label-free imaging
technique, and its high resolution and multi-contrast
images help study the development of dysplastic nevi at
different stages. With MCOCT, we can perform
noninvasive scans of dysplastic nevi mice to obtain
extensive information on the subcutaneous
microenvironment, such as images of blood vessels and
lymphatic vessels. In the subcutaneous structural images,
we found that the ear thickness changes when the mouse
ear appearance of nevi increases or becomes larger (week 9).
When dysplastic nevi deteriorate, both the epidermis and
dermis thicken, so the subcutaneous structural changes of
the ear are an important observation in the progression of
dysplastic nevi tumors. In addition, when 4-OHT induced
mice showed significant changes in the appearance of nevi at
week 9, their lymphatic vessels also showed increased density
and enlarged diameter (Figure 4). Therefore, we hypothesized
that during the progress of dysplastic nevi, if the nevi showed
diffusion or hyperplasia, the subcutaneous microstructure
would show apparent changes, such as an increase in
thickness, increase in the number of lymphatic vessels, and
dilatation of the vessel wall. With the progress of time, the
epidermis and dermis would be thickened, and vascular
fragmentation would occur.

The tumor progression of dysplastic nevi is not yet clear,
but it is expected that if MCOCT observes the pattern of
changes, the symptoms can be detected earlier, and surgical
resection or targeted therapy can be performed earlier to
improve the 5-year survival rate of patients. At present, we
found some subcutaneous micro-environmental changes
during dysplastic nevi carcinogenesis compared to the
control group. We also found an increase in lymphatic
vessels and dilation of the wall before the appearance of
nevi accumulation in the ear. We hope this finding can be
applied in the future to improve the accuracy of the diagnosis
of dysplastic nevi through the subcutaneous micro-
environmental changes observed by MCOCT. Patients can
be treated earlier and reduce the possibility of dysplastic nevi
turning into melanoma.
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