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The aim of this paper is to propose some efficient and accurate numerical methods to
compute the steady-state of variable coefficients space fractional Cahn-Allen equations.
The approach combines an adaptive time stepping semi-implicit gradient flow method to
minimize the fractional energy functional and pseudo-spectral approximation schemes.
Based on the use of a preconditioned GMRES, the space fractional Cahn-Allen equation is
then solved efficiently. The full methodology is supported by the numerical solution of a
one-dimensional problem.
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1 INTRODUCTION

During the last 2 decades, the mathematical analysis and numerical simulation of fractional partial
differential equations became one of the most important hot topics in applied and computational
mathematics [1–4]. One of the reasons of this growing interest is related to the fact that these new models
provide a better description of some physical phenomena. Indeed, for example, for the heat equation,
considering space fractional effects allows to handle anomalous diffusion [5] when the stochastic process
driving the medium is a Lévy α-stable flight. Fractional PDEs are also of interest when modeling e.g., the
behavior of turbulent flows [6, 7], the chaotic effects in the dynamics of conservative systems [8] but also for
the transport of contaminant in groundwater flow [9, 10] or finally inmathematical finance [11]. In [12], a
fast algorithm based on time two-mesh finite element scheme, which aims at solving nonlinear problems
quickly, is considered to numerically solve the nonlinear space fractional Cahn-Allen equations with
smooth and non-smooth solutions. In [13], different schemes has been effectively employed for finding the
exact solutions and dynamics of the Cahn-Allen model and the dispersive predator-prey model. The goal
of this paper is to contribute to the numerical solution to such systems, and most particularly to a space
fractional Cahn-Allen equation [14] with variable coefficients. The integer order equation is usually used to
describe the complex phase separation and coarsening phenomena in a solid. Here, the fractional order
appears as an exponent α/2 (1 ≤ α ≤ 2) in the laplacian operator, α = 2 corresponding to the standard
situation. The fractional Cahn-Allen equation can then be seen as a more general situation than the
standard one. It has been introduced (see e.g., [15–17]) for studying the competing stable phases having an
identical Lyapunov functional density for Lévy processes of order α/2. This allows to include the situation
where the random walk has correlations, non-Gaussian or non-Markovian memory effects which cannot
be described by the standard Laplacian.
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A recent interesting application [18, 19] considers image
segmentation techniques based on the fractional Cahn-Allen
equation, with examples in medical imaging. Here, the
objective of the paper is to show how the widely used pseudo-
spectral approximation schemes which are well-adapted to solve
constant coefficients PDEs (see e.g., [20–23]) can be adapted to
the variable coefficients case for computing the steady-state of
fractional Cahn-Allen equations based on the gradient flow
formulation and its suitable discretization.

To this end, we introduce in Section 2 the problem setting for
an example of space fractional Cahn-Allen equation (the
approach could be probably extended to other kinds of
equations), and we provide a few useful definitions for the
pseudo-spectral approximation, in particular concerning the
spectral definition of the fractional laplacian. The gradient
flow formulation is also given. Section 3 is devoted to the
development of numerical schemes for the gradient flow as
well as an adaptive time stepping method. We also explain
how to get an efficient implementation of the pseudo-spectral
approximation schemes, most particularly regarding the use of a
Krylov subspace iterative solver with a well-designed
preconditioner. In Section 4, we analyze the full methodology
in the case of a one-dimensional example. This shows that the
newly designed method performs very well for various fractional
orders. Finally, we conclude in Section 5.

2 PROBLEM SETTING AND DEFINITION

The problem that we propose to solve is the following: find
u: R* × Ω → R solution to the variable coefficients space
fractional Cahn-Allen (SFCA) equation

ztu � −κ x( ) ε −Δ( )α/2u + f u( )( ), t, x( ) ∈ R × Ω,
u t � 0, x( ) � u0 x( ), x ∈ Ω,
znu x( ) � 0, t> 0, x ∈ Γ ≔ zΩ.

⎧⎪⎨⎪⎩ (1)

In the above system, u≔u(t, x) represents the concentration of
one of the mixtures at time t and point x appearing in the
modeling of the phase of a binary mixture. The domain of
computation is a d-dimensional rectangular box:
Ω ≔ ∏d

k�1ak; bk, with − ∞ < ak < bk < ∞, for k = 1, . . . , d,
with d = 1, 2, 3. Vector n denotes the outwardly directed unit
normal vector toΩ. The strictly positive function κ is the variable
mobility. For simplifications, it is standard to set this function as
equal to 1, but we consider also here the nontrivial situation for
pseudo-spectral methods where it is x-dependent. In the standard
constant coefficients CA equation with integer order α = 2, the
(usually small) constant ε > 0 stands for the interfacial width,
which captures the dominating effect of reaction kinetics and
stays for effective diffusivity.

In this paper, we consider the SFCA equation for a fractional
laplacian (−Δ)α/2, 1 < α ≤ 2, with homogeneous Neumann
boundary conditions [24]. Nevertheless, homogeneous
Dirichlet or periodic boundary conditions can also be
included. In the one-dimensional case, we introduce λj as the
eigenvalues and φj, j ∈ N, as the associated eigenfunctions of the

operator −Δ ≔ − z2x with homogeneous Neumann boundary
condition:

−Δφj � λjφj, in Ω ≔ a, b( ),
znφj � 0, at x � a and b.{ (2)

These functions, which are explicitly defined by

λj � jπ

b − a
( )2

, φj x( ) ≔
�����
2

b − a

√
cos

jπ x − a( )
b − a

( ), (3)

form a complete set of orthogonal eigenfunctions. In the case of a
homogeneous Dirichlet boundary condition, then one would get

λj � j + 1( )π
b − a

( )2

, φj x( ) ≔
�����
2

b − a

√
sin

j + 1( )π x − a( )
b − a

( ).
(4)

Let us define u ∈ Uα/2 as

Uα/2 ≔ u � ∑∞
j�0

ûjφj, ûj � < u,φj > ,∑∞
j�0

μαj |ûj|2 <∞
⎧⎨⎩ ⎫⎬⎭.

Then, if we assume that u ∈ Uα/2, the spectral definition of the
fractional laplacian is

−z2x( )α/2u � ∑∞
j�0

μαj ûjφj,

with μj ≔
��
λj

√
, taking the principal determination of the square-

root.
The nonlinear term f is given by f′(u) = F(u). The choice of

the potential function F, also called Helmholtz free-energy
density, is related to the physical situation, e.g., the case of a
convex quartic double-well potential or a non-convex
logarithmic potential [25, 26]. Here, to fix the ideas, we
consider the first choice with a variable space function, for
x ∈Ω, 0 < β(x) ≤ 1, generalizing the standard constant situation
β = 1, and setting

F u( ) � 1
4κ x( )β x( ) β x( )u2 − 1( )2, (5)

leading to

f u( ) � F u( )′ � 1
κ x( ) β x( )u2 − 1( )u. (6)

Let us introduce the generalized energy functional

Eα/2 u( ) ≔ 1
2
ε −Δ( )α/2u, u( )0,Ω + ∫

Ω

F u( )dx, (7)

with (·,·)0,Ω as the L2(Ω)-norm. As in [21, 24], we define
�u � (−Δ)α/2−1u, with 1 < α ≤ 2, which leads to the fractional
gradient as ∇α/2≔∇(−Δ)α/2–1, and then ∇αu � ∇�u. Therefore, one
gets

Eα/2 u( ) t( ) ≔ ε

2
‖∇α/2u‖20,Ω + ∫

Ω

F u( )dx, (8)
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setting ‖u‖20,Ω ≔ (u, u)0,Ω. Based on our notations, then solving
Equation 1 is equivalent to the gradient flow formulation

ztu � −κ x( )∇uEα/2 u( ) � 0, t, x( ) ∈ R × Ω,
u t � 0, x( ) � u0 x( ), x ∈ Ω,
znu x( ) � 0, t> 0, x ∈ Γ ≔ zΩ.

⎧⎪⎨⎪⎩ (9)

One also can prove that the energy is nonincreasing, after
integration over the domain Ω, taking a test-function v =
(ε(−Δ)α/2u + f(u)), and since κ is a positive function

Eα/2 t( )≤Eα/2 s( ), fors≤ t,
for 1 < α ≤ 2

3 NUMERICAL SCHEMES

3.1 Minimization Algorithms
When one wants to reach the long time solution to Eq. 1, i.e., to
compute the steady-state, we can directly discretize the initial
boundary-value system Eq. 9 as a time-dependent problem which
is a standard approach. An alternative solution consists in looking
at the long-time solution to the gradient flow system Eq. 9 which
cancels the energy gradient (Euler equation), based on an
optimization algorithm related to the minimization of the
energy functional. A standard way is to use a gradient-type
method by building a sequence of minimizers u(n) which is
supposed to converge towards the steady-state, hence
corresponding to the long-time dynamics solution of the
gradient flow, i.e., for large values of n.

Based on this point of view, we can for example build the
following simple scheme

iterate on n until convergence
u n+1( ) � u n( ) − δ n( )κ∇Eα/2 u n( )( ), x ∈ Ω,
u 0( ) � u0, x ∈ Ω,
znu

n( ) x( ) � 0, x ∈ Γ ≔ zΩ,
end iterate n

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (10)

with

∇Eα/2 u n( )( ) ≔ ε −Δ( )α/2u n( ) + f u n( )( ),
and where ρ(n) > 0 is the local descent step of the
gradient method which is computed in such a way that the
energy is indeed decaying between two successive steps n
and n + 1.

Let us now make a few remarks. If one considers that the
step δ(n) is a constant step, which means that we use a constant-
step minimization gradient algorithm, then scheme Eq. 10
would correspond to an explicit Euler discretization in time of
Eq. 1 with constant time step Δt = ρ. In the case of the
computation of an optimal step, or at least an adapted
gradient step ρ(n), then one gets an explicit Euler scheme
with time stepping. It is well-known that the steepest
descent method with constant step is not optimal and may
suffer from convergence problems, therefore requiring the
computation of an optimal step. To this end, we use an
optimal linear search method following (the starting value ρ
= 1 can be changed)

ρ � 1

compute ϕ1 � u n( ) − ρκ∇Eα/2 u n( )( )
compute ϕ1/2 � u n( ) − ρ

2
κ∇Eα/2 u n( )( )

while Eα/2 ϕ1( )>Eα/2 ϕ1/2( ) do
ρ � ρ/2
ϕ1 � ϕ1/2

compute ϕ1/2 � u n( ) − ρ

2
κ∇Eα/2 u n( )( )

endwhile

ρ k( ) � ρ

u n+1( ) � ϕ1/2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

which will also be used for all the other alternative schemes below.
Concerning the stopping criterion related to Eq. 10, one

possibility consists in forcing a maximal value of n. Based on
the interpretation of the steepest descent step ρ(n) as a local time
step Δtn, this would correspond to fixing a maximal time of
computation tN for a certain a priori known value of N.
Nevertheless, N is never a priori known and should be
determined dynamically into the loop on n thanks to a
stopping criterion. Here, we propose the following strong
convergence test

|E n+1( )
α/2 − E n( )

α/2|≤ ϵ1, (12)
for a very small value of ϵ1, where E(n)

α/2 ≔ Eα/2(u(n)). Another
possibility is to fix that the uniform norm on Ω between two
successive solutions u(n) and u(n+1) is very small (i.e. ‖u(n+1) −
u(n)‖∞,Ω ≤ ϵ1) but this may lead to a criterion which does not
provide the minimum.

The stability and convergence properties of the steepest
descent algorithm depend on the fact that it is also fully
explicit. Here we consider the following alternative scheme
where we implicit the energy gradient term

iterate on n until convergence
u n+1( ) � u n( ) − δ n( )κ∇Eα/2 u n+1( )( ), x ∈ Ω,
u 0( ) � u0, x ∈ Ω,
znu

n+1( ) x( ) � 0, t> 0, x ∈ Γ ≔ zΩ,
end iterate n

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (13)

which, in terms of PDEs can be rewritten as

iterate on n until convergence
u n+1( ) � u n( ) − δ n( )κ x( ) ε −Δ( )α/2u n+1( ) + f u n+1( )( )( ), x ∈ Ω,
u 0( ) � u0, x ∈ Ω,
znu

n+1( ) x( ) � 0, t> 0, x ∈ Γ ≔ zΩ,
end iterate n

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (14)

The problem related to the above fully implicit (Euler)
scheme is that we have to solve a nonlinear equation at
each gradient step, leading to a higher computational cost if
for example a fixed-point or Newton-type algorithm is used,
most particularly in the framework of pseudo-spectral
approximation schemes. Here, we consider the semi-implicit
(Euler) (E, for short) scheme
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iterate on n until convergence
u n+1( ) � u n( ) − δ n( )κ x( ) ε −Δ( )α/2u n+1( ) + f u n( )( )( ), x ∈ Ω,
u 0( ) � u0, x ∈ Ω,
znu

n+1( ) x( ) � 0, t> 0, x ∈ Γ ≔ zΩ,
end iterate n

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(15)

which avoids any nonlinear solution and leads to solving the
linear PDE formulation

iterate on nuntil convergence

1

δ n( ) I + κ x( )ε −Δ( )α/2( )u n+1( ) � 1

δ n( )u
n( ) − κ x( )f u n( )( ), x ∈ Ω,

u 0( ) � u0, x ∈ Ω,
znu

n+1( ) x( ) � 0, t> 0, x ∈ Γ ≔ zΩ,
end iterate n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(16)

where I is the identity operator. In fact, it can be seen as the
formulation of the fully-implicit (Euler) scheme Eq. 15 with one
iteration of the fixed-point algorithm. If one uses the
decomposition of the Ginzburg–Landau free energy into a
linear kinetic part and a nonlinear part related to the potential
function F

Eα/2 u( ) ≔ Ekin
α/2 u( ) + EF

α/2 u( ), (17)
setting

Ekin
α/2 u( ) ≔ ε

2
‖∇α/2u‖20,Ω,

EF
α/2 u( ) ≔ ∫

Ω

F u( )dx,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (18)

then Eq. 15 can also be seen as an algorithm where the kinetic
energy is implicitly approximated while the potentiel energy is
explicit resolved

iterate on n until convergence
u n+1( ) � u n( ) − δ n( )κ x( )∇Ekin

α/2 u n+1( )( ) − δ n( )κ x( )∇EF
α/2 u n( )( ), x ∈ Ω,

u 0( ) � u0, x ∈ Ω,
znu

n+1( ) x( ) � 0, t> 0, x ∈ Γ ≔ zΩ,
end iterate n

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(19)

An alternative to the semi-implicit Euler scheme is to use a
semi-implicit Crank-Nicolson (CN, for brevity) scheme which
writes

iterate on n until convergence

2

δ n( ) I + κ x( )ε −Δ( )α/2( )u n+1/2( ) � 2

δ n( )u
n( ) − κ

2
f u n( )( ), x ∈ Ω,

u 0( ) � u0, x ∈ Ω,
znu

n+1/2( ) x( ) � 0, t> 0, x ∈ Γ ≔ zΩ,

end iterate n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(20)

and is similar to Eq. 19 but evaluating the kinetic energy at the
mid-point un+1/2≔(u(n+1) + u(n))/2 as well as the Neumann

boundary condition. For both the E and CN schemes, the line
search algorithm Eq. 11 is adapted thanks to the formulation.

3.2 Pseudo-Spectral Discretization in Space
and Linear System Solution
In a practical computation, we approximate the solution u by a J-
terms finite-dimensional approximation uJ ≔ ∑J

j�0ûjφj, J ∈ N.
To this end, the fast cosine/sine transform can be used for
computing the fractional laplacian when Neumann/Dirichlet
boundary conditions are used. For the case of periodic
boundary conditions, FFT-based methods are applied.

When one uses a fast transform (cosine, sine, FFT), we can
proceed to the efficient computation of the application of an
operator to a given function. For example, let us consider that one
wants to numerically apply the fractional laplacian of order α to a
given function v, i.e., we wish to compute w≔(−Δ)α/2v, where v is
a given field known by its values vj at the nodes xj≔ − L/2 + (2j +
1)h/2, for 0 ≤ j ≤ J − 1 and where h = L/J denotes the uniform
spatial meshsize (L = b − a). Then, we get the practical efficient
calculation of w by the cosine (dct) and inverse cosine (idct)
transforms in one-dimension through the Matlab code

L � b − a;
J � 2^8;
h � L/J;
lambdaj � 0: J − 1( )ppi/L( )^2.′;
w � idct lambdaj.̂ alpha/2( ).pdct v( )( );

(21)

For all the previous schemes presented in section 3.1, and for a
constant function κ, the finite-dimensional solution in space can
be obtained directly thanks to the above pseudo-spectral
discretization. Indeed, even for the semi-implicit schemes, the
operators to invert, i.e. ((δ(n))−1I + κε(−Δ)α/2) for the E schemes,
can be computed directly through their symbols. For the
Neumann boundary conditions, this means that we can apply
the discrete symbols of ((δ(n))−1I + κε(−Δ)α/2)−1 in the dual
space thanks to its spectral decomposition involving the
eigenvalues ((δ(n))−1I + κεμαj )−1, 0 ≤ j ≤ J − 1, and in a similar
way to Eq. 21.

However, for the more complex situation that we consider in
this paper, this is no longer possible. Indeed, a variable coefficient
operator cannot be inverted explicitly in the Fourier space. Let us
for example consider the situation of a full space representation
(no boundary condition). Then, we can use the inverse Fourier
representation of the operator ((δ(n))−1I + κ(x)ε(−Δ)α/2)
following

w � A x, Dx( )v ≔ δ n( )( )−1I + κ x( )ε −Δ( )α/2( )v
� F −1 a x, ξ( )F u( ) ξ( )( ),

(22)

where ξ ∈ Rd is the dual Fourier variable, the direct and inverse
Fourier transform being denoted by F and F−1, respectively, and
defined by

F f( ) ξ( ) � f̂ ξ( ) � ∫
Rd

e−ix·ξf x( )dx,
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and

F −1 f( ) x( ) � 1

2π( )d∫
Rd

eix·ξf̂ ξ( )dξ.

The symbol of the pseudodifferential operator [27] is given
here by the expression

a x, ξ( ) ≔ δ n( )( )−1 + κ x( )ε‖ξ‖α( ). (23)

The inner product of two vectors p and q in Rd is such that:
p · q ≔ ∑d

k�1pkqk, and the associated norm is ‖p‖≔ ����
p · p√

. The
symbol a of the operator A, which is of order α, then generates an
operator of order α acting between a Sobolev space of order m
ontom − α. Let us define B as the (left) pseudo-inverse operator of
A, i.e., BA = I modulo a smoothing operator. The operator B can
be computed recursively through an asymptotic expansion of its
total symbol b≔b(x, ξ) by the formula [27].

σBA � bYa x, ξ( ) ~ ∑
η∈Nd

1
η!
zηξb x, ξ( )Dη

xa x, ξ( ) � 1, (24)

where σBA is the symbol of the operator BA. The operator Dη is:
Dη � D

η1
1 . . . , D

ηd
d , D = (D1, . . . , Dd), setting Dk ≔ − izk � −izxk,

k = 1, . . . , d, and i ≔
���−1√

. Themulti-index η is defined as a vector
η≔(η1, . . . , ηd) with d positive integer components, i.e. η ∈ Nd.
The factorial is: η! � Πd

k�1ηk!. Thanks to these notations, one gets:
σ(−Δ)α/2 � ‖ξ‖α. If κ is a positive constant, then the composition
Eq. 24 leads to

b x, ξ( ) � b ξ( ) � a x, ξ( )−1 � a ξ( )−1,
since a does not depend on x and then the infinite sum Eq. 24
reduces to only one term for η = 0. When a is x-dependent,
then the asymptotic expansion is infinite and b includes an
infinite number of terms. The operator B−α/2 with symbol b−α/
2≔a(x,ξ)−1 is a regularizing pseudodifferential operator of
order − α which is not the inverse of A. Indeed, we have:
B−α/2A = I + R, where R is a pseudodifferential operator of
negative order which is however usually not an infinitely
smoothing operator.

Now, if we come back to Eq. 22, we see that we can rewrite it as

w � A x, Dx( )v ≔ δ n( )( )−1I + κ x( )ε −Δ( )α/2( )v
� δ n( )( )−1v + κ x( )εF −1 ‖ξ‖αv̂ ξ( )( ),

(25)

which can be discretized directly thanks to a FFT, fast cosine or
sine transform according to the boundary conditions. Let us write
the corresponding discrete operation as

w ≔ An[ ][ ]v ≔ δ n( )( )−1I + εκ −Δ( )α/2[ ][ ]( )v, (26)

where v and w denotes the given and unknown vectors, respectively,
at the discretization points, I is the identity matrix of size J, κ is the
diagonal matrix with the entries κ(xj), for 0 ≤ j ≤ J − 1, and [[(−Δ)α/2]]
v denotes the application of the fast algorithm for evaluatingAv at the
discrete level. Therefore, [[A]] is a matrix-free operator given through
a fast evaluation procedure (with e.g., a function call @(v)A(v) in

Matlab) requiringO(J log J) operations and a memory cost ofO(J)
entries.

As previously seen, using the E or CN approximations needs the
resolution of a linear system. When κ is a constant function, this can
be trivially done thanks to the explicit inversion of the operator
through the inverse of its symbol. For a function κ depending on x,
then the process for solving one of the linear systems is to use an
iterative solver instead of a direct method. Among them, fixed-point
methods [28] (Jacobi, Gauss-Seidel, successive approximation) can be
used. Nevertheless, it is well-known that they are not robust since
their convergence rate strongly depends on the spectral radius of the
iteration matrix. More efficient methods are based on Krylov
subspace iterative solvers [28, 29]. We choose here the
Generalized Minimal Residual (GMRES) method [29] which is
extremely robust (other methods, like e.g., BiCGStab, have been
tested but are proved to be less efficient within the framework of this
paper; we do not report the results for the sake of conciseness). This
method can solve matrix-free linear systems by calling an argument
which is the function @(v)A(v) related to the matrix-vector product
w≔[[An]]v. The convergence rate of the GMRES is related to the
spectral distribution of the matrix of the linear system and the cost of
applying it to our problem is therefore O(nitern J log J), where nitern is
the number of iterations required for solving the linear system with a
tolerance ϵ2. To accelerate the computations, one usually includes a
preconditioner [[Bn]] which is an approximation of the inverse of
[[An]]. From the above discussion, a natural choice is

v ≔ Bn[ ][ ]w, (27)
where [[Bn]] is the discretization of the operator with symbol a−1n .
This operator is the inverse of [[An]] if κ is a constant but is only
an approximation for a variable function κ. Its application has a
cost of O(J log J) operations and the memory cost if O(J). As it
will be seen later during the numerical examples, the use of [[Bn]]
may strongly accelerate the convergence rate. Concretely, for the
one-dimensional case and the cosine transform (Neumann
boundary condition), the Matlab procedure is simply

v � idct 1./ 1/deltan + kappa.pepsilon.((
plambdaj.^ alpha/2( )).pdct w( )); (28)

where kappa is encoded as a vector representing the diagonal
matrix. In the case of a constant parameter κ, the GMRES
equipped with this preconditioner solves the linear system in
one iteration (as a direct solver would do). A useful alternative
preconditioner is [[Bm

n ]], which is based on the mean
κm � J−1∑J−1

j�0κj. In practice, [[Bm
n ]] is much more robust

than [[Bn]].

4 COMPUTATIONAL ASPECTS AND
NUMERICAL EXAMPLE

4.1 Computational Aspects
In the following, we call E and CN the semi-implicit Euler and
Crank-Nicolson schemes Eqs 16, 20, respectively, without any
preconditioner for the GMRES. When the preconditioner [[Bm

n ]]
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is used in the GMRES method, the algorithms are called PE and
PCN. The GMRES is considered without restarting and with a
tolerance ε2 = 10–12. For each iteration n of the minimization
method, the number of iterations of the GMRES is then called
Nm,n

α/2,J (m = E, CN, PE, or PCN) accordingly to the method,
fractional order α/2 and number of spatial discretization points J.
The total computational cost at iteration n is essentially related to
the number of Matrix-Vector (MV) operations based on [[An]],
and is twice when the preconditioner [[Bm

n ]] (or [[Bn]]) is applied
since it requires an additional function call. Concerning the
minimization algorithms, the stopping criterion Eq. 12 is fixed
through ϵ1 = 10–12 and used with the linear line search algorithm.
If we call �Nm,n

α/2,J the total number of MV products for the whole
procedure and for a method m at step n, then we have

�N
m,n
α/2,J ≔ ∑n

ℓ�1
Nm,ℓ

α/2,J,
�N
m
α/2,J ≔ �N

m,nm
α/2,J

α/2,J � ∑nmα/2,J
n�1

Nm,n
α/2,J,

where nmα/2,J is the iteration number n to reach the tolerance in the
minimization algorithm for the method m. As a consequence, the
algorithm has a computational cost ofO( �Nm

α/2,JJ log J) operations
and needs a storage of O(J) coefficients. In the case of a higher-
dimensional problem, J denotes the total number of unknowns on
the d-grid.

Let us introduce the discrete L2-norm as:
∀v ∈ RJ, ‖v‖0 ≔ h1/2‖v‖, with the associated discrete inner
product: (u,v)0≔hu ·v. Then, the converged discrete energy at
level J is given by

E nm
α/2,J( ) ≔ Eα/2,J u nm

α/2,J( )( ) ≔
ε

2
‖ ∇α/2[ ][ ]u nm

α/2,J( )‖20
+ F u nm

α/2,J( )( ), 1( )
0

.

The converged solution for a method m, the fractional PDE of
order α/2, a number of spatial grid points J and a number of
iterations nmα/2,J is called u(n

m
α/2,J). Finally, the residual energy of a

method m at iteration n for a fractional order α/2 and spatial
discretization J is given by

ΔEm,n
α/2,J ≔|Eα/2,J um, n( )( ) − Eα/2,J um, n−1( )( )|. (29)

Therefore, representing ΔEm,n
α/2,J vs. �N

m,n
α/2,J provides the correct

way of measuring the convergence speed.

4.2 A One-Dimensional Example
To illustrate the methods, we consider an example in dimension
one. The computational domain is Ω � −1, 1. The initial data is
given by

u0 x( ) � 0.5 sin 3πx/2( ) cos πx( ) − 1( ).
The parameter ε is fixed to 10–2 and β is the function

β x( ) ≔ 0.6 + 0.4 cos 20πx( ).
Concerning the variable function κ, we consider

κ x( ) ≔ 1 + 0.5 cos 10πx( ). (30)

Therefore, κm = 1 while κ oscillates. The number of grid points
is set to J = 2p, for p ∈ N, leading to h = 2−p+1.

Let us first report on Figure 1 (left) the computed solutions
u(n

E
1,J) when considering κ and �κ based on the Euler formulation

Eq. 16, and the solution obtained by the direct inversion of the
operator with the inverse symbol of a, i.e. a−1, and the variable
function κ. Here, the situation considers the case α = 2 which is
the integer order CA equation. The number of grid points is J =
210. The solution based on the inverted symbol does not provide a
spatially converging solution, which is expected from the previous
explanations. As seen on the figure, considering κm is not enough
to get the true solution, but it provides an idea of the solution.
This means that a preconditioner based on κm is expected to be
robust when included in the GMRES. We now report the
converged solution for various fractional orders α = 2, 1.75,

FIGURE 1 | 1d case: (A) (α = 2): converged solutions for 1) the variable
coefficients case with the unpreconditioned Euler scheme and variable
function κ, 2) with the direct inversion of the operator by using the variable
function κ and 3) with the Euler scheme by using the average constant
κm. (B): converged solutions for various values of the fractional order α.
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1.5, 1.25, 1.01 on Figure 1 (right). The effect of the oscillating
function κ can be clearly observed, and the solution tends to be
more singular as α goes to 1. The respective converged energies
are: 76.56, 64.90, 53.01, 38.64 and 25.18.

We analyze now the behavior of the global iterative method on
Figure 2. The spatial discretization parameter is J = 210 for the
same function cases as before, but with α = 1.5 and α = 1.9. On
Figure 2, we report the residual history for the E, PE, CN and
PCN methods, the preconditioner being based on the inverse of
the operator with average symbol κm. As it can be seen, the semi-
implicit Euler iterative scheme converges faster than the CN
method, while preconditioning helps a lot for both methods by
dividing the number of iterations by a factor 5–6 (α = 1.5) to 20 (α
= 1.9). When α is close to 1, the preconditioner effect is less visible

while it is more important for α close to 2. This can be understood
by the fact that the condition number is then larger as α increases,
leading to a need for preconditioning (−Δ)α/2. In addition, the
preconditioner helps a lot for the convergence when refining the
spatial discretization thanks to J, i.e. to get a higher accuracy. As a
conclusion, and from other simulations in different
configurations (not reported here for the sake of conciseness),
it appears that the PE method always provides the best
convergence rate.

5 CONCLUSION

In this paper, we introduced some full discretizations of the
gradient flow formulation of space fractional Cahn-Allen
equations with variable coefficients in space. To this end,
we use an Euler or Crank-Nicolson time discretization of the
gradient flow formulation, with adaptive time stepping. In
addition, a Fourier-based pseudo-spectral discretization
scheme in space allows for an efficient and robust
computation of each time step, in conjunction with a
GMRES solver accelerated by a spectral preconditioner.
Some simulations in dimension one show that the method
based on the Euler scheme with the spectral preconditioner
performs the best. This conclusion should extend to 2D/3D
problems since all the ingredients here can be adapted and
higher-dimensional grids are cartesian extensions of the one-
dimensional case. In some future works, we will address more
numerical examples in 2D and an extension of the method to
the fractional Cahn-Hillard equation [30, 31] that is used for
example in [32] as fractional inpainting model.
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