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The Orbital angular momentum (OAM) of light is regarded as a valuable resource in
quantum technology, especially in quantum communication and quantum sensing and
ranging. However, the OAM state of light is susceptible to undesirable experimental
conditions such as propagation distance and phase distortions, which hinders the
potential for the realistic implementation of relevant technologies. In this article, we
exploit an enhanced deep learning neural network to identify different OAM modes of
light at multiple propagation distances with phase distortions. Specifically, our trained deep
learning neural network can efficiently identify the vortex beam’s topological charge and
propagation distance with 97% accuracy. Our technique has important implications for
OAM based communication and sensing protocols.
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INTRODUCTION

Vortex beam generally refers to the phase vortex beam, which has a spiral wavefront, a phase
singularity in the center of the beam, and ring-shaped intensity distribution [1, 2]. The beam
with orbital angular momentum (OAM) has the phase term eiℓϕ in the complex amplitude
equation, where ϕ is the azimuthal angle and ℓ is the angular quantum number or topological
charge. OAM is an inherent characteristic of vortex beam photons, and each photon carries
OAM, which is ℓZ [3, 4]. Due to the high-dimensional characteristics of the photon OAM, it is
utilized in applications such as optical tweezers [5, 6], micromanipulation [7, 8], angular velocity
sensing [9], quantum information [10–13], quantum computing [14–17], optical
communications [18–22] and quantum cryptography [23]. Once the value of ℓ is identified,
the orbital angular momentum can be calculated, allowing the features of the vortex beam to be
determined. Unfortunately, the vortex beam will diffract during propagation, and its spatial
profile will be easily distorted in a real-world environment [24]. Detrimentally, the information
encoded in the structured beam can be destroyed by random phase distortions [25–27] and
diffraction effects, resulting in mode loss and mode cross-talk [28, 29]. As a result, capturing the
vortex beam and identifying its information using equipment such as a charge coupled device
(CCD) camera or a complementary metal oxide semiconductor (CMOS) camera is difficult [30].
Hitherto, the traditional methods of identifying vortex beams have included methods such as the
interferometer method, plane wave interferometry, and triangular aperture diffraction
measurement, to name a few [31–34]. These traditional methods are much more challenging
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due to the need for more equipment, as well as complicated
data analysis process. In addition, some of these methods can
only identify specific vortex beams [35]. Moreover, the
accuracy of these methods will be greatly reduced when
turbulence is considered. These aforementioned factors have
significantly hampered the performance of communication,
cryptography, and remote sensing. As a result, identifying
OAM efficiently and correctly while accounting for
diffraction and turbulence is a critical and unresolved
challenge.

In recent years, methods such as deep learning algorithms [36]
and transfer learning [37] have considerably increased the accuracy
of automatic image recognition [38, 39]. A significant number of
recent articles have proved the potential of artificial neural
networks for efficient pattern recognition and spatial mode
identification [40–42], and its accuracy is far superior to some
traditional identification detectionmethods [43–45]. However, due
to the complex diffraction effect in the OAM propagation process,
there is little relevant work in the identification of the propagation
distance value. In the related research, the propagation distance of
the vortex beam ranges from the order of centimeters to the order
of kilometers, and it is used as a known parameter [46, 47].
Different propagation distance z will drastically change the size
of the central aperture of the vortex beam. As a result, it remains
difficult to identify the z value using only the intensity pattern.
Additionally, changing the value of topological charge ℓ also
changes the size of the central aperture, making the
identification task more challenging. Finally, turbulence in real-
world applications exacerbates the difficulty of such an
identification task [48].

In this report, we take advantage of the deep learning
algorithm to identify vortex beams and their propagation
distances while considering the effects of undesired turbulence.
Through theoretical simulations and experiments, we generated
vortex beams with different propagation distances and
topological charges. In addition, using the transfer learning
method, we designed a deep learning model to classify vortex
beams. For the first time, our approach utilizes artificial
intelligence to simultaneously identify the propagation distance
and topological charge of a vortex beam under turbulence’s
effects. Our research enables the encoding of vortex beams
with different propagation distances. As a result, the vortex
beam propagation distance may become a new encoding
variable. With the improvement of the accuracy of distance
recognition, it is even possible to realize precise distance
measurement based on the intensity of vortex beams. Our
research opens up a new direction for OAM communication
and has great significance in OAM based sensing.

THEORY AND METHODS

Generation of the Vortex Beam
The fundamental beam used to produce the vortex beam is a
Gaussian beam. By applying a phase mask on the spatial light
modulator (SLM), the beam amplitude on the plane of SLM
becomes [49]:

E1 r, θ( ) � exp − r
2

ω2
0

( )exp −iℓθ( ), (1)

where ℓ is the topological charge, ω0 is the Gaussian beam waist, r
and θ are radial and azimuthal coordinates, respectively.

Within the framework of paraxial approximation, the field
distribution of E1 (r, θ) after propagation can be calculated using
the Collins integral equation [50]:

E2 r1, θ1, z( ) � i

λB
exp −ikz( )∫2π

0

∫∞
0

E1 r, θ( )

× exp − ik

2B
Ar2 − 2rr1 cos θ1 − θ( ) +Dr21( )[ ]rdrdθ,

(2)
where r1 and θ1 are radial and azimuthal coordinates in the
output plane, z is the propagation distance, and k = 2π/λ is the
wave number with λ being the wavelength. The ABCD transfer
matrix of light propagation in free space of distant z is

A B
C D

( ) � 1 z
0 1

( ). (3)

By inserting Eq. 1 and Eq. 3 into Eq. 2, we can obtain the beam
amplitude as
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Eq. 4 represents the hypergeometric Gaussian mode. 1F1 (α, β, z)
is a confluent hypergeometric function, Γ(n) is the Gamma
function, b1 and ε1 are defined as:

b1 � kr1
2z

, ε1 � 1
ω2
0

+ ik

2z
. (5)

Based on the above calculations, we can obtain transverse
intensity images of vortex beam with different values of ℓ after
propagating different distances z.

In actual communication, turbulence can lead to phase
distortion of optical mode spatial distribution. Therefore, in
our experiment, we use the Kolmogorov model with Von
Karman spectrum of turbulence to simulate the atmospheric
turbulence in SLM to achieve a distorted communication
mode [51, 52]. The degree of distortion is quantified by the
Fried’s parameter r0. The expression of the turbulence phase
mask we added on the SLM is [42]:

Φ x, y( ) � R F −1 MNN

�������
ϕNN κ( )

√( ){ }, (6)

with ϕNN(κ) � 0.023r−5/30 (κ2 + κ20)−11/6e−κ2/κ2m and the Fried’s
parameter r0 � (0.423k2C2

nz)−3/5. The symbol R represents the
real part of the complex field, and F −1 indicates the inverse
Fourier transform operation. In addition, κ, κ0, and MNN

represent the spatial frequency, the central spatial frequency,
and encoded random matrix, respectively. C2

n is the standard
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refractive index, which is a constant representing the turbulence
intensity.

After the turbulence term is added to the original phase mask
and loaded on the SLM, beam amplitude on the plane of SLM
becomes

E1′ r, θ( ) � E1 r, θ( )exp iΦ x, y( )[ ]. (7)
By substituting Eq. 7 into Eq. 2, we can numerically obtain the
field distribution of the turbulence distorted E2′(r1, θ1, z) after
propagation.

The experimental setup and the deep learning model are
shown in Figure 1. In our experiment, the vortex beams are
generated by using an SLM and computer-generated holograms.
Utilizing the first-diffraction order of SLM, we can obtain the
vortex beam of arbitrary topological charge. A laser beam from a
He-Ne laser (wavelength of 632.8 nm) is coupled into a single-
mode fiber for spatial mode cleaning. A half-wave plate (HWP)
and a quarter-wave plate (QWP) are employed to adjust the
polarization of the laser beam at the output port of the fiber. An
objective lens (magnification of 10× and an effective focal length
of 17 mm) is used to collimate the light from the fiber, and the
beam waist after collimation is around 2 mm. By loading a
computer-generated phase hologram onto the SLM, a
Gaussian beam is converted into a vortex beam. In order to
simulate the turbulence in an atmosphere transmission process,
we can add an additional turbulence phase to the hologram.
Finally, a CCD camera is used to collect the intensity images of
the vortex beam, and the transmission distance is controlled by

changing the distance between the CCD and the SLM. The images
collected by the CCD are sent to a computer for training. Each
training set, validation set, and test set contain 86, 10, and 10
images (360 × 360 pixels), in which the value of ℓ ranges from 1 to
5, and the propagation distance z ranges from 40 to 100 cm with a
step of 5 cm. Totally, there are 86 × 5 × 13 = 5590 images for the
training set and 10 × 5 × 13 = 650 images for the validation set and
test set.

The Deep Learning Algorithm
The lower panel of Figure 1 shows our customized deep learning
algorithm model. Our model is a transfer learning network based
on the ResNet-101 network design [53]. Since our obtained
images have a high degree of similarity, the neural network
must have enough depth to extract image features. Therefore,
we adopt the CNN architecture and retrain the ResNet-101 deep
learning model rather than the shallow neural networks model.
More specifically, the top layer is removed from the original
ResNet-101. Moreover, a global max pooling layer with a node
count of 2048 is used to reduce the parameters to increase the
calculation speed. Following that, a dropout layer is added to
remove some parameters randomly to minimize over-fitting, and
then we use a fully connected (FC) layer to connect the local
features. Another dropout layer and an FC layer are added to
lower the number of nodes from 1024 to 65. Finally, a softmax
layer is applied for a 65 classification probability output.

To train and test the deep learning model, we utilize a
computer with an Intel(R) Core(TM) i5-7300HQ CPU
@2.5 GHz and an Nvidia GeForce GTX 1050 Ti GPU with

FIGURE 1 | The experimental setup (upper panel) and our customized deep learning algorithm (lower panel). We perform the experiment using a collimated He-Ne
laser beam. The vortex beam is generated using an SLM with the computer-generated hologram. Finally, the intensity images are collected by a CCD and used for
training and testing. Our deep learning network consists of the unaltered ResNet-101 bottom layer and our redesigned top layer.
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4 GB of video memory. We use an adaptive moment estimation
(Adam) optimizer throughout the algorithm [54]. In our deep
learning model, we also used the transfer learning technique
(TLT) [55], which has two benefits. Firstly, it is highly efficient;
for example, tasks that originally required months of training
without TLT can be reduced to a few hours. The second merit of
TLT is that less data is needed. This is because transfer learning
requires the use of a pre-trainedmodel, which allows us to achieve
accurate recognition results with fewer datasets [56]. Generally
speaking, only hundreds or thousands of training images (instead
of tens of thousands or even millions of images) are enough to
achieve good training results [57, 58]. Finally, the training results
in each epoch are evaluated by the categorical cross-entropy loss
function [59] which is given by

Loss � −∑n
i�1

ŷi1 lnyi1 + ŷi2 lnyi2 +/ + ŷim lnyim( ), (8)

where n is the number of samples, m is the number of
classifications, ŷim indicates that the true label (with the value
of 0 or 1), and yim is the predicted value of the mth class given by
the neural network.

RESULTS AND DISCUSSION

Figure 2 shows the spatial profiles of vortex beams with different
propagation distances z and topological charges ℓ obtained from
experiments and simulations. Figure 2A shows the vortex beams
without turbulence, and Figure 2B depicts vortex beams affected
by turbulence. The first and third rows depict the spatial profiles
of the vortex beams acquired in the experiment, while the second
and fourth rows depict the simulated ones under identical
conditions. For simplicity, we define the first aperture in the

center as the “center aperture” and other outer apertures as the
“diffraction apertures”. For a fixed value of ℓ, the size of the
central aperture becomes larger as the propagation distance z
value increases. At the same time, for a fixed propagation distance
z, the size of the central aperture also increases as the value of ℓ
increases. From Figure 2, we can observe that the spatial profiles
obtained from the experiment match well with our simulations,
therefore validating our theoretical model of the experiment. By
comparing the experimental and theoretical images of ℓ = 4 and
z = 100 cm, we can notice that the central aperture in the
experimental image is not distributed uniformly. This effect is
due to the slight misalignment of the collimated beam to the
center of the SLM. As a result, the brightness and shape of the
center aperture can vary slightly. This kind of deviation is also
included, in order to increase the diversities of the training data.
We will show later that, even with such deviations, the training
results remain excellent.

There are many situations where the size of the central
aperture is comparable for vortex beams with different ℓ and
propagation distance z. This particular effect makes the
simultaneous identification of ℓ and z difficult. For example,
by comparing the theoretical image of ℓ = 3 and z = 70 cm (second
row, second column), and the image of ℓ = 4 and z = 50 cm
(fourth row, first column) in Figure 2A, we can notice that the
sizes of the center aperture are similar, making it difficult to
distinguish between these two modes. In this case, the difference
of the diffraction apertures provides the best characteristic value
to distinguish them. More intuitively, Figure 3 shows the cross-
sectional view of the intensity for these two beams at y = 0. It is
clear that the distance between the two main peaks in Figure 3A
and Figure 3B is almost the same. However, Figure 3A has 4 side
lobes in the diffraction apertures, while Figure 3B has 6 side lobes
in the diffraction apertures. This subtle difference makes it
possible to distinguish these two cases. Finally, we note that in

FIGURE 2 | The spatial profiles of different vortex beams. We show the experimentally measured images and simulated images for different topological charges ℓ
and different propagation distances z, without turbulence in (A) and with turbulence in (B). The first and third rows are the images acquired from the experiment, and the
second and fourth rows represent the theoretically simulated images.
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Figure 3 the diffraction apertures in the region of |x| > 2.2 mm (in
black) usually cannot be well captured by a CCD in the
experiment, due to low light intensity and limited resolution
of the CCD.

In practical communication applications, the spatial profile of
the vortex beam might be distorted due to atmospheric
turbulence, underwater turbulence, or other adverse
circumstances. Therefore, the turbulence should be taken into

FIGURE 3 | The cross-sectional view of the intensity images at y = 0 for (A) ℓ = 3, z = 70 cm and (B) ℓ = 4, z = 50 cm. The size of the central apertures is comparable
in both images. However, the number of side lobes in the diffractive apertures is different. This subtle feature enables us to distinguish these two cases.

FIGURE 4 | The accuracy and confusion matrix of our trained deep learning algorithm. (A) The accuracy of the training set and the validation set versus the epochs.
The accuracy of up to 97% is achieved in identifying vortex beams with different ℓ values and different z values after 90 epochs. All shaded areas correspond to the
standard deviation of accuracy. All classification results have been tested and verified, and some test results are shown here. (B) The normalized confusion matrix
between the predicted propagation distance and the true propagation distance for ℓ = 3. (C) Normalized confusion matrix between predicted ℓ values, predicted
propagation distance and true ℓ values, true propagation distance.
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account for the propagation of the vortex beam. Figure 2B shows
the typical simulated and experimental diagrams with turbulence.
In these theoretical (the second and fourth rows) and experimental
(the first and third rows) data, a turbulence intensity parameter of
C2
n � 5 × 10−10 mm−2/3 is utilized. In these data sets, we also take

into account the fact that light might not be precisely incident on
the center of the SLM plane. It can be noticed that the turbulence
created huge distortions on the vortex beam’s center aperture and
diffraction apertures. For deep learning training, we gathered 1040
distorted light intensity images.

To show the performance of our deep learning network, we
plot the accuracy as a function of the training epochs in
Figure 4A. We can see that after 90 training epochs, the
accuracy is higher than 92% for the training set, while the
accuracy of the validation set is greater than 97%. Since we
added regularization and dropout operations during the
training process. These operations will be automatically closed
during the verification process, causing the accuracy of the
validation set to be higher than the accuracy of the training
set. A high validation accuracy of 97% indicates that our approach
provides a powerful way to identify the vortex beams with
different ℓ values and different z values, even under a
turbulent environment. Finally, we note that the number of
epochs required for convergence depends on multiple factors,
including the number of cases of different vortex beams
propagated and the degree of turbulence.

To show our results more comprehensibly, we calculated the
normalized confusion matrix for different ℓ and z. Figure 4B
shows a typical normalized confusion matrix from ℓ = 3, z =
40 cm to ℓ = 3, z = 100 cm. Figure 4C shows the normalized
confusion matrix from ℓ = 1, z = 40 cm to ℓ = 5, z = 45 cm. The
true propagation distance and the predicted propagation distance
given by our deep learning algorithm are basically on a diagonal
line. The result means almost all OAM modes and propagation
distances tested are correctly identified, only two images with ℓ =
3, z = 80 cm are predicted to be ℓ = 3, z = 75 cm in Figure 4B, and
only two images with ℓ = 2, z = 40 cm are predicted to be ℓ = 2, z =
45 cm in Figure 4C.

Finally, we want to emphasize that using classical methods
(e.g., interferometer) to analyze the distorted intensity images in
Figure 2B is quite challenging. However, according to training
and test results, our deep learning model can accurately identify
vortex beams with varying topological charges and propagation
distances even under the influence of severe turbulence. This
demonstrates that our approach has a high level of robustness and
is very useful for practical applications. We note that our
approach can be adapted to identify larger ℓ value with longer
and more accurate transmission distance. However, due to the
limitation of our equipment, such as the resolution of SLM and
CCD, as well as the experimental error caused by the laboratory
environment, we limit the size of our topological charges and the
length of the propagation distance. We believe our designed deep
learning neural network does not fundamentally limit the
recognition accuracy, and its potential is far from being
reached. Moreover, our scheme can be adapted to many
vortex beam related applications. For instance, we can adapt
our work to consider multiple types of vortex beams, and even the

combination of them. Furthermore, the accurate identification of
the propagation distance might be a novel technique for sensing
related applications. Last but not least, our approach can be
applied to free-space OAM communication, especially the
demodulation system, to increase the robustness of the
communication. We expect that by combining the unique
characteristics of vortex beams with the advantages of the
deep learning algorithm, more breakthroughs in vortex beams
research can be made in the future.

CONCLUSION

Vortex beams have enormous potential due to their versatility and
virtually unlimited quantum information resources. However, these
beams are highly susceptible to undesirable experimental conditions
such as propagation distance and phase distortions. In our work, we
exploit the deep learning algorithm to identify a vortex beam’s
topological charge and propagation distance. Specifically, we focus
on vortex beam with topological charge ℓ from 1 to 5, and the
propagation distance z ranges from 40 to 100 cm. Additionally, we
consider the effect of turbulence-induced in the propagation of the
beam. We experimentally demonstrated that our customized deep
learning algorithm could accurately identify the propagation distance
and topological charge. Our work has important implications for the
realistic implementation of OAM-based optical communications and
sensing protocols in a turbulent environment.
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