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The development of organic materials displaying room-temperature phosphorescence is a
research field that has attracted more and more attention in the last years. Most studies
focus on designing or optimizing emitter molecules to increase the phosphorescent
performance in host:emitter systems. Rarely, the overall thin-film preparation routines
are compared with respect to their triplet-state luminescence yield. Herein, different film
preparation techniques are investigated using the very same emitter molecule. A variation
of host polymer, post-annealing temperature, and fabrication procedure is evaluated with
respect to the obtained phosphorescent lifetime, photoluminescent quantum yield, and
phosphorescence-to-luminescence ratio. This study elaborates the importance of different
film preparation techniques and gathers a concise set of data which is helpful to anyone
optimizing the phosphorescence of a particular system.
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1 INTRODUCTION

Organic room temperature phosphorescence (RTP), an optical phenomenon originating from the
radiative transition of molecular excitations from the triplet excited state to the ground state, has
attracted a lot of interest among scientists [1–4]. Its use in information and optical storage, bio-
imaging, data encryption, as well as organic light-emitting diodes (OLEDs), and displays [5–12]
makes this group of materials indispensable nowadays. To achieve efficient organic RTP, both a
substantial intersystem crossing (ISC) between the lowest singlet and the triplet state manifold, as
well as the effective suppression of the non-radiative relaxations of triplet excitons are essential
[13–15].

According to Yan et.al, [3] one of the key parameters to efficient phosphorescence is the
phosphorescence lifetime. There are several pathways to increase it. Among those, host-guest
doping [16–18], crystal engineering [19, 20], H-aggregation [21–23], metal-organic and
supramolecular frameworks [24, 25], self-assembly [26], as well as luminescent polymers [14,
27–29], and carbon dots [30, 31], just to name a few, can be found. However, phosphorescence is not
only characterized by the excited triplet state lifetime, but also by its photoluminescence quantum
yield (PLQY) and the phosphorescence-to-luminescence (P2L) ratio (defined later in the text).
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Numerous research groups focused on improving these
parameters by employing specially designed emitter molecules
like boronic acid esters or carbazoles or rigid polymer matrices
such as cyclodextrines [3, 4]. It is, however, equally important to
optimize the phosphorescence lifetime, P2L ratio, and PLQY for
already existing emitters. This is particularly interesting when
different RTP applications may require different processing
techniques. It then needs to be elaborated how employing
different processing might alter the phosphorescence
performance. For fabricating thin films where the emitter is
embedded in a polymer matrix, there are a few adjusting
screws that can be turned. On the one hand, the nature of the
polymer can be important. Polarity, chain length, and side groups
can not only promote the interaction of the emitter with the
polymer but also rigidify the polymer itself, e.g., by forming
intermolecular hydrogen bonds [32, 33] or by a denser packing
[1]. This leads to a reduction of the non-radiative decay rate, thus
enhancing the phosphorescence lifetime and efficiency. On the
other hand, the same effect might probably be achieved by
varying the deposition technique since for slower or directed
deposition, the packing density can be increased [34]. A similar
behavior can be expected by thermal post-treatment of the
films [35].

In this report, we study the interplay of the process
parameters, host materials, deposition and post-treatment
techniques regarding their impact on phosphorescence
lifetime, P2L ratio, and PLQY. We utilize a poly (methyl
methacrylate) (PMMA):N,N′-di (1-naphthyl)-N,N′-diphenyl-
(1,1′-biphenyl)-4,4′-diamine (NPB) blend as the material
system benchmark, as our group has used it extensively

throughout the recent years. We developed rewritable
photoluminescent tags, PLTs [6], synthesized microparticles
[36], and prooved dual-state Förster Resonance Energy
Transfer [37] using that system.

2 RESULTS AND DISCUSSION

The thin films studied in this report are comprised of PMMA,
polystyrene (PS), polylactic acid (PLA), or acrylonitrile butadiene
styrene (ABS) (Figure 1D) as host materials and two weight
percent (wt%) NPB as guest molecule. The latter is not only a
well-known hole transport material in OLED technology [38–40]
but also a widely used phosphorescent emitter when embedded
into a polymer matrix [37, 41]. We used either spin-coating (sc),
drop-casting (dc), or blade-coating (bc) onto quartz substrates
under ambient conditions as deposition techniques. The samples
were either used as fabricated or were subject to additional post-
treatment annealing at 40, 60, 80, 100, or 120°C, respectively, for
24 h in ambient air. These temperatures have been chosen to
identify potential changes in the material system exceeding a
certain threshold. During this heating step (unheated films were
subject to a 24 h waiting time), the films were allowed to
reorganize/find their equilibrium over a longer period of time.
Except for PLA, the glass transition temperatures (TG, see
Figure 1D) are around 100°C. We have chosen the post-
annealing temperature range to span from room temperature
to slightly above TG. A further increase in temperature leads to the
decomposition of the emitter first, closely followed by the
polymer decomposition. PMMA for example starts to

FIGURE 1 | (A) Continuous wave (cw) emission spectra of drop-cast host:NPB films in air (dashed line) and nitrogen atmosphere (solid line). (B) Delayed emission
spectra showing the respective phosphorescence. (C) Phosphorescence decays and lifetimes, inset: PMMA:NPB sample excited with 365 nm showing blue prompt
and green delayed emission. (D)Molecular structures of NPB and the host polymers used in this work, glass transition temperatures of the polymers given in brackets.
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decompose already at 180°C. For all 72 samples, the emission
spectra in air and nitrogen, as well as the PLQY were measured
under 365 nm excitation. The phosphorescence lifetime τ was
determined from the transient of the delayed emission (see
Supplementary Tables S1, S2).

Figure 1 exemplarily shows the spectra of blade-coated
samples post-treated at 40°C. In ambient conditions
(Figure 1A, dashed line), only the blue fluorescence with a
peak wavelength of 420 nm is visible, since the
phosphorescence is quenched by oxygen [6, 42, 43]. In
nitrogen atmosphere (Figure 1A, solid line), the green
phosphorescence with maximum intensity at 555 nm appears.
Taking delayed spectra of the films shows the isolated
phosphorescence spectrum (Figure 1B). The inset in
Figure 1C shows a photograph of such a sample during
excitation and shortly after the LED is turned off. The
lifetimes of the latter are given in Figure 1C.

To identify the P2L values, the integral of the emission curves
in air (fluorescence, Fair) and nitrogen (fluorescence +
phosphorescence, FN2 + P = L) between 380 and 800 nm were
determined. With (L-Fair)/L, the P2L ratio can be calculated.
Here, the spectra in nitrogen were recorded at low excitation
intensities to prevent nonlinear effects such as singlet-triplet
annihilation (STA), triplet-triplet annihilation (TTA) [44], and
excited-state saturation. PLQY was measured in an integrating
sphere at 340 nm excitation. More details of the procedure are
given in the supplementary material. Figure 2 gives an overview
of the measurement results.

2.1 Phosphorescence Lifetime
Figure 2A shows the phosphorescence lifetime (τ) of the samples
after the respective temperature treatment (see Supplementary
Table S1). In a first experiment (Supplementary Table S2), we
used an equal polymer concentration for all three deposition
techniques. Here, the spin-coated samples were about ten times
thinner than the one of drop-cast or blade-coated samples [e.g.,
for PMMA samples: 210 nm (sc), 3,150 nm (dc), and 1,835 nm
(bc)]. For that reason, we prepared samples by spin-coating with

film thicknesses in the range of 150–5,600 nm and measured the
respective phosphorescence lifetime. Supplementary Figure S2
shows, that there is an increase of the lifetime with increasing film
thickness.

We therefore decided to increase the film thickness by a
second spin-coating series with higher polymer concentration
to match the film thickness values of the other coating techniques.
Here, we adjusted the film thickness to be in between the ones
obtained by drop-casting and blade-coating. Analyzing this series
we found that the lifetimes of the thin spin-coated samples are
around 15 ms (PMMA), 140 ms (PS), 80 ms (PLA), and 50 (ABS)
ms shorter, in case of unheated substrates, compared to the
thicker samples.

It has been shown before that polymer chains align during the
drying process following a drop-casting or blade-coating
fabrication [45]. This change of the nanostructure might
influence the overall luminescence and the phosphorescence in
particular by decreasing the non-radiative rates. The slow process
usually leads to more ordered and less defective films as
compared to spin-coated ones. Also, blade-coating can
facilitate molecule alignment through applied directional shear
stress and likewise results in less defective films with enhanced
structural order [46]. As already mentioned, an increase in
stiffness of the polymer and consequent suppression of non-
radiative rates is supposed to increase the phosphorescence
lifetime. We, therefore, performed GIWAXS measurements of
samples with PS in order to observe if the different processing
methods change the packing of either the NPB or the PSmatrix. A
summary of the collected data is shown in Supplementary Figure
S3. For all PS:NPB films we observe a broad ring located at q ~
1.38 Å−1 that we associate with the polystyrene matrix. The
corresponding real space distance is approximately 4.55 Å,
which coincides with the PS monomer length and thus the
average distance of the phenyl rings in PS. Due to the intense,
broad scattering signal of the PS matrix, and the tendency to form
amorphous films, no scattering signal of NPB could be observed
for the PS:NPB films. However, compared to a plain PS film,
slight changes in the PS matrix are seen in the blended films, with

FIGURE 2 | Heat maps of (A) phosphorescence lifetime (τ) and (B) phosphorescence-to-luminescence ratio (P2L) of spin-coated (sc), drop-cast (dc) as well as
blade-coated (bc) polymer:NPB samples for different post annealing temperatures.
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the PS ring position shifting to smaller q-values. We think that the
addition of NPB increases the distance between the phenyl rings,
either by a coordination of the NPB molecules at positions in-
between the PS phenyl rings or by an increase of the PS chain
curvature (Supplementary Figure S3). This change of the PS
matrix scattering signal also shows that the NPB molecules are
well dispersed in the PS matrix and that no phase separation
occurs. Furthermore, the position of the ring in the GIWAXS
images seems to depend on the processing technique with the
most evident change occurring for the drop-cast samples. One
may speculate that this trend correlates with the processing and
film formation velocity, respectively. Indeed, the deposition time
is longest in the case of drop-casting, since the solvent needs
several hours to evaporate.

Upon heating of the samples after the deposition, the lifetimes
show only an increase of up to 20 ms for drop-cast and blade-
coated samples. In addition, there is nearly no change for the thin
spin-coated PMMA samples. The glass transition temperatures
(TG) of the used polymers are around 100°C, except for PLA
(50–80°C). Up to this temperature, the lifetimes are more or less
in the same range. By reaching TG, they start to decrease which is
most prominent for the whole PLA series as well as for thin spin-
coated ABS and PS samples. It is remarkable though, that by
heating the thick spin-coated samples, the lifetime can be
increased by impressive 50 ms (PMMA, 80 and 100°C), 230 ms
(PS, 40°C), 250 ms (PLA, 100°C), and 135 ms (ABS, 100°C),
compared to the corresponding thin samples. A possible
reason could be remaining solvent that was trapped in
between the unordered polymer chains and can be released
only by heating of the film. It is possible that the order of the
chains and the stiffness of the film does not necessarily correlate.
In case of spin-coating, the chains are very much unordered but
nevertheless the film could be very stiff if the remaining solvent is
removed. On the other hand, the ordered chains in drop-cast and
blade-coated films might be less stiff due to flexible
intermolecular hydrogen bonds.

2.2 Phosphorescence-to-Luminescence
Ratio
The phosphorescence-to-luminescence ratio (P2L) indicates the
proportion of the phosphorescence in the total emission. This is
not only interesting in the case of afterglow applications but also
for the visibility of the phosphorescence in continuous wave (cw)
photoluminescence in nitrogen atmosphere. If the P2L ratio is
over 0.5, the intensity of the phosphorescence is higher than the
one of the fluorescence, thus enabling the detection of the
phosphorescence signal clearly by eye even under cw
illumination [47, 48].

From the data presented in Figure 2B we cannot deduce any
systematic influence of post-annealing or fabrication technique,
but it can be shown, that PS as well as the drop-cast PLA samples
show the lowest P2L ratio.

2.3 Photoluminescence Quantum Yield
The PLQY is the ratio of emitted to absorbed photons and is
quantified in photoluminescence experiments [49]. Figure 3A
depicts the PLQY values of the samples and looks very similar to
Figure 2A. By multiplication of the P2L with the PLQY values,
the phosphorescence PLQY (PLQYphos) can be obtained.
Figure 3B shows that PLQYphos correlates with the
phosphorescence lifetime. This behavior seems to have
different trends for each of the tested polymer hosts. We
therefore account it to the suppression of non-radiative triplet
decay, which influences both the PLQY and lifetime of the excited
state and is mediated by the host polymer.

2.4 Global Phosphorescence Performance
To achieve an overall and easy-to-read figure of merit, we define a
parameter called global phosphorescence performance (GPP).
Each parameter set (phosphorescence lifetime, P2L ratio, and
PLQY) is normalized to [0:1], which gives 1 for the best and 0 for
the worst value. For each sample, the values of the three

FIGURE 3 | (A)Heat map of PLQY of spin-coated (sc), drop-cast (dc) as well as blade-coated (bc) polymer:NPB samples for different post annealing temperatures.
(B) Correlation of phosphorescence PLQY and τ for spin-coated (dot), drop-cast (square), and blade-coated (triangle) samples of NPB in PMMA (red), PS (green), PLA
(purple), and ABS (orange), respectively.
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parameters were added up, resulting in a score between 0 and 3.
The overall GPP for each sample is shown in Figure 4A as a heat
map and in Figure 4B as 3D plot. For the sake of clarity, we
decided to not mark each individual point with the respective
temperature. The GPP values are provided in Supplementary
Table S1. As can be seen, there are three PLA samples (purple
spheres) in the top-right corner of the plot, indicating the highest
GPP. The values correspond to the spin-coated samples post-
treated at 40 and 60°C, as well as the untreated one.

Another parameter that might be important is the chain length
of the polymeric hosts. Shorter chains might form a denser
packing, thus increasing the lifetime by suppressing the non-
radiative rates. We have chosen PS with five different chain
lengths and four types of PMMA (see Supplementary Figure
S4). However, there were no dependencies observable. We
repeated the same experiment with a different emitter [4,4′-
bis(diethylphosphonomethyl)biphenyl (BDPB)] which is
known to interact with PMMA by forming intermolecular
hydrogen bonds [50], confirming that the lifetime indeed
increases with decreasing the PMMA chain length (see
Supplementary Figure S5). This indicates that NPB does not
interact with the polymer matrix in the same way and without
measurable changes.

3 MATERIALS AND METHODS

3.1 Chemicals
NPB and PS [MW 280,000 (photophysical measurements) and
35,000 (GIWAXS)] were purchased from Sigma Aldrich, PMMA
(MW 550,000) as well as anisole from Alfa Aesar, PLA and ABS
from Smart Advanced Systems GmbH.

3.2 Film Fabrication
Both emitter and respective polymer were dissolved in anisole to
reach a solution containing 2 wt% NPB and 98 wt% polymer. The
polymer concentration was 40 mg/ml (PMMA) and 80 mg/ml
(PS, PLA, ABS), respectively. For thick spin-coated samples,
concentrations of 120 (PMMA), 250 (PS), 110 (PLA), and

220 mg/ml were used. Cleaned quartz glass substrates of a size
of 25 mm by 25 mm were used.

3.2.1 Spin-Coating
A spin coater SCE-150 from Novocontrol Technologies was used.
150 µL of the respective solution was applied to a quartz substrate
and spun at 33 rps for 60 s with a ramp of 3 s in case of thin films.
The thick films were spun at 20 rps for 180 s.

3.2.2 Drop-Casting
50 µL of the respective solution has been drop-cast onto the
quartz substrate and was kept at ambient conditions over night
for the solvent to evaporate.

3.2.3 Blade-Coating
Blade coating was carried out with a home-build coating setup
consisting of a sample stage that can be heated and a movable
blade. The ODTMS-treated [51] blade was kept at a substrate-
blade distance of 100 µm with an angle of 8°. All samples were
coated with 25 μl at 30 mm/s at normal ambient conditions in air.
After coating, they were kept on a hotplate at 40°C for 5 min.

3.2.4 Post-Annealing
To heat the samples to a defined temperature, a hotplate VWR
VMS-C7 was used. A 160 × 160 × 10 mm aluminum block with
16 squares (30 × 30 mm, 1 mm depth) and a drilled hole for a
temperature sensor were used to ensure an equal temperature
distribution over the whole area. Twelve samples have been
heated to the dedicated temperature simultaneously and kept
there for 24 h.

3.3 Emission Measurements
Direct and delayed emission measurements were performed
using a CAS 140CTS from Instrument Systems. To trigger the
detection and the 365 nm (Thorlabs, M365 L2) LED, a TGP3122
pulse generator (AIM-TTI Instruments) was used. All
measurements were performed in darkness under nitrogen or
ambient conditions. The control software SweepMe! was used for
automated data acquisition [A. Fischer, F. Kaschura, SweepMe! A

FIGURE 4 | (A) Heat map of the global phosphorescence performance for all 72 samples. (B) The same data shown as 3D plot.
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multi-tool measurement software, www.sweep-me.net (accessed:
2021–12–20)].

3.4 Lifetime Measurements
The phosphorescent lifetime was determined using a silicon
photodetector PDA100A by Thorlabs. The decay was recorded
and fitted using a two-exponential fit resulting in an intensity-
averaged lifetime. The prodecure and details can be found in Refs.
[41, 52]. The measurement error is ±5 ms.

3.5 PLQY Measurements
The PLQY values were determined using the method proposed by
de Mello et al. [53], improved by F. Fries. [49] As excitation
source, a 300W xenon lamp in combination with a
monochromator (LOT Quantum Design MSH300) was used.
The samples were placed in a calibrated integration sphere
(Labsphere RTC-060-SF) and the spectra were acquired with
an array spectrometer (CAS 140CT, Instrument Systems).

3.6 GIWAXS Measurements
GIWAXS investigations were performed at the NCD-SWEET
beamline at the ALBA synchrotron. An area detector (LX255-HS,
Rayonix) was placed approximately 20 cm behind the sample.
The beam size was 80 µm horizontally and 30 µm vertically, and
the beam energy was 12.4 keV. The incidence angle was 0.12°. The
collected images were calibrated using a chromium oxide
calibration standard and background-subtracted using
background images obtained from a plain quartz sample.

3.7 Film Thickness
Film thickness was determined using a profilometer Veeco
Dektak 150 from Bruker. A groove has been cut into the film
in the middle of the sample using a cannula. A line scan was done
at three different positions and the thickness values were
averaged.

4 CONCLUSION

This study compares the phosphorescence performance of
differently produced thin films employing all the same RTP
emitter. The host polymer, the annealing temperature, and the
fabrication technique were varied. Every combination was
evaluated with regard to phosphorescence lifetime, PLQY, and
P2L ratio. In terms of the host polymer, the most significant
change was detected reaching annealing temperatures above the
glass transition temperature. PLA, which has the lowest TG,
clearly showed a performance drop above 80 °C annealing
temperature. Apart from PLA, reasonable annealing
temperatures below TG do not seem to change the overall
phosphorescence performance in case of drop-cast and blade-
coated samples. With respect to the fabrication technique, spin-
coated films that are thinner by an order of magnitude, showed
the poorest performance, while blade-coating and drop-casting
yielded comparable results. This behavior might be induced by a
higher net excitation intensity in thin films but is not yet fully

understood at this stage and subject to further ongoing
experiments. Going from thin to thick spin-coated films, the
phosphorescence lifetime could be increased by a factor of up to
2.5 (PLA, sc).
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