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By analyzing the voiceprint characteristics of giant panda’s voice, this study proposes a
giant panda individual recognition method based on the characteristics of the composite
Mel composite frequency cepstral coefficient (CMFCC) and proves that the characteristic
sequence of the CMFCC has long-range dependent characteristics. First, the MFCC (Mel
composite frequency cepstral coefficient) with a low frequency resolution is obtained by
the Mel filter bank; then, the inverse Mel frequency cepstral coefficient (IMFCC) features of
giant panda calls are extracted. The CMFCC characteristic sequence of giant panda voice
composed of the MFCC and IMFCC improves the resolution of high- and low-frequency
resolution characteristics of giant panda voice. Finally, the first-order difference
characteristic parameters of the MFCC are integrated to obtain the difference
characteristics between frames. Through experiments, the improvement of the system
recognition effect is verified, and the recognition accuracy meets the theoretical
expectation.
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1 INTRODUCTION

Voiceprint is a collection of various common acoustic feature maps. It is a sound feature measured by
special acoustic instruments. The core of voiceprint recognition is to extract its unique speech
features from the collected speech information. The feature template is formed after recognition
training. During recognition, the speech used is matched with the data in the template library, and
the score is calculated to judge the speaker’s identity [1]. Since 1930, there has been a basic research
study on speaker recognition [2]. In 1962, the term “voiceprint” officially appeared as a sound texture
feature [3]. After that, S. Pruzansky proposed a matching method based on probability value
estimation and correlation calculation [4]. At the same time, the focus of recognition has become to
select and extract the corresponding feature recognition parameters. Since 1970, voiceprint features
such as the short-term average energy feature, linear prediction cepstral coefficient LPC (linear
prediction coefficient), and Mel frequency cepstral coefficients MFCC (Mel frequency cepstral
coefficients) have emerged. At the same time, some methods have also been used to extract feature
parameters by using cepstral coefficients or introducing first- and second-order dynamic differences
[5]. After the 1980s, characteristic parameters such as time domain decomposition, frequency
domain decomposition, and wavelet packet node energy also gradually appeared and were widely
used [6]. Jinxi Guo et al. studied the recognition system in the noise environment [7] and made some
achievements and progress.

Voiceprint feature is a key link in human voiceprint recognition technology and related
applications. Considering the similarity of the way of sound production between giant pandas
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and humans, as well as the universality and wide application of
voiceprint recognition technology, the voice of giant pandas can
be analyzed and studied. At present, there is no case of research
on individual recognition of giant pandas based on voiceprint
features, especially because of the precious voice data of giant
pandas, and the giant pandas and their call waveforms are shown
in Figure 1.

Voiceprint feature extraction algorithms mainly include the
following [5]: the strong representation ability of the speech
signal, good recognition effect, good self-specificity and feature
exclusivity, simple operation, and convenient calculation.

In 2021, Li Ming proposed the mmfGn (modified
multifractional Gaussian noise) theorem of long-range
dependence (LRD) and short-range dependence and used
the time-varying Hurst parameter to describe the time-
varying sea level of LRD [8]. A new generalized fractional
Gaussian noise (gfGn) is introduced. The study uses gfGn to
model the actual traffic trace exhibition. The gfGn model is
more accurate than the traditional fractional Gaussian noise
(fGn) traffic modeling [9].

In 2021, Junyu used the Bayesian maximum entropy (BME)
method to represent the internal spatiotemporal dependence of
sea surface chlorophyll concentration (SSCC) distribution [10].
The Hurst index value of chlorophyll on the ocean surface ranges
from 0.6757 to 0.8431. A high Hurst index value represents strong
LRD, which may be a common phenomenon of daily sea surface
chlorophyll [11].

This study focuses on the analysis and optimization of the
Mel frequency cepstral coefficient of giant panda voice,
discusses the long-range–dependent characteristics of
feature sequence, analyzes the voiceprint feature sequence
suitable for the giant panda individual recognition system,

and realizes the individual recognition algorithm based on the
giant panda voiceprint.

2 MEL FREQUENCY CEPSTRAL
COEFFICIENTS

Mel frequency cepstral coefficients (MFCCs) are voiceprint
features extracted by combining the auditory perception
characteristics of human ears with the generation mechanism
of speech [12]. The sensitivity of the human ear to sound is not
linear, but it changes with the change in frequency. It is more
sensitive to low-frequency sound than high-frequency sound.
According to the perceptual characteristics of the human auditory
system, the Mel cepstral coefficient is widely used in voiceprint
recognition.

2.1 Mel Frequency Cepstral Coefficients of
Giant Panda
The frequency corresponding to the MFCC is the Mel frequency,
which is recorded as fmel, and its functional correspondence with
frequency f is as follows:

fmel � 2595 × log10(1 + f

700
) (2.1)

The following is the extraction process of the Mel frequency
cepstral coefficient:

1) First, the original speech signal s(n) is sampled at the sampling
frequency of 44.1 KHz and quantized in the 16bit mode, and then,
the background noise and high-frequency noise are eliminated by
using a bandpass filter. Finally, the time domain signal x(n) is

FIGURE 1 | Giant panda and its sound waveform.
FIGURE 2 | Mel scale filter bank.
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obtained by using a pre emphasis technology to compensate the
high-frequency loss of sound. Then, it is transformed by formula
Eq. 2.2 to obtain the corresponding linear spectrumX(k), where
k is the time domain frequency corresponding to each point of the
original speech signal.

X(k) � ∑N−1

n�0
x(n)e−j2πnk/N(0≤ n, k≤N − 1) (2.2)

2) The Mel frequency filter bank composed of a group of
triangular filters is used to filter the linear spectrum to
obtain the Mel spectrum, and then, its logarithmic energy
is calculated to obtain the logarithmic energy S(m) of the
original giant panda sound signal.

A group of triangular bandpass filter combinations constitute
Mel filter banks, where, 0≪m≪M, andM is the total number of
triangular filters in Mel filter banks. The center frequency of these

filters is f(m). Considering the logarithmic conversion
relationship between the Mel frequency and ordinary
frequency, it can be seen that the center spectrum of each
filter with an equal interval linear distribution in the Mel
frequency is dense in the low-frequency band and sparse in
the high-frequency band. The schematic diagram of the Mel
frequency filter bank is shown in Figure 2.

The transfer function of each bandpass filter is as follows:

Hm(k) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (k<f(m − 1))
k − f(m − 1)

f(m) − f(m − 1) (f(m − 1)≤ k≤f(m))
f(m + 1) − k

f(m + 1) − f(m) (f(m)< k<f(m + 1))
0 (k>f(m + 1))

(2.3)
The formula for obtaining the logarithmic spectrum S(m) is as

follows:

S(m) � ln⎛⎝ ∑N−1

k�0
|X(k)∣∣∣∣2Hm(k)⎞⎠, 0≤m<M (2.4)

3) By substituting the above logarithmic energy into the discrete
cosine transform (DCT), the Mel cepstral parameters C(n) of
order L can be obtained, as shown in Eq. 2.5, where L is the
order of MFCC coefficients, usually is 12–16, and M is the
number of Mel filters.

C(n) � ∑M−1

m�1
S(m) cos⎛⎝π(m + 1

2)
M

⎞⎠, n � 1, 2,/L (2.5)

Figure 3 is a 12-order MFCC characteristic diagram of a giant
panda voice, in which the X-axis represents the order of the
MFCC coefficient, the Y-axis represents the number of frames of
voice, and the Z-axis represents the corresponding cepstral
parameter value.

FIGURE 3 | 12th order MFCC characteristic diagram.

FIGURE 4 | 12th order MFCC and its ΔMFCC characteristic diagram. (A) MFCC characteristic diagram and (B) ΔMFCC characteristic.
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2.2 First-Order Differential Mel Frequency
Cepstral Coefficients of Giant Panda
Sound
The standard MFCC parameters reflect the static
characteristics within each frame of speech, while the
difference of the MFCC reflects the dynamic characteristics.
The Furui experiment shows that adding dynamic
characteristics to the features can greatly improve the
system performance [13]. The introduction of differential
features has a wide range of applications and good results
in the field of human voice recognition. Therefore, this method
is also first used in the processing of giant panda voice.

After obtaining the MFCC parameters, use Eq. 2.5 to extract
the MFCC first-order differential parameter ΔMFCC.

Dt �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ct+1 − Ct t< θ

∑Θ
θ�1

θ(Ct+θ − Ct−θ)/⎛⎝2∑Θ
θ�1

θ2⎞⎠ else

Ct − Ct+1 t≥T − Θ

(2.6)

where Dt represents t-th ΔMFCC, T is the order of the cepstral
coefficient, Θ is the time difference of the first derivative, and the
values of 1 and 2 represent the first cepstral coefficient [14].

Figure 4 shows the characteristics of the MFCC of order 12
and ΔMFCC of order 12 of the same giant panda voice.

3 COMPOUND MEL FREQUENCY
CEPSTRAL COEFFICIENT OF GIANT
PANDA SOUND
3.1 The Inverse Mel Frequency Cepstral
Coefficient
The IMFCC feature can compensate the high-frequency
information and improve the system recognition rate through
its integration with the traditional MFCC. The structure of the
IMFCC filter bank is shown in Figure 5.

Corresponding to the Mel domain of the traditional filter
structure, we call this domain as the inverted Mel domain, which
is recorded as IMEL, and the corresponding frequency is recorded
as Fimel. The relationship with the time domain is as follows:

Fimel(f) � 219.268 − 2595log10(1 + 4031.25 − f

700
) (3.1)

The inverted filter response becomes

EHi(k) � Hp+i+1(N2 − k + 1) (3.2)

where EHi(k) is the filter response in the MEL domain.
Figure 6 shows the 12th order MFCC and the 12th order

IMFCC characteristic diagram of a giant panda sound, in which
the X axis represents the order of theMFCC , the Y axis represents

FIGURE 5 | Inverted Mel filter bank.

FIGURE 6 | 12th order characteristic diagram of giant panda sound. (A) MFC and (B) IMFCC.
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the number of voice frames, and the Z axis represents the
corresponding cepstral parameter values.

3.2 Composite Mel Composite Frequency
Cepstral Coefficient
MFCC characteristic parameters are obtained through the Mel
filter bank and a series of operations. Accordingly, the

characteristic coefficients obtained after a series of operations
through the Mel filter bank and composite filter bank of the
inverted Mel filter bank are called composite Mel frequency
cepstral coefficients, which are recorded as the CMFCC
(compound Mel frequency cepstral coefficient).

Therefore, we fuse the 12th order MFCC characteristic
diagram and 12th order IMFCC characteristic diagram in
Figure.7 to obtain the corresponding 24th order CMFCC
characteristic parameter diagram, as shown in Figure 8.

3.3 Hurst Exponent of the Composite Mel
Composite Frequency Cepstral Coefficient
Feature Sequence
Assuming that the sequence composed of CMFCC features
satisfies the fractional Brownian motion distribution, we can
calculate H according to the following method [13, 15, 16].

Let n be the number of data of CMFCC-modified
multifractional Gaussian noise (mmfGn) [8, 9]. Let 1< k<N
be the length of the neighborhood used for estimating the
function parameter. We will estimate H(t) only for
t in [ kN, 1 − k

N].
Without loss of generality, we assume m � N/k to be an

integer. Then, our estimator of H(i) is the following:

Ĥi � −log[ �
π
2

√
Sk,N(i)]

log(N − 1) , (3.3)
where

FIGURE 7 | 24th order CMFCC characteristic diagram.

FIGURE 8 | Original sound signal of the giant panda and the CMFCC characteristic sequence. (A) Original sound signal of the giant panda, (B) the CMFCC
characteristic sequence extracted from the sound.
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Sk,N(i) � m

N − 1
∑

j∈[i−k
2,i+k

2]
∣∣∣∣Xj+1,N −Xj,N

∣∣∣∣ (3.4)

Figure 8 shows the original sound signal of giant panda and the
CMFCC characteristic sequence. Figure 9 shows the H-index

distribution of two CMFCC characteristic sequences of the giant
panda sound. In Figure 9A, the giant panda sound duration time
T � 2s, sampling frequency fs � 192kHz, n � 7608, and k � 512.
In Figure 9B, the giant panda sound duration T � 9s, sampling
frequency fs � 44.1kHz, n � 7940, and k � 512. The experimental
results show that the CMFCC characteristic sequence of the giant
panda voice has long-range dependent characteristics.

4 DISCUSSION

We applied the CMFCC feature sequence with LRD to giant panda
individual recognition. Considering that this feature is the feature
information obtained within the speech frame, the △MFCC of the
MFCC feature parameter is introduced. The two features of CMFCC
and ΔMFCC are fused to obtain a new feature parameter.

There are 20 individual giant pandas. Each individual has 10s
sounds, including 4s for training and 6s for testing. The ratio
between the number of correctly recognized test sounds and the
total number of test sounds is the correct recognition rate. The
final result is the average of the recognition rates of the three
experiments, as shown in Figure 10 and Table 1.

The order of CMFCC andMFCC features are 8, 12, 16, and 20,
respectively, and the order of △MFCC also corresponds to 8, 12,
16, and 20. From Table 1, we can see that the higher the order of
features, the higher is the recognition rate, indicating that the
correlation of feature sequences is also stronger.

The final individual identification of giant panda is shown in
Table 1. Figure 10 is a broken line diagram of three feature
recognition results.

It can be seen from Figure 10 and Table 1 that the characteristic
parameters obtained by flipping the Mel filter bank can improve the
resolution of the high-frequency part. Therefore, after using CMFCC
features, the recognition rate of giant panda individuals is higher than
that under the MFCC. At the same time, this is because the ΔMFCC
feature considers the difference between frames and improves the
feature performance of the CMFCC. Therefore, the recognition rate

FIGURE 9 | H-index distribution of two CMFCC characteristic sequences of giant panda sound, (A) T � 2s, fs � 192kHz, n � 7608, k � 512, (B) T � 9s,
fs � 44.1kHz, n � 7940, k � 512.

TABLE 1 | Recognition rate of giant panda individual recognition.

Order\Type 8 12 16 20

MFCC 56.67(68) 71.67(86) 79.17(95) 80.83(97)
CMFCC 65(78) 77.5(93) 83.33(100) 85.83(103)
CMFCC+ΔMFCC 67.5(81) 80.83(97) 86.67(104) 88.33(106)

FIGURE 10 | Line chart of the individual recognition rate of the
giant panda.
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of the CMFCC and ΔMFCC combination feature is better, and the
theoretical results are consistent with the experimental expectations.

5 CONCLUSION

This study mainly presents the characteristics of the Mel
composite cepstral coefficient of giant panda sound (CMFCC)
for individual recognition. It is verified that the CMFCC feature
sequence conforms to the distribution characteristics of fractional
Brownian motion, which has long-range dependence. This
feature sequence makes use of the memory characteristics of
the giant panda voice in time and can obtain the characteristics of
the giant panda sound in low- and high-frequency resolution at
the same time. Through experimental verification, it has the best
effect on individual recognition of the giant panda and improves
the efficiency of the giant panda. The recognition rate has reached
the expected effect of individual recognition of the giant panda.
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