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In this study, the timelike-ruled and developable surfaces are constructed in Minkowski 3-
space E3

1. Using the E. Study map, we demonstrate that dual forms of timelike-ruled and
developable surfaces can be obtained from the coordinates and first derivatives of the
base curve at the dual hyperbolic unit sphere. This is proposed as a novel method for
obtaining timelike-ruled and developable surfaces. Some examples have also been
provided.
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1 INTRODUCTION

In spatial kinematics, the movement of an oriented line over a curve forms a ruled surface. The
oriented lines are named generators (rulings), and each curve that intersects all the generators is
called A directrix (or base curve). The theory of ruled surfaces is mentioned by researchers and
mathematicians because of its applications in screw systems, iterative methods for displacement
analysis of spatial mechanisms, and computer aided design (CAD) [1–4]. Because many researchers
have already studied and determined numerous characteristics of ruled surfaces, as in [24, 25], this
study is limited to theMinkowski 3 space. Developable surfaces define a subset of ruled surfaces, such
that every point from the same ruling shares a common tangent plane. Rulings define the principal
curvature lines of zero normal curvature in addition to the Gaussian curvature, which is zero at each
point on the surface. Because the inner metric of a surface locates the Gaussian curvature, all the
angles and lengths on the surface remain invariant under bending. This feature is what makes ruled
and developable surfaces important in manufacturing. Hence, both ruled and developable surfaces
have been considered in engineering, architecture, design, etc. (see [5–10])].

A suitable method to study the motion of an oriented line in space starts from the relationship
among this space, dual numbers, and dual vector calculus. Dual numbers were first introduced byW.
Clifford; subsequently E. Study utilized it as an instrument for the purpose of differential line
geometry and kinematics. He devoted special care to the impersonation of oriented lines by dual unit
vectors and defined the mapping, which was later named after him. The E. Study map indicates that
the set of all oriented lines in Euclidean 3-space E3 is directly linked to a set of points on the dual unit
sphere in the dual 3-space D3 [1, 4, 7]. Thus, the differential geometry of the ruled surfaces based on
the E. Study map has derived the curvature theory of the line trajectory and exposed the fundamental
curvature functions which describe the shape of a ruled surface (refer to example [11–13]).

Kose introduced a novel method for determining developable ruled surfaces using dual-vector
calculus [14]. They demonstrated that a ruled surface can be obtained from coordinates and first
derivatives of the base curve. Further Yildz et al. applied this method using an orthotomic concept
[15]. In the course of time, this method has been extended and presented in the dual Lorentzian 3-
space D3

1 by [16–19].
However, to the best of the authors’ knowledge, no literature exists regarding the fact that a

timelike-ruled surface can be obtained from coordinates and the first derivatives of the base curve.
Hence, this study attempts to address this need. The remainder of this paper is organized as follows:
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In Section 2, we present some basic concepts dealing with the
dual Lorentzian 3-space D3

1. In Section 3, we offer a method for
determining a timelike ruled surface from the coordinates and
first derivatives of the base curve using a dual-vector calculus.
Consequently, as a special case, we discuss the method for
timelike developable ruled surfaces, and obtain a linear
differential equation of the first order. We illustrate the
method by providing some representative examples with their
figures.

2 BASIC CONCEPTS

We begin with basic concepts on the theory of dual numbers, dual
Lorentzian Vectors, and the E. Study map (see [1–5, 16–21]): A
directed (non-null) line L in Minkowski 3-space E3

1 can be
defined by a point p ∈ L and a normalized direction vector x
of L; that is, ‖a‖2 � ± 1. To obtain components for L, one forms
the moment vector x* = p ×x with respect to the origin point in
E3
1. If p is replaced by any point q � p + ta, t ∈ R on L, it is

implied that a* is independent of p on L. The two non-null
vectors a and a* are not independent of one another. They satisfy
the following condition:

〈a, a〉 � ± 1, 〈a*, a〉 � 0.

The six components ai, api (i � 1, 2, 3) of a and a*are called the
normalized Plűcker coordinates of the line L; hence the two
vectors x and x* determine the directed line L.

A dual number A is a number a + εa*, where a, a* inR and ε is
a dual unit with the property that ε2 = 0. Therefore the set

D3 � A ≔ a + εa* � A1, A2, A3( ){ },
joining with Lorentzian scalar product

〈A,A〉 � −A2
1 + A2

2 + A2
3,

leads to what is named the dual Lorentzian 3-space D3
1. Thus, a

pointA � (A1, A2, A3)t has dual coordinatesAi � (ai + εapi ) ∈ D.
If A is a spacelike or timelike dual vector, the norm ‖A‖ of A is
defined by

A‖ ‖ � �������
〈A,A〉| |√ � ������

〈a, a〉| |√ + ε
1

2
������
〈a, a〉| |√ 〈a, a〉

〈a, a〉| |.2〈a*, a〉

� a‖ ‖ + ε
1
a‖ ‖

〈a, a〉
〈a, a〉| | 〈a*, a〉.

If a is spacelike, we have

A‖ ‖ � a‖ ‖ + ε
1
a‖ ‖ 〈a*, a〉 � a‖ ‖ 1 + ε

1
〈a, a〉 〈a*, a〉( ).

If a is timelike, we have

A‖ ‖ � a‖ ‖ − ε
1
a‖ ‖ 〈a, a*〉 � a‖ ‖ 1 − ε

1
〈a, a〉 〈a*, a〉( ).

Therefore, A is the spacelike dual unit vector in case 〈A, A〉 = 1
and the timelike dual-unit vector in case 〈A, A〉 = −1. The
hyperbolic and Lorentzian dual unit spheres are

H2
+ � A ∈ D3

1 | −A2
1 + A2

2 + A2
3 � −1{ },

and

S
2
1 � A ∈ D3

1 | −A2
1 + A2

2 + A2
3 � 1{ }.

respectively.

Theorem 1 : [17–19, 22, 23]. There is a one-to-one
correspondence between spacelike (resp. timelike) oriented
lines at Minkowski 3-space E3

1 and ordered pairs of vectors
(a, a*) ∈ E3

1 × E3
1, such that

〈A,A〉 � ± 15〈a, a〉 � ± 1, 〈a*, a〉 � 0, (1)
where a and a* are the normed Pl ücker coordinates of the line.

Using Theorem 1, we obtain the following map (E. Study’s
map), where the dual unit spheres are shaped as a pair of
conjugate hyperboloids. The ring shaped hyperboloid
represents the set of spacelike lines, the common asymptotic
cone represents the set of null (lightlike) lines, the oval shaped
hyperboloid forms the set of timelike lines, and opposite points of
each hyperboloid perform a pair of obverse vectors on a line (see
Figure 1). Applying to the E. Study map, the differentiable curve
onH2

+ corresponds to the timelike-ruled surface atE3
1. In a similar

way, the dual curve at S21 corresponds to the spacelike or timelike-
ruled surface at E3

1.

2.1 Timelike-Ruled Surface as a Curve at H2
+

Let y(t) be the regular curve at the Minkowski 3-space E3
1 defined

on I ⊆ R and x(t) is the timelike unit vector of the oriented line at
E3
1. Therefore we acquire a timelike-ruled surface’s

parametrization M as

M: r t, v( ) � y t( ) + vx t( ), v ∈ R, (2)

FIGURE 1 | Dual hyperbolic and dual Lorentzian unit spheres.
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Here y = y(t) is its directrix or base curve, and t is the motion
parameter. The E. Study map is adopted to write Eq. 2 using the
dual vector function as

M: X t( ) � x t( ) + εy t( ) × x t( ) � x(t) + εx* t( ), (3)
Because the spherical image x, is the timelike unit vector, the
timelike dual vector X and unit magnitude, as is observed from
the computation

〈X,X〉 � 〈x + εy × x, x + εy × x〉
� 〈x, x〉 + 2ε〈x, y × x〉 + ε2.〈y × x, y × x〉 � 〈x, x〉
� −1.

Therefore, the timelike-ruled surface is presented using the dual
curve at the surface of the dual hyperbolic unit sphere. The dual
arc length of X(t) ∈ H2

+ is defined by

dS ≔ ds + εds* � X′
���� ����dt � x′

���� ���� 1 − ε
〈x′, x*′〉
〈x′, x′〉( )dt. (4)

Hence, the distribution parameter is expressed as

λ t( ) ≔ ds*
ds

� 〈x′, x*′〉
〈x′, x′〉 . (5)

Here, and in what follows, the prime symbol denotes derivatives
with respect to parameter “t.”

The Gaussian curvature K (t, v) is related to the distribution
parameter λ(t) of the timelike-ruled surface [5] as follows:

K t, v( ) � λ2

v2 + λ2( ). (6)

If K (t, v) equals zero everywhere, this means that λ equals zero
everywhere; therefore, M is referred to as developable. At Eq. 5:
(a) in case λ(t) = 0, therefore M is the timelike developable ruled
surface (b) if x′ = 0, therefore M is the timelike cylindrical ruled
surface.

3 TIMELIKE-RULED AND DEVELOPABLE
SURFACES

In this section, we develop a procedure to construct timelike-
ruled and developable surfaces using the E. Study’s map. Dual
coordinates Xi � (xi + εxp

i ) of the arbitrary point X at dual
hyperbolic unit sphere H2

+, centered at origin, is expressed as:

X � coshΘ, sinhΘ cosΨ, sinhΘ sinΨ( ), (7)
where Θ = ϑ + εϑp and Ψ = ψ + εψ* defines the dual hyperbolic
and space-like angles with ϑ*, ϑ,ψp ∈ R and 0 ≤ ψ ≤ 2π in the
same order. Furthermore, if we consider X = X(t), t ∈ R, which
corresponds to the timelike-ruled surface M. Then, the dual arc-
length of X(t) is

dS �
��������������
Ψ′2 sinh2Θ + Θ′2

√
dt. (8)

If we separate the real and dual parts of Eq. 6, in the same order,
we obtain:

ds �
�������������
ψ′2 sinh2 ϑ + ϑ′2

√
dt,

and

ds* � ϑ′ϑ*′ + ϑ*ψ′2 sinh ϑ cosh ϑ + ψ′ψ*′ sinh2 ϑ�������������
ψ′2 sinh2 ϑ + ϑ′2

√ .

Thus, we arrive at

λ t( ) ≔ ds*
ds

� ϑ′ϑ*′ + ϑ*ψ′2 sinh ϑ cosh ϑ + ψ′ψ*′ sinh2 ϑ

ψ′2 sinh2 ϑ + ϑ′2
. (9)

It is clear that: (a) if λ(t) = 0, then M is the timelike developable
ruled surface (b) if ψ(t) and ϑ(t) are constants; that is, x′ = 0, then
M is a time-like cylinder.

Becauseε2 = ε3 = . . . = 0, the Plucker coordinates of X are:

x1 � cosh ϑ, x1* � ϑ* sinh ϑ,
x2 � sinh ϑ cosψ, x2* � ϑ* cosh ϑ cosψ − ψ* sinψ sinh ϑ,
x3 � sinh ϑ sinψ, x3* � ϑ* cosh ϑ sinψ + ψ* cosψ sinh ϑ.

⎫⎪⎬⎪⎭
(10)

Here, the normal question appears when curve y(t) = (y1(t), y2(t),
y3(t)) is provided, will the timelike ruled surface considering its
base curve be defined as the curve y(t)? The answer is affirmative
and can be stated as follows: Because x* = y ×x, we obtain a system
of linear equations in yi for i = 1, 2, 3:

−y2 sinh ϑ sinψ + y3 sinh ϑ cosψ � x1*,
−y1 sinh ϑ sinψ + y3 cosh ϑ � x2*,
y1 sinh ϑ cosψ − y2 cosh ϑ � x3*.

⎫⎪⎬⎪⎭ (11)

The matrix of the coefficients of unknowns y1, y2, and y3 is the
skew-adjoint matrix

0 −sinh ϑ sinψ sinh ϑ cosψ
−sinh ϑ sinψ 0 cosh ϑ
sinh ϑ cosψ −cosh ϑ 0

⎛⎜⎝ ⎞⎟⎠,

and thus, its rank is 2 with ϑ ≠ 0, and ψ ≠ 2πk (k is the integer).
This augmented matrix

0 −sinh ϑ sinψ sinh ϑ cosψ x1*
−sinh ϑ sinψ 0 cosh ϑ x2*
sinh ϑ cosψ −cosh ϑ 0 x2*

⎛⎜⎝ ⎞⎟⎠,

is of rank 2. Thus, infinite solutions of the system are expressed as

y2 � y1 − ψ*( )tanh ϑ cosψ − ϑ* sinψ,
y3 � y1 − ψ*( )tanh ϑ sinψ + ϑ* cosψ,

y1 � y1 ϑ t( ),ψ t( )( ). (12)

Because it is possible to choose y1(t), we use y1(t) = ψ*(t). Then,
Eq. 12 will be reduced to

y1 � ψ*, y2 � −ϑ* sinψ, .y3 � ϑ* cosψ. (13)
From Eq. 13, we have
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ϑ* t( ) � ∓
������
y2
2 + y2

3

√
, tanψ � −y2

y3
. (14)

Notably, ϑ*(t) has two values; using the minus sign resulted in the
reciprocal of the timelike-ruled surface obtained using the plus
sign. Therefore, in this study, we chose a lower sign. Into Eq. 2 we
substitute from Eqs 13, 14 and obtain:

r t, v( ) � y1, y2, y3( )
+ v cosh ϑ,

y3������
y2
2 + y2

3

√ sinh ϑ,− y2������
y2
2 + y2

3

√ sinh ϑ( ),
(15)

where y2
2 + y2

3 ≠ 0, v ∈ R, and ϑ(t) is arbitrary.

Theorem 2 : Let y(t) be a regular curve in Minkowski 3-space E3
1.

Therefore there exists the family of timelike-ruled surface
represented by Eq. 15.To the best of our knowledge, no
previous study has obtained a timelike-ruled surface using
coordinates and the first derivatives of the base curve, which
means that this theorem presents a novel approach to building
timelike-ruled surfaces in Minkowski 3-space.

Example 1 : Let y(t) = (t, t2, t2) be the curve at Minkowski 3-space
E3
1. Then, the family of the timelike-ruled surface is

r t, v( ) � t, t2, t2( ) + v cosh ϑ,
1�
2

√ sinh ϑ,− 1�
2

√ sinh ϑ( ), v ∈ R.

(16)
The distribution parameter is

λ t( ) � 2
�
2

√ t

ϑ′.

Function ϑ(t) can control the shape of the surface. If we take ϑ(t) =
t, then λ(t) � 2

�
2

√
t, and the timelike ruled surfaces are illustrated

in Figure 2. If ϑ(t) = −t, λ(t) � −2 �
2

√
t and the surface are

illustrated in Figure 3; domain D � −1.5≤ t≤ 1.5{ , and
−3≤ v≤ 3}.

Example 2 : Let y(t) = (t, t, 1) be the null curve at Minkowski 3-
space E3

1. Similarly, we have:

r t, v( ) � t, t, 1( )

+ v cosh ϑ,
1�����

1 + t2
√ sinh ϑ,− t�����

1 + t2
√ sinh ϑ( ), v ∈ R.

(17)
The distribution parameter is

FIGURE 2 | Timelike-ruled surface, ϑ(t) = t.

FIGURE 3 | Timelike-ruled surface, ϑ(t) = −t.

FIGURE 4 | Timelike-ruled surface, with ϑ(t) = t.

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 8389574

Mofarreh Timelike Ruled and Developable Surfaces

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


λ t( ) � ϑ′t
�����
1 + t2

√ + 1���
1+t2√ sinh ϑ cosh ϑ − sinh2 ϑ

1 + t2( )sinh2 ϑ + t2
.

If we take ϑ(t) = t, then for -1 ≤ t ≤ 1 and −6 ≤ v ≤ 6, the timelike-
ruled surface is illustrated in Figure 4. For ϑ(t) = −t, 1 ≤ t ≤ 1 and
−6 ≤ v ≤ 6, the surface is illustrated in Figure 5.

3.1 Timelike Developable Surfaces
In this subsection, the challenge of constructing developable
timelike surfaces from a timelike-ruled surfaces is analyzed.
Therefore, the normal question that is raised here is: what is
the condition of y (t, v) to a timelike developable ruled surface in
Minkowski 3-space E3

1 ? The answer is positive and stated as
follows: In fact, from Eq. 9, y (t, v) is developable if and only if λ(t)
= 0, that is,

ϑ′ϑ*′ + ϑ*ψ′2 sinh ϑ cosh ϑ + ψ′ψ*′ sinh2 ϑ � 0,

or equivalently

coth ϑ( )′ − ϑ*ψ′2

ϑ*′
coth ϑ − ψ′ψ*′

ϑ*′
� 0, (18)

If we

f t( ) � −coth ϑ, G t( ) � −ϑ*ψ
′2

ϑ*′
, H t( ) � −ψ′ψ

*′

ϑ*′
,

which leads to the linear differential equation of first order

df t( )
dt

+ G t( )f t( ) +H t( ) � 0. (19)

Here, it is necessary to determine ϑ(t). The solution to (19) leads
to coth ϑ. It contains the integral constant and we have several
infinitely timelike developable ruled surfaces, that is every
timelike developable surface has a base curve y(t); From
Eqs.(13) and, (14), we have

ψ* � y1, ϑ* �
������
y2
2 + y2

3

√
, tanψ � −y2

y3
. (20)

Example 3 : In Example 1, clearly

tanψ � −1, ϑ* � �
2

√
t2,ψ* � t.

and

ψ*′ � 1,ψ′ � 0, ϑ*′ � 2
�
2

√
t.

we substitute these values into Eq. 19 and solve this differential
equation

f t( ) � coth ϑ � c, c ∈ R.

Because coth ϑ = c, we have:

FIGURE 5 | Timelike-ruled surface, with ϑ(t) = −t.

FIGURE 6 | Timelike developable with c � ��
2

√

FIGURE 7 | Timelike developable with c � − ��
2

√
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sinh ϑ � ±
1�����

c2 − 1
√ , cosh ϑ � ±

c�����
c2 − 1

√ . (21)
If we choose the plus sign, then the family of timelike developable
ruled surface is presented as

r t, v( ) � t, t2, t2( )
+ v

c�����
c2 − 1

√( ,
t�
2

√ 1�����
c2 − 1

√ ,− t�
2

√ 1�����
c2 − 1

√ , v ∈ R.

If c � �
2

√
, −1 ≤ t ≤ 1, and 4 ≤ v ≤ 7, we obtain members of the

family, as illustrated in Figure 6. Figure 7 illustrates a surface
with c � − �

2
√

, −3 ≤ t ≤ 3, and -4 ≤ v ≤ 4.

Example 4 : From the curve in Example 2,

ψ*′ � 1, ψ′ � − 1

1 + t2
, ϑ*′ � t�����

1 + t2
√ ,

G t( ) � − 1

t 1 + t2( ), H t( ) � − 1

t
�����
1 + t2

√ .
(22)

Then, combining Eq. 20 and (Eq. 22), we have:

df t( )
dt

− 1
t 1 + t2( )f t( ) − 1

t
�����
1 + t2

√ � 0. (23)
The solution of this differential equation gives

f t( ) � ct − 1�����
1 + t2

√ , c ∈ R.

Because f(t) = − coth ϑ, then we have:

sinh ϑ � ±

�����
1 + t2

√�������������
c2 − 1( )t2 − 2ct

√ , cosh ϑ � ±
ct − 1�������������

c2 − 1( )t2 − 2ct
√ .

(24)
If we choose the plus sign, then the family of timelike developable
ruled surface is introduced as

r t, v( ) � t, t, 1( ) + v�������������
c2 − 1( )t2 − 2ct

√ ct − 1, 1,−1( ).

If we consider c � �
2

√
, then for 2 ≤ t ≤ 4 and 4 ≤ v ≤ 5, the timelike

developable ruled surface is illustrated in Figure 8.

4 CONCLUSION

In this study, a general method to determine timelike-ruled and
developable surfaces in Minkowski 3-space E3

1 was presented as a
novel approach to constructing this type of surface. The use of
spatial kinematics in the Minkowski 3-space E3 with line
geometry led to novel ideas in our current research. A similar
study can be conducted for X(t) ∈ S21 at the dual Lorentzian 3-
space D3

1, which we can consider in the future.
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