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Traditional macroscopic phenomenon constitutive model is not easy to describe in the
non-linear mechanical properties of porous rockmaterials, since the effect of porosity does
not incorporate into the strength criterion. This paper presents a simple elastoplastic
damage constitutive model of porous rock material based on micromechanical theory. To
consider the heterogeneities of the studied porous rock, a simplified representative volume
element is introduced, and it is assumed that it is made up of randomly distributed
spherical pores embedded in a solid matrix obeying Drucker-Prager yield function. Thus, a
homogenized plastic criterion considering the effect of porosity is introduced to describe
the macroscopic plastic mechanical properties of porous rock materials. In this model, the
non-associated flow rule and isotropic strain hardening law are used, and then the
degradation of elastic and plastic properties is employed by adopting a damage
criterion. This criterion is related to the evolution of equivalent plastic strain. In order to
verify the accuracy of the model, the corresponding numerical programwas used to realize
the micro-macro constitutive model, and the results were compared with the triaxial
compression test results of sandstone under different confining pressures. It is observed
that the numerical simulation results are in great agreement with the experimental data,
indicating that the proposed model is able to predict the main mechanical behavior of
porous sandstone.

Keywords: elastoplastic damage constitutive model, porous rock, non-associate flow rule, numerical analysis,
damage

INTRODUCTION

As a complex geological material, the rock mass contains various primary microstructures, including
pores, cracks, inclusions, etc. The initiation and expansion of microdefects in rock mass reflect the
degree of mechanical deterioration [1]. The deformation of inners pores or voids exhibits a great
influence on the effective strength and mechanical behaviors on such materials, which lead to the
complex plastic deformation, tension-compression asymmetry [2–5], brittle-ductile transition, and
so on. In order to present the non-linear behaviors of porous medium and reflect the effects of the
voids on the strength related to its plastic deformation, a numerous of previous investigations [6–8]
have been proposed, which are based on the theory of kinematical limit analysis and provides the
theoretical determination or numerical assessment of macroscopic yield criteria for porous materials.
The present works are first to establish an appropriate effective plastic yield criterion for a porous
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medium. Then, an analytical effective plastic yield function is
obtained by the second homogenization step. Finally, consider
the effects of mineral grains to determine the macroscopic plastic
behavior of porous materials.

However, most of the above theories do not consider the
influence of porosity inside rock on the evolution of damage.
Several previous studies have shown that the growth of internal
microdefects and the local stress concentration are two main
factors, leading to the damage evolution in rocks under the
external loading [9–12]. Further, the construction in
geotechnical engineering often changes the stress state of rock
mass, aggravating the damage evolution around the excavation
section [13–16]. Hence, the damage modeling remains an
ongoing interest in investigating the mechanical behavior of
rock-like materials. On one hand, thanks to the rapid
development of various kinds of rock testing techniques,
considerable experimental studies have been conducted for
understanding the underlying mechanism of damage evolution
in rocks [17, 18]. On the other hand, the rock damage model
research also has remarkable development. So far, many
researchers have established numerous rock damage
constitutive models based on different theoretical frameworks
from various perspectives [19–21].

At the same time, as a natural porous material, rock has many
pores at different scales. The development mechanism of
plasticity and damage is bound to be related to the
development and evolution of porosity. For this purpose, the
present study is aiming to develop a micro-mechanics based
constitutive model for plastic deformation and damage
evolution in sandstone containing two populations of pores
and mineral based on the plasticity theory and the irreversible
thermodynamic framework [22, 23]. This work will put effort
into developing a simple elastoplastic damage coupled
constitutive model of porous rocks considering the effect of
porosity and damage degradation.

THE ELASTOPLASTIC DAMAGE
CONSTITUTIVE MODEL OF SANDSTONE

According to the experimental data of triaxial compression and
irreversible thermodynamic theory [21], a elastoplastic
constitutive model describing the damage of sandstone under
drainage conditions is established, which can reflect the
mechanical behavior of the sandstone with different seepage
conditions in the stress field.

Porous Media Model
Based on the theory of porous media mechanics, the non-linear
mechanical response of sandstone is described by using the plastic
yield equation considering porosity. At the same time, the
damage evolution criterion was established based on the
existing damage theory, and independent damage variables
were introduced into the plastic yield function to describe the
damage evolution of rock in the process of deformation and
failure, so as to determine the coupling relationship between
plastic deformation and damage development. This model can

simulate both pre-peak strengthening and post-peak softening
behaviors at the same time. The physical model of porous media
is shown in Figure 1.

As is shown in Figure 1, the porous media is considered made
up of isotropic solid matrix and random pore at microscale. The
volumes of solid matrix and of the void are noted as Ωm and Ω1,
respectively. The volume of the whole porousmedia is obtained as
Ω � Ωm + Ω1. Based on the above statement, unit porosity can be
calculated by the following formula:

f � Ω1

Ω � Ω1

Ωm +Ω1
< 1, (1)

Compared with metal materials, the pressure sensitivity and
volumetric deformation are two crucial characteristics of rock
materials. In order to consider these aspects, here we assumed
that the solid matrix is made up of elastoplastic material subjected
to Drucker-Prager yield criterion.

F(σ) � σd + T(σm − h)≤ 0, (2)
Based on the assumption of small deformation, in the field of

traditional plastic mechanics, the total strain increment of rock
can be decomposed into elastic strain (increment) and plastic
strain (increment):

εij � εeij + εpij, Dij � De
ij +Dp

ij, (3)
Referring to the previous research theory of porous media

[6–8], the effective volume modulus and shear modulus of intact
and non-destructive rock materials are expressed as follows:

κhom0 � 4(1 − f)κsμs
4μs + 3fκs

, μhom0 � (1 − f)μs
1 + 6f

κs + 2μs
9κs + 8μs

,
(4)

where the parameters κs, μs, and f represent the elastic bulk
modulus, shear modulus of solid matrix, and porosity,
respectively, in which κs and μs can be derived by the elastic
modulus Es and Poisson vs of solid phase.

Concerning the assumption of material isotropy and damage
extension isotropy, the scalar ω is used to represent the damage
variable. Therefore, the effective bulk modulus and shear
modulus of damaged rock material can be expressed as:

κ(ω) � κhom0 (1 − ω), μ(ω) � μhom0 (1 − ω), (5)
As a result, the macroscopic elastic stress-strain relation of the

rock in the incremental form writes [24]:

FIGURE 1 | REV physical model of porous media.
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dΣ � Cw: (D − DP) + zCw

zω
: (ε − εp)dω, (6)

where Cw denotes damage stiffness matrix, D and DP represent
total strain increment and plastic strain increment, respectively. ε
and εp are the total strain and plastic strain. The total elastic strain
tensor is given by εe � ε − εp.

Plastic Model
In general, the M-C yield criterion and D-P yield criterion are
used for the yield function. Based on the above experimental
results of triaxial compression, the yield surfaces of sandstone
under seepage conditions are close to non-linear characteristic of
elliptical surface, thus the typical porous plastic criterion
proposed by Ref. [25] is used to describe the mechanical
response of sandstone in the study. The plastic yield surface
equation is defined as:

Φ(Σ,f,T,ω)� 1+2f/3
T2

Σ2
d +( 3f

2T2
−1)Σ2

m +2h(1−f)Σm −(1−f)2h2,
(7)

where Σd,Σm is the generalized shear stress and mean stress of
rock on macro scale respectively.

Σd �
�����
Σ′: Σ′

√
Σm � Σ11 + Σ22 + Σ33

3
, (8)

T is the plastic hardening function, which reflects the pre-peak
strengthening and post-peak softening behavior of sandstone
[26]. Based on the thermodynamic framework and the work
of [27], the plastic thermodynamic potential of sandstone Γp can
be obtained as:

Γp � (1 − ω)[Tmγp − (Tm − T0)b1 ln
b1 + γp
b1

], (9)

Thus the expression of hardening function T is derived as:

T � T(γp,ω) � zΓp
zγp

� (1 − ω)⎡⎣T0 + (Tm − T0)
γp

b1 + γp
⎤⎦, (10)

where T0 and Tm are two parameters related to the position of the
initial plastic yield surface and the final plastic yield surface for
the rock. b1 represents the controlling parameter of hardening
rate for the rock. The influencing factors of the hardening
function include plastic shear strain γp of solid matrix and
damage variables ω, indicating that hardening function T
increases with increasing plastic shear strain γp, but decreases
with the increasing damage variable ω, indicating the
characteristics of increased plastic deformation and post-peak
softening for the rock.

In addition, the non-associated plastic potential function G is
used to describe the characteristics of rock from compression to
expansion, which is defined as follows [25]:

G � G(Σ, f, t) � 1 + 2f/3
Tt

Σ2
d + ( 3f

2Tt
− 1)Σ2

m + 2h(1 − f)Σm,

(11)

where t is plastic hardening function related to damage variable
and plastic shear strain of rock and can be given by:

t � t(γp,ω) � (1 − ω)⎛⎝t0 + (tm − t0)
γp

b2 + γp
⎞⎠, (12)

where t0 and tm are two parameters related to the position of the
initial plastic potential function and the final plastic potential
function for the rock. b2 represents the controlling parameter of
hardening rate for the rock. In addition, the plastic strain rate of
sandstone Dp is calculated based on the non-associated flow rule
as follows:

Dp � dλp
zG

zΣ
, (13)

where _λ is the plastic multiplier, and it is used to verify the
following loading-unloading condition:

⎧⎪⎨⎪⎩ dλp � 0 if Φ< 0 or ifΦ � 0 and _Φ< 0
dλp ≥ 0 ifΦ � 0 and _Φ � 0

, (14)

Assuming that the change of pore volume on the microscopic
scale only depends on pore plastic compression and expansion,
and ignore the influence of new pore nucleation, according to
function Eq. 1, we can get that:

df � d(Ω1

Ω ) � dΩ1

Ω − Ω1

Ω
dΩ
Ω � (1 − f)(dΩΩ − dΩm

Ωm
), (15)

Where dΩ
Ω is the mean macroscopic volumetric strain rate trDp,

dΩm
Ωm

is the volume strain rate of solid matrix tr _e. Based on the
assumption that solid matrix obeying Drucker-Prager yield
function and non-associated flow rule, the potential is given
by ϕ(σ) � σd + tσm, thus the mesoscopic strain rate can be
written as follows:

_e � dΛ
zϕ

zσ
, _e′ � dΛ

σ′
σd
, _em � 1

3
tdΛ, (16)

where _e′ is the deviatoric strain rate tensor with _e � _e′ + _emδ. dΛ
is the plastic multiplier of the solid matrix. Therefore, the
equivalent plastic strain rate _γp can be calculated as:

_γp �
�����
_e′: _e′

√
� dΛ, (17)

According to the energy-based equivalence condition
provided by Ref. [28], the following relation between
plastic strain rate of porous medium material and equivalent
plastic strain rate of solid matrix can be derived as presented
in [29]:

_γp � Σ: Dp

(1 − f)(Th + (t − T) Σm1−f), (18)

With the relations (Eqs 16, 17) and tre � tγp in hand, the
variation of porosity in Eq. 15 can be expressed as:

df � (1 − f)(trDp − t _γp), (19)
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Damage Evolution Criterion
In accordance with the thermodynamic theory, the effect of the
damage driving force related to the free energy release rate in the
elastic stage on the damage of rock change its internal structure.
The internal cracks of the sandstone specimen are mostly closed
based on conventional triaxial compression. Therefore, the
damage of the sandstone is primarily caused by plastic shear,
while the damage caused by the elastic deformation is very small.
According to the previous study [21] and ignoring the effect of
elasticity, the damage driving force Yd can be obtained as follows:

Yd � −zΓp
zω

� Tmγp − (Tm − T0)b1 ln
b1 + γp
b1

, (20)

In addition, the damage evolution criterion of the rock is
introduced by the Mazars’ research [30], and the damage
evolution function fd can be defined as:

fd � ωcth(BdYd) − ω≤ 0, (21)
where ωc is the maximum threshold of damage variable and Bd is
a parameter related to the rate of damage evolution.

Plastic Damage Constitutive Relations
The plastic flow and damage evolution of sandstone are coupled
processes under loading conditions [27]. To reflect the effect of
pore water pressure on mechanical behavior of rock, the plasticity
multiplier λp and damage multiplier λd can be determined by
coupling plastic flow and damage evolution, which can obtain the
consistency conditions of plastic deformation and damage
variable for rock material as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
_Φ(Σ, f, T,ω) � zΦ

zΣ
: dΣ + zΦ

zf
df + zΦ

zT

zT

zγp
dγp + zΦ

zω
dω � 0

_fd(Yd,ω) � zfd

zYd
dYd + zfd

zω
dω � 0

,

(22)
In addition, based on the plastic flow rule, the increment of

plastic deformation and damage variable are defined as:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dεp � dλp

zG

zΣ

dω � dλd
zfd

zYd

, (23)

According to Eqs. 6, 7, 10–13, 18–21, the plastic multiplier
and the damage evolution multiplier are obtained:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dλd � (Tm + (Tm − T0)b1/b1 + γp)Σ: zGzΣ/(1 − f)(Th + (t − T) Σm

1 − f
)dλp

dλp � zΦ

zΣ
: Cw: D/zΦ

zΣ
: Cw:

zG

zΣ
− zΦ

zf
(1 − f)( zG

zΣm
− tB) − zΦ

zT

zT

zγp
B − (zCw

zω
: εe − zΦ

zT

zT

zw
)AB

,

(24)

The parameter A and B is written as follows:

A�Tm +(Tm −T0) b1
b1 +γp

· B� Σ: zG/zΣ
(1−f)(Th+(t−T) Σm1−f),

(25)

MODEL VERIFICATION AND NUMERICAL
SIMULATION

In this model, we divided the whole loading process into a limit
number of steps. It is assumed that the parameters of the k-1 step

FIGURE 2 | The flowchart of algorithm.

FIGURE 3 | The initial yield surface and plastic failure surface.
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loading variables including Σk−1, εk−1, εk−1p , ωk−1, γp(k−1), dεk, fk−1
are known, and the parameters of the k step loading variables
including Σk, εk, εkp, ω

k, γp(k), fk are calculated according to the
displacement loading method. The flowchart of this algorithm is
shown in Figure 2.

The detailed process of calculation can be divided into the
following steps:

(1) Suppose dωk � 0 and εk � εk−1 + dεk; perform elastic
prediction Σk,e

trial � Σk−1 + C(ωk−1)dεk, where C(ωk−1) is the
damage stiffness matrix.

(2) IfΦ(Σk,e
trial,ω

k−1, γp(k−1), fk−1)> 0, namely, the stress is outside
the yield surface, which should be amend. According to
Eq. 24, the plastic multiplier dλp is calculated, then dγp(k)
is updated; otherwise, Σk, εk are directly updated.

(3) Based on the updated γp(k) and Eq. 20, the damage driving
force Yd is calculated, then brought into Eq. 21 for damage
judgment. If fd(Yk

d,ω
k)> 0, dωk is calculated according to

Eq. 23, then the damage variable ωk is updated, otherwise,
ωk � ωk−1.

(4) Damage stiffness matrix C(ωk) is updated based on ωk. In
addition, the updated variables are brought into
thermodynamic potential to obtain the stress Σk.

(5) If Φ(Σk,ωk, γp(k), fk)≤ 0, namely, the stress tensor is in the
plastic yield plane after plastic damage was corrected. Get the
parameters of the k step loading variables, including Σk, εk,
εkp, ω

k, γp(k), fk. Otherwise, go to Eqs. 2–4 until the new
stress is within the plastic yield plane.

First, according to the previous studies [7, 29], basic
parameters of the sandstone, such as the elastic modulus Es,
Poisson’s ratio ]s of solid matrix can be determined by the
conventional triaxial test based on inverse calculation of Eq. 4.
Porosity parameters f can be determined by saturation test. In
addition, the plastic parameters h, Tm and T0 can be calculated by
the least square method and the initial plastic yield surface,
respectively. The initial yield surface and plastic failure surface
are shown in Figure 3. The evolution law of plastic deformation
εp can be obtained through loading and unloading tests, and then
Eqs. 7, 11 are fitted to determine parameters b1 and b2
respectively. The damage variable threshold ωc and the control
parameter Bd can be obtained by experimental data and the
inversion of Eq. 20, respectively. In this paper, the experimental
mechanical parameters used in the numerical simulation are
listed in Table 1.

Figure 4 shows the experimental stress-strain curves of
sandstone and the corresponding numerical results. As can be
seen from Figure 4, it is obvious that the experimental data and

TABLE 1 | Parameters of the fitted model.

Es/GPa νs T0 Tm b1 t0 tm b2 f h/MPa wc Bd

22.5 0.35 0.54 1.2 0.0001 0.5 1.0 0.00005 0.17 60 0.5 70

FIGURE 4 |Comparison of stress-strain curves between numerical results and experimental data under triaxial compression test. (A)Confining pressure of 5 MPa.
(B) Confining pressure of 10 MPa.

FIGURE 5 | Comparison of damage evolution curve between numerical
results and experimental data.
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numerical results are very close before the peak stress, which
shows that the non-linear transition from brittleness to plasticity
for the sandstone can be well fitted with increasing the strain.

In order to further verify the rationality of the damage
evolution model, a comparative analysis was made between
the damage evolution value and the test results under the
condition of 10 MPa confining pressure (Figure 5), in which
the damage evolution test data were calculated by the acoustic
emission method. As shown in Figure 5, damage development is
very limited in the initial loading stage. With the increase of
deviational stress, mechanical damage gradually develops and
eventually leads to rock failure.

CONCLUSION

In this paper, an elastoplastic damage constitutive model for
sandstone considering the influence of rock pores is constructed
based on the previous research results and the knowledge
framework of irreversible thermodynamics. In this proposed
model, the plastic flow and damage evolution of sandstone are
coupled and combine with non-associative plastic potential
function to capture its elastoplastic behaviors.

In order to verify its prediction ability of porous rocks damage
evolution, the numerical simulations of this model have been
plotted and compared with experimental data of triaxial
compression tests on sandstone. A good agreement between
the numerical and experimental results has been observed,

indicating that the proposed model is able to describe the
main features of porous sandstone.
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