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High pressure structural transformation of copper (Cu) is a rather complex physical
process. One of the intriguing questions that are rarely discussed is the comparison
between quasi-isentropic response and adiabatic response for copper lattice transition.
The ambient face-centered-cubic structure of Cu is predicted to persist over 100 TPa from
ab inito calculations and experimentally demonstrated to persist until 1.15 TPa in ramp
compression and 150 GPa in static compression. However, a novel body-centered-cubic
(BCC) order is observed merely at 180 GPa once shock compression is applied. The
mechanism of body-centered-cubic phase transition occurred at low pressure under
shock compression remains elusive so far and much attention is required on the dynamics
in such a phase transition. In this work, we utilize the molecular dynamics method to
simulate the shock compression on a copper lattice to uncover the structural transition in
the atomic scale. We report the FCC–BCC phase transition occurred at 156 GPa, and lots
of disordered structures are discovered in the BCC phase after impact, revealed by a
series of structure analysis tools and free energy calculations. The plethora of transient
disordered structures reduces the global Gibbs free energies, thus leading to the
downgrade of the transition pressure in contrast to the ramp and static compression,
which provides a new perspective for structural transformation under extreme conditions.

Keywords: shock compression, structural transformation, molecular dynamics simulation, multi-scale shock
technique, free energy calculation

1 INTRODUCTION

The advances in high-pressure techniques [1–5] have largely progressed the investigation of
condensed matter physics in an extreme condition, which significance has expanded in other
associated subjects such as geophysics[6], planetary astrophysics[7,8], and inertial confinement
fusion[9,10]. Two of the prevailing approaches are favored for achieving high pressure: diamond
anvil cell (DAC) method and dynamic shock wave method, the former belongs to static compression
and the latter is dynamic. Albeit a similar pressure environment can be generated by both strategies,
the physical process by each method is largely different [11–16]. The static compression can be
applied for significant long time in most material systems since a nearly isotropic strain is induced
and the shear strain is negligible that is normally omitted. In contrast, the shock compression
generates uniaxial strain with ultra-high rates that results in a rapid increment in temperature in
candidate materials [17]. The experimental identification of phase transitions in such a drastic
process is rather difficult. Although ultrafast probes such as in-situ time-resolved X-ray diffraction
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technique is readily available for identifying the transient
dynamics in structural transformation, limited results are
reported in comparing the structural transformation path
between dynamic and static compressions, neither
experimentally nor theoretically.

A standard single crystal in the field of high-pressure is
copper (Cu), which is a typical close-packed face-centered-
cubic (FCC) structure at ambient environment. The
mechanical properties and equation of states for Cu have
been extensively investigated in last few decades [18–24].
The stability of the FCC phase in Cu is believed to be so
strong that can endure very high pressure before melting [25].
The previous studies of structural transformation in
compression experiments by either the hydrostatic or shock
impact approach have never reported the existence of the BCC
phase [26]. Both strategies imply that only the FCC phase is
identified: static compression reports that the FCC phase
persists at 150 GPa by experiment [27] and even higher
pressure to 100 TPa is predicted by first-principles
calculations[28], while the ramp compression experiment
finds that the FCC is preserved up to 1.15 TPa[29].
Recently, an anomalous FCC–BCC phase transition in Cu is
revealed by in situ XRD experiment under shock compression
[30], which motivates the retrospect for the remaining
question of phase transitions in Cu.

In this work, we utilize molecular dynamics (MD) simulations
to investigate the shock-induced phase transition of Cu. An
explicit FCC–BCC phase transition is observed at 156 GPa,
resembling the experimental value. Locally disordered
structures induced by shock wave are resolved as opposed to a
perfect crystal, which are favored in this drastic phase transition
dynamics implied by free energy calculations. The structures are
characterized as short-range disordered structures, which are
identical with BCC structures in the long-time statistical
average. This work sheds light on the understanding of
microscopic picture in shock compression process in a
traditional robust crystal.

2 COMPUTATIONAL METHODS

The embedded-atom-method (EAM) potential of copper
presented by Mishin et al. [31] has been applied for MD
simulations implemented under LAMMPS framework[32]. The
popular non-equilibriummolecular dynamics (NEMD) approach
is applied to generate a unidirectional planar shock wave. The
shock wave is simulated by a piston applied to the sample. The
method of Multi-Scale Shock Technique (MSST) [33] is a
simulation technique based on the Navier-Stokes equations for
compressible flow. All atoms in the system update positions and
velocities following the modified Lagrangian, so as to restrain the
systems to the Hugoniot-based thermodynamic conditions (see
the Supplementary Material for details).

For NEMD simulations, the initial samples are first
equilibrated by applying isothermal-isobaric at 300 K and
1 bar for 500 ps with a timestep of 1 fs Then, the
propagation of shock waves is along the z-direction with a

timestep of 0.1 fs. Period boundary conditions are performed
in the x- and y-direction, a reflection boundary is performed in
the z-direction. For MSST simulations, the initial
configurations of the single FCC crystal have been
equilibrated by applying the isothermal-isobaric, NPT
ensemble integration scheme (for 500 ps with a timestep
size of 1 fs) along with the Nose–Hoover thermostat
algorithm at 300 K and 1 bar. Periodic boundary conditions
are maintained in all three directions. After equilibrium, the
applied shock speed ranged from 5.0 to 8.4 km/s with an
interval of 0.2 km/s by MSST simulations for a duration of
500 ps. The masslike parameter Q was set to 3600, the artificial
viscosity mu was set to 0.0903, and the converting factor tscale
was set to 0.01. The data collection was performed after 100 ps
when all physical quantities are stable. In all the MD
simulations, the shock wave is applied to the single crystal
FCC copper along (100) orientation.

Different analysis methods have been used to diagnose the
structure. By using a simulated radiation of wavelength
(0.5266 Å), X-ray diffraction intensities are calculated on a
mesh of reciprocal lattice nodes (method described in Ref.
[34]); the simulated XRD profiles of intensity versus scattering
angle (2Θ) are fitted by a Gaussian function. The adaptive
common neighbor analysis (a-CNA) method is to reveal the
finite number of local arrangements with the FCC, BCC, or HCP
crystal structure [35]; [36]. The a-CNA method (see the
Supplementary Material for details), performed by the OVITO
software [36], is a short-range diagnosis based on the
coordination number of atoms. The effective coordination
number (ECN) method [37] is utilized to distinguish the
atoms unrecognized by a-CNA, and it is able to detect the
symmetry structure in which a particular atom is surrounded
by atoms at different distances (see the Supplementary Material
for details). Ten snapshots were collected from MD simulation
trajectories to obtain time-averaged information.

The nonequilibrium thermodynamic integration (neTI)
method [38] is proposed for calculating the free energy.
The commonly used thermodynamic integration technique
[39] to evaluate free energy is performed by constructing a
sequence of equilibrium states on a path between two
thermodynamic states of interest. Compared with standard
equilibrium free-energy calculations, the neTI method allows
the calculations to be assessed along explicitly time-
dependent processes. The shock-induced BCC structures
are generated by MSST simulations in the shock velocity of
7.4 km/s, corresponding to a compression pressure of
156 GPa. The Gibbs free energy differences between FCC
and shock-induced BCC are calculated at different
temperature and pressure based on shock conditions
(details in the Supplementary Material).

3 RESULTS AND DISCUSSION

Different configurations have been used to check the convergence
of NEMD simulations (Supplementary Table S1), and the initial
configuration with 2160000 atoms is shown in Supplementary
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Figure S1 Based on the EAM potential of Cu developed by
Mishin et al., the equation of states in this workmatched well with
previous results as shown in Supplementary Figure S2A.
Variable sizes have been performed for MSST method testing
(Supplementary Figure S2B). The peak longitudinal stress
(P)–volume (V) states for high pressure Cu is shown in
Figure 1A. The results determined from the present
simulations coincide with the previously Hugoniot curve and
recently shock wave experiment[30]. Based on the XRD
measurement, the presence of the BCC structure has been
found in lower pressure, as shown in Figure 1B. In the shock
experiments, the measured XRD line profiles with (hkl) peaks
indexed are used to identify the nature of the copper foils. At
ambient condition, the MD simulation result is in good
agreement with the experimental result. The line profiles of
the shock experiment show that Cu remains in the FCC phase

up to 156.8 GPa, only the first peak matches the MD result at
119 GPa. The peak indexed as the (110) BCC peak partially
overlaps with the (111) FCC peak at 181.5 GPa indicates the
mixed FCC–BCC phase. The observed overlapped peaks in MD
simulation results are much similar to experiments, but the BCC
peak is found at 155.9 GPa. With increased shock pressure, the
FCC peaks completely vanish in both experiment and MD
simulation at 211.5 and 196 GPa, respectively. The static
compression and the ramp compression data [28, 29] (the
FCC structure is preserved up to terapascal range) also have
been plotted in Figure 1A. As shown in Figure 1, there is no
observation of the BCC phase with static and ramp compression
up to terapascal regime, while only shock loaded Cu generates the
BCC structure in the range of gigapascal.

The structures of Cu at representative pressure by MSST
simulations are exhibited in Supplementary Figure S3. Before

FIGURE 1 | (A) Longitudinal stress vs. volume compressions for compressed copper. (B) The XRD profiles for shock compressed copper. The red solid curves
denote MD simulations under different shock pressure. The black dash curves denote experimental results.

FIGURE 2 | (A) The fraction of atoms with four structural types under different shock pressure are analyzed by a-CNA. (B) The ECN distribution of atoms with
corresponding structures under three typical pressure.

Frontiers in Physics | www.frontiersin.org April 2022 | Volume 10 | Article 8383163

Ling et al. Structural Transformation in Shock Compression

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


the transition to the BCC phase, different types of stacking
faults occur containing FCC and HCP. The fraction of atom
types under different shock intensities by a-CNA is shown in
Figure 2A. It can be observed that the FCC structure
comprises the main part for low-intensity shock
compression (below 38.8 GPa). The proportion of the HCP
structure arises as shock intensities rise to 85.5 GPa. Prior to
the occurrence of the BCC structure, both FCC and HCP
structures contribute to the generation of stacking faults,
which has not been reported by existed experiments. At
98 GPa, the fraction of FCC and HCP nearly dropped to
zero, while the content of BCC atoms suddenly increased. It
is shown that the onset pressure of phase transition is 98 GPa
rather than 156 GPa through the XRD method. The difference
between a-CNA and XRD methods results from short or long
range diagnosis characteristics. The a-CNA is applied in a
confined local crystal structure when analyzing an
instantaneous neighbor environment. Hence, the termed
“OTHER” in Figure 2A represents those particles not
defined by a-CNA. The ECN of Cu on three typical shock
compression is shown in Figure 2B. The probability
distribution of ECN about four types of atoms classified by
a-CNA. The coordination number (CN) of BCC atoms is
different from FCC and HCP atoms. It is observed that
“OTHER” type atoms are almost identical with BCC atoms
based on the same peak position and wave broadening. The
shape of probability distribution, both FCC and HCP types, is
not smooth as the pressure is increased. Meanwhile, the shape
of ECN distributions has a trend of broadening owing to
increasing shock intensities accompanied with the
temperature increase. These observations are also found
under other shock pressures (Supplementary Figure S4). It
can be concluded that “OTHER” type atoms are charactered as
the BCC structure in the long-time statistical average. The

radial distribution functions (RDFs) of the initio FCC
structure, BCC structure (rebuilt perfect BCC crystal under
156 GPa static pressure), shock-induced BCC structure
(156 GPa shock pressure), and liquid copper (156 GPa static
pressure) have been compared (Supplementary Figure S5).
The RDF suggests that short-ordered or medium-ordered
structural features emerge after shock compression. Thus,
“OTHER”-type atoms should be regrouped into either long-
time statistical averaged BCC structures or short-range
disordered structures. Compared with static compression,
shock compression will cause instantaneous disordered
structures due to strong uniaxial strain and temperature
increase rapidly.

In particular, the phase diagram of Cu has been known
only to a pressure range below 500 GPa and mostly about
solid–liquid transition[12,43]. The phase diagram of Cu is
shown in Figure 3. The non-equilibrium processes based on
the thermodynamic integration (ne-TI) method have been
performed for the free energy calculations. The shock-
induced BCC structures are generated by MSST
simulations in the shock velocity of 7.4 km/s,
corresponding to 156 GPa, 3400 K. The phase boundary of
FCC–BCC along principal Hugoniot is located around
150 GPa (Supplementary Figure S6), which supported the
results of XRD diagnosis. Based on the above discussion, the
shock-induced BCC structure can be redefined as perfect BCC
with disorders. This special structure found in simulation is
characterized to be short-range disordered and meanwhile in
long-time statistical averaged order. It is worthy to emphasize
that the short-range disordered structures play a significant
role in lowering the phase transition energy barrier in the
FCC–BCC transition.

4 CONCLUSION

In summary, the present investigation using molecular
dynamics simulations to examine copper shock compressed
to a wide range of P–T conditions provides detailed
microscopic information about the structural
transformation process that cannot be observed by
experiments. The present finding regarding the FCC–BCC
transition is in agreement with the recent in situ XRD
results for shock-compressed Cu. In contrast to static and
ramp compression, shock wave compression results in rapid
pressure load and concomitant temperature increase. Shock
compression of Cu generates the instantaneous disordered
structure based on the a-CNA and ECN method; the
particular structure is long-range ordered through XRD
diagnosis. As discussed above, there is a clear link between
the occurrence of the FCC–BCC phase transformation and the
presence of shock-induced disordered structures. Therefore,
the generation of disordered structures in shock-compressed
Cu would reduce the Gibbs free energies of the BCC crystal.
Such investigations would elucidate possible fundamental
differences between shock compression and static
compression in the microscopic nature.

FIGURE 3 | Phase diagram of compressed copper. The blue dots
denote thermodynamic equilibrium states, which indicate that the Gibbs free
energy difference equals to zero. The phase boundary of FCC–BCC (blue line)
is obtained by square polynomial fitting on the blue dots (simulation data)
[40]; [42]. Other results obtained from Ref [[12,43–45]].
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