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In the transmission process of gear system, the change of load will make the system in
different states of motion, which affects the transmission efficiency of gear system. It is
important to investigate the nonlinear dynamic characteristics of gear system under
different load states. Using straight cylindrical gears as the object of study, the
concentrated mass method is used to establish a dynamic model that takes into
account nonlinear factors such as tooth side clearance, time-varying meshing stiffness
and transmission errors. The differential equations of the system are solved by the Longe-
Kutta method to obtain the bifurcation diagram, the maximum Lyapunov exponent
diagram and the phase plane diagram of the gear system to analyze the effect of the
meshing damping ratio on the dynamic characteristics of the system under different load
states. The results show that the influence of the engagement damping ratio on the
dynamic characteristics of the system is greater under light load conditions, showing
different states of motion as the engagement damping ratio gradually increases. Under
heavy load conditions, the effect of the engagement damping ratio on the dynamic
characteristics of the system is small. Appropriately increasing the mesh damping ratio
is beneficial to the gear system to avoid the chaotic zone and maintain a stable cyclic
motion state. The results of the study provide a reference for the design of gear systems
with variable loads.
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INTRODUCTION

As one of the most commonly used forms of mechanical transmission, gear systems are used in a
large number of applications in various fields because of their constant power and smooth speed.
Gear systems are subjected to complex and variable loads during work engineering, and different
loads can lead to the existence of unstable motion in the system, and can even lead to an increase in
transmission errors and noise as well as the decay of gear life. Therefore, the study of the dynamic
behavior of the gear system under different load states and the analysis of the influence law of each
parameter on the stability of the system can effectively improve the working condition of the gear and
prolong the working life.

In order to study the nonlinear dynamics of gear systems in depth, many scholars have introduced
new methods and theories to investigate the generation and influencing factors of the nonlinear
dynamics behavior of gear systems. Chen et al [1] established a gear model for single tooth
deformation, optimized the tooth side clearance, and provided theoretical guidance for the selection
of gear dynamics models. Cai et al [2] proposed a generalized nonlinear dynamics model based on
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Lagrange Bond diagrams and verified the validity of the model
through relevant experiments. Chen et al [3] proposed a model
including tooth surface morphology parameters and verified the
validity of the Section model through a series of simulations.
Chen et al [4] developed an improved model based on the
redefined gap equation, and the validity of the model was
verified by theoretical and experimental data. Atanasiu et al
[5] established an improved meshing stiffness model by
introducing specific meshing characteristics of helical gear
pairs, and numerically analyzed the model to obtain the
variation law of dynamic transmission errors. Lai et al [6, 7]
propose a new chaotic system and illustrate the bifurcation and
chaotic properties of the system by numerical analysis. Wang et al
[8] verified the effectiveness and feasibility of removing chaos
through feedback and non-feedback control methods. Lai et al [9]
designed a controller based on the passive control method, which
is able to maintain the stability of the system when it is used. In
addition, many other scholars have modeled and analyzed gear
systems in different devices. Huang et al [10, 11] modeled the
dynamics for micro-segment gear pairs and analyzed the effect of
different parameters on the dynamic characteristics of the system
using numerical analysis. Srikanth et al [12] developed a dynamic
model based on wind turbine drive train considering bearing stiffness
and torsional shaft stiffness, and solved the coupled dynamic model
to obtain the time and frequency domain response of the drive train.
Chen Sheng et al [13, 14] developed a gear dynamics model for the
coal mining machine drive system and analyzed the effect of
temperature as well as other nonlinear parameters on the stability
of the system, respectively. Yang et al [15] analyzed the effect of
different trim parameters on the dynamic characteristics of the
system for cycloidal cam gears. Several scholars have developed

gear dynamics models considering various nonlinear factors and
analyzed the nonlinear dynamical behavior of gear systems with
different parameter variations by different solving methods [16–19].
Li et al [20] developed a gear model considering the nonlinear effects
of both gears and bearings, and verified the dynamics of themodel by
numerical simulation calculations. Wang et al [21, 22] developed a
torsional model of a coupled gear-rotor drive system and analyzed
various nonlinear dynamic characteristics of the system by means of
global bifurcation and other methods. Hortel et al [23] analyzed the
effect of all parameter variables on the internal dynamics of a
nonlinear system with time-varying damping. Many scholars have
developed different models to study the effect of friction and
engagement damping ratios on the dynamic characteristics of the
system by numerical analysis methods [24–27].

From the literature, it can be seen that scholars at home and
abroad have conducted a lot of research on the dynamic
characteristics, but there is less research on the dynamics
bifurcation and chaos of the transmission system under
different load states. When the gear system is in different load
states, it will show different motion characteristics. When the
motion characteristics of the gear system are in the chaotic zone,
it will cause serious impact on the system noise, operation
reliability, and even lead to gear destruction. Therefore, it is
necessary to carry out a detailed study of the dynamics of the gear
system under different loads.

In this paper, a gear system dynamics model considering tooth
side clearance, time-varying meshing stiffness and transmission error
is developed using the concentratedmassmethod. The stability of the
system is analyzed by solving the differential equations of motion of
the system by the Lundgren-Kutta method and obtaining bifurcation
diagrams, maximum Lyapunov exponent diagrams and phase plane
diagrams to study the bifurcation and chaotic characteristics of the
gear system under different load conditions. The results of the
analysis can provide a theoretical reference for the design of gear
systems with variable loads.

FIGURE 1 | Kinetic model of involute gear pair.

FIGURE 2 | Non-linear function of tooth side clearance.
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DYNAMICS MODELING

Due to the influence of many non-linear factors, the vibration of
the gear system is complicated and presents a non-linear
vibration condition. Therefore, to analyze the nonlinear

kinematic characteristics of the gear system, it is necessary to
consider the effects of nonlinear factors such as tooth side
clearance, integrated errors and time-varying meshing stiffness,
and to establish an overall vibration analysis model from the
system as a whole by using the concentrated mass method.

FIGURE 3 | (A) Bifurcation diagram of the system with the variation of damping ratio under light load condition. (B) Plot of the maximum Lyapunov index.

FIGURE 4 | Dynamics of the gear system at ξ = 0.05 under light load (A) Time domain diagram. (B) Phase diagram. (C) Spectrogram. (D) Poincare cross section
diagram.
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Gear Dynamics Modeling
The gearing system operates with a concentrated mass as a whole,
so the concentrated mass method can be used to model the
nonlinear dynamics of the gearing system. The following
assumptions need to be made when modeling: the gears have
only torsional motion during operation; the frictional influence of
the support bearings is not considered; and the direction of the
gear meshing force is always acting on the meshing line. Then the
dynamics model of a pair of involute gear pairs is represented as
shown in the Figure 1.

According to the kinetic model, the set of differential
equations of motion can be deduced using Newton’s law as:

{T1 � I1€θ1 + rb1ch[rb1 _θ1 − rb2 _θ2 − e(t)] + k(t)rb1 �f(x(t))(rb1 − rb2 − e(t))
−T2 � I2€θ2 − rb2ch[rb1 _θ1 − rb2 _θ2 − e(t)] − k(t)rb2 �f(x(t))(rb1 − rb2 − e(t))

(1)
Where k(t) is the time-varying meshing stiffness; ch is the
meshing damping coefficient; e(t) is the gear meshing error;
�f(x(t)) is a non-analytic function describing the tooth
meshing force when the tooth side clearance is available. rbi、
Ti、Ii、θi (i = 1,2) and other parameters are the base radius,
torque, rotational inertia and torsional angular displacement of
the master and driven wheel, respectively.

Gear Meshing Stiffness
When the gear meshes, its meshing stiffness is not constant but is
constantly changing with time, this change is the time-varying stiffness,
the excitationphenomenon causedby it is called gear stiffness excitation.

Since gearing is a periodic motion, the meshing stiffness is a
periodic function with certain laws. When the same gear pair is
meshed, the frequency of stiffness change is the same as the
frequency of internal excitation, so the meshing stiffness can be
expressed in the form of Fourier series:

k(t) � km +∑∞
j�1
kj cos(jωn�t) (2)

Where, km refers to the average meshing stiffness; ωh refers to the
meshing frequency of the gear; kj refers to the amplitude of the
meshing stiffness.

Now taking the first-order harmonic component of the
stiffness, the time-varying meshing stiffness is:

k(t) � km + k1 cos(ωn�t) (3)

Tooth Side Gap
Tooth side clearance is caused by manufacturing and assembly
and is a strong nonlinear factor in dynamics studies. During the

FIGURE 5 | Dynamics of the gear system at ξ = 0.11 under light load (A) Time domain diagram. (B) Phase diagram. (C) Spectrogram. (D) Poincare cross section
diagram.
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motion of the gear pair, the meshing trajectory changes
continuously due to the tooth-side clearance, which affects the
gear meshing accuracy and life under repeated loads. Therefore, it
is necessary to consider the effect of tooth side clearance when
studying the dynamic characteristics of gear systems.

The gear side clearance function is a non-linear meshing force
displacement function of the gear when there is side clearance, as
a segmented function. Assuming a side gap of 2b, the
segmentation function f (x(t)) can be expressed as [28]:

f(x(t)) �
�f(x(t))
km

�
⎧⎪⎨⎪⎩ x(t) − b x(t)> b

0 |x(t)|≤ b
x(t) + b x(t)< − b

(4)

If the gap is symmetric, then �f(x(t)) takes the form shown in
Figure 2.

Gear Meshing Error
When the actual meshing position of the gear profile deviates
from the ideal position, displacement excitation, also called error
excitation, is formed.

The error of a gear varies periodically as it meshes, so for
analysis, a Fourier series expansion of the gear meshing frequency
can be performed as follows [29]:

e(t) � em +∑∞
j�1
[eaj cos(jωnt) + ebj sin(jωnt)]

� em +∑∞
j�1
ej cos(jωnt + φj) (5)

Where, em is the average error; ej is the harmonic component of
the error amplitude.

Since the static transmission error is small, only the first-
order harmonic components are considered for ease of
analysis. Taking em = 0 when considering only the first
order, the first-order harmonic component of the meshing
error is:

e(t) � e1 cos(ωnt + φ0) (6)
Define the displacements of the two gears along the meshing

line as x1 and x2, and x1 represents the active wheel displacement

FIGURE 6 |Dynamics of the gear systemat ξ=0.113 under light load (A)Timedomain diagram. (B)Phase diagram. (C)Spectrogram. (D)Poincare cross section diagram.
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and x2 represents the driven wheel displacement. Then it is
obtained that:

{x1 � rb1θ1
x2 � rb2θ2

(7)

The dynamic transmission error of the gear system is

xd(t) � x1 − x2 (8)
Then the difference between the dynamic transmission error

and the static transmission error of the system, i.e., the combined
transmission error, is:

x(t) � x1 − x2 − e(t) (9)

FIGURE 7 | Dynamics of the gear system at ξ = 0.16 under light load (A) Time domain diagram. (B) Phase diagram. (C) Spectrogram. (D) Poincare cross section
diagram.

FIGURE 8 | (A) Bifurcation diagram of the system with the variation of damping ratio under heavy load condition. (B) Plot of the maximum Lyapunov index.
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Dynamical Model Dimensionless
Processing
Dividing equations in Eq. 1 by rb1 and rb2, respectively, and
substituting Eq. 7 to simplify gives:

{F1 � m1€x1 + ch[ _x1 − _x2 − _e(t)] + k(t)f(x1 − x2 − e(t))
−F2 � m2€x2 − ch[ _x1 − _x2 − _e(t)] − k(t)f(x1 − x2 − e(t)) (10)

Where: mi (i = 1,2) are the equivalent masses of the master and
driven wheels, expressed as m1 � I1/r2b1, m2 � I2/r2b2; Fi(i = 1,2)
are the circumferential forces acting in the direction of the
engagement line for the master and driven wheels, expressed
as F1 � T1/rb1, F2 � T2/rb2.

In order to eliminate the effect of stiffness displacement, the
transmission error of Eq. 9 is substituted into Eq. 10 to organize
the following:

me€x + ch _x + k(t)f(x) � �Fm + �Fh (11)
Where: me is the equivalent mass of the gear; �Fm is the external
excitation force of the gear, caused by the fluctuation of the active
torque and load torque, and the fluctuation of the external
excitation force is not considered here; �Fh is the internal
excitation force of the gear, caused by the manufacturing and
installation errors.

me � I1I2
I1r2b2 + I2r2b1

(12)

�Fh � −me
d2e

dt2
� meeω

2
n sin(ωnt + φn) (13)

Substituting Eqs 3, 13 into Eq. 11 yields:

me€x + ch _x + (km + ka cos(ωnt))f(x)
� �Fm +meeω

2
n sin(ωnt + φn) (14)

To facilitate the computational study of the dynamical
properties of gear systems, the dynamical differential equations
need to be dimensionless. Assume that the inherent frequency of
the gear system model is:

ω0 �
���
k

me

√
(15)

Defining the quantization time as t � ωn�t, and introducing the
displacement nominal scale bc, other variables can be defined by �t
and bc.

�ωn � ωn

ω0
, Fm � �Fm

bcmeω2
0

, Fh � e

bcmeω2
0

, ξ � ch
2meω0

, ε � ka
km

(16)

FIGURE 9 | Dynamics of the gear system at ξ = 0.01 under heavy load (A) Time domain diagram. (B) Phase diagram. (C) Spectrogram. (D) Poincare cross section
diagram.
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From this, the dimensionless analytical model of the
differential equations of the dynamics model of the gear
system can be derived as follows.

€x(t) + 2ξ _x(t) + [1 + ε cos(ωnt)]f(x(t))
� Fm + Fhω

2
n sin(ωnt + φh) (17)

NONLINEAR DYNAMICS
CHARACTERIZATION

The load state to which the gear system is subjected has a large
influence on its dynamics, so it is necessary to study the dynamics
of the gear system under light and heavy load conditions. The
load state is expressed as the ratio of the external moment load Fm
to the error amplitude Fh. The larger the ratio, the greater the load
on the gear system. Therefore, when Fm takes a fixed value, the
value of Fh is inversely proportional to the load, so when Fh = 0.1,
the gear system is in heavy load; when Fh = 0.3, the gear system is
in light load. The remaining system parameters take the following
values: The average load Fm = 0.1; the time-varying meshing
stiffness coefficient s = 0.1; the tooth side clearance b = 0.5; the

dimensionless frequency ω = 1; and the range of meshing
damping ratio is 0.01–0.2 [30].

In this paper, the dynamics equations of the gear system are
solved numerically by the Lundgren-Kutta method. Based on the
steady-state response, the bifurcation diagram, the maximum
Lyapunov exponent diagram and the phase diagram are used as
analytical tools to study the dynamics of the gear system under
light and heavy load conditions, respectively.

Effect of Damping Ratio on System
Characteristics Under Light Load Condition
When the gear system is under light load, the relevant parameters
are taken as follows: error amplitude Fh = 0.3; average load Fm =
0.1; time-varying meshing stiffness coefficient s = 0.1; tooth side
clearance b = 0.5; dimensionless frequency ω = 1; the range of
meshing damping ratio is 0.01–0.2. The bifurcation diagram and
the maximum Lyapunov exponent diagram of the gear system
with the variation of the damping ratio are shown in Figure 3.

By observing Figure 3, it can be found that with the gradual
increase of the damping ratio, the gear system first shows a
complex chaotic motion until the damping ratio is 0.11, then the
system enters the proposed periodic motion, and then enters a

FIGURE 10 | Dynamics of gear system at heavy load condition ξ = 0.021 (A) Time domain diagram. (B) Phase diagram. (C) Spectrogram. (D) Poincare cross
section diagram.
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short 4 times the proposed periodic motion, and the damping
ratio continues to increase, the gear system enters a stable 2 times
the periodic motion. Therefore, when the mesh damping ratio
gradually increases from 0.01 to 0.2, the overall gear system
undergoes a change of “chaotic motion—2 times
anthropomorphic periodic motion—4 times anthropomorphic
periodic motion—2 times anthropomorphic periodic motion”,
and its corresponding maximum Lyapunov exponent graph also
undergoes an overall change of “positive—zero—negative".

When the damping factor ξ = 0.05, the dynamics of the
gear system is shown in Figure 4, the time domain diagram
has no obvious periodicity, the phase plane diagram does not
repeat and fills a closed area, the frequency spectrum is a
continuous frequency band, and the Poincare section
diagram consists of patches of dense points, so the system
is in a complex chaotic motion at this time. When the
damping factor ξ = 0.11, the dynamics of the gear system
is shown in Figure 5, and its time domain diagram has
regular peaks and presents a certain periodicity, the phase
diagram is presented as a closed curve band, the spectrum
diagram is discrete, and the Poincare section diagram is
composed of 2 point sets, so the system is in a 2-fold
proposed periodic motion at this time.

When the damping factor ξ = 0.113, the dynamics of the
gear system is shown in Figure 6, whose time domain diagram
is a periodic curve with regular peaks, the phase diagram
shows a closed curve, the spectrum diagram is discrete, and
the Poincare cross-sectional diagram consists of several point
sets and the number of point sets is 4. Therefore, the system is
in a 4-fold proposed periodic motion at this time. When the
damping factor ξ = 0.16, the motion characteristics of the gear
system are shown in Figure 7. The time domain diagram has
certain periodicity and the peak value remains stable, the
phase diagram shows a closed curve, the spectrum diagram is
discrete, and the Poincare section diagram consists of 2
points, so the system is in a 2-fold periodic motion at
this time.

The kinematic characteristics of the system presented in
Figures 4–7 are consistent with the overall kinematic
characteristics that vary with the damping ratio shown in
Figure 3.

The results show that the variation of the damping ratio
coefficient has a large effect on the nonlinear dynamic
characteristics of the system when the gear system is under
light load. Therefore, when analyzing and verifying the gear
system under light load, the stability of the system can be

FIGURE 11 | Dynamics of the gear system at ξ = 0.028 under heavy load. (A) Time domain diagram. (B) Phase diagram. (C) Spectrogram. (D) Poincare cross
section diagram.
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enhanced by increasing the damping ratio coefficient to avoid the
chaotic motion.

Effect of Damping Ratio on System
Characteristics Under Heavy Load
When the gear system is under heavy load, the relevant
parameters of the system are taken as follows: error amplitude
Fh = 0.1; average load Fm = 0.1; time-varying meshing stiffness
coefficient s = 0.1; tooth side clearance b = 0.5; dimensionless
frequency ω = 1; the range of meshing damping ratio is 0.01–0.2.
The bifurcation diagram and the maximum Lyapunov exponent
diagram of the gear system with the variation of the damping
ratio are shown in Figure 8.

By observing Figure 8, it can be found that with the gradual
increase of the damping ratio, the gear system first enters a brief
chaotic motion state, followed by alternating single-fold periodic
motion and chaotic motion states. Until the damping ratio
increases to 0.028, the system enters into a brief triple
anthropomorphic periodic motion, and as the damping ratio
continues to increase, the system changes to a single periodic

motion state and remains stable. The maximum Lyapunov
exponent undergoes a general change of “positive-zero-
negative-zero-positive-zero-negative”, which is consistent with
the change of motion shown in the bifurcation diagram.

When the damping ratio ξ = 0.01, the motion characteristics of
the gear system are shown in Figure 9, the time domain diagram
has no obvious periodicity, the peak is not regular, the phase
plane diagram does not repeat and fills a closed area, the spectrum
diagram is a continuous curve, and the Poincare section diagram
is composed of a piece of dense points, so the system is in a
complex chaotic motion state at this time. When the damping
ratio coefficient increases to ξ = 0.021, the motion characteristics
of the system are shown in Figure 10, the time domain diagram
shows obvious periodicity and the peak has regularity, the phase
diagram is a closed curve band, the spectrum diagram is a discrete
curve, and the Poincare section diagram consists of 1 point, so the
system is in a single periodic motion at this time.

When the damping ratio coefficient continues to increase to ξ
= 0.032, the motion characteristics of the system are shown in
Figure 11. The time domain diagram is a periodic curve with
peak law, the phase diagram is a closed circular curve, the

FIGURE 12 | Dynamics of the gear system at ξ = 0.16 under heavy load. (A) Time domain diagram. (B) Phase diagram. (C) Spectrogram. (D) Poincare cross
section diagram.
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spectrum diagram is a curve with three peaks, and the Poincare
cross-sectional diagram consists of three point sets, so the system
is in a 3-fold proposed periodic motion at this time. When the
damping ratio coefficient ξ = 0.16, the motion characteristics of
the system are shown in Figure 12. The time domain diagram
shows an obvious periodicity, and the peak is kept stable, the
phase diagram is a closed curve, the spectrum diagram is a
discrete curve with a single peak, and the Poincare cross-
section diagram consists of a single point, so the system is in
a stable single-fold periodic motion at this time.

The changes in the kinematic state of the gear system shown in
Figures 9–12 are consistent with the effect of the damping ratio
coefficient ξ on the system stability obtained in Figure 8, verifying
the accuracy of the analysis process and results.

The results show that the variation of the damping ratio
coefficient of the gear system under heavy load condition has
less effect on the stability of the system.

CONCLUSION

In this paper, a nonlinear dynamics model of the gear system is
established, and the differential equations of the model are solved
numerically using the Lundgren-Kutta method to obtain the
nonlinear dynamics behavior and bifurcation chaos characteristics
of the system. The stability of the system is analyzed by bifurcation
diagram, maximum Lyapunov exponent diagram and phase plane
diagram, and the following conclusions are obtained.

1) In the light load condition, the change of meshing damping
ratio has a greater impact on the gear system. Under the
premise of ensuring the transmission efficiency, the increase
of the engagement damping ratio can make the system
gradually change from the hybrid motion state to the
proposed periodic and multi-cycle motion state. Therefore,
the design and lubrication of the gear system under light load
condition can significantly improve the nonlinear dynamic
response of the system by appropriately increasing the
meshing damping ratio of the system under the premise of
ensuring the transmission efficiency.

2) Under heavy load conditions, the change in the engagement
damping ratio has less effect on the system. The system
alternates between chaotic and periodic motion states only
when the engagement damping ratio is taken to be less than

0.04. As the damping ratio continues to increase, the system
enters a single-fold periodic motion state and remains stable.
Therefore, when designing and lubricating the heavy-duty
gear system, a larger mesh damping ratio can be taken, which
can make the system avoid the chaotic zone and be in a stable
single cycle motion.

According to the research results, it is known that when
designing the gear transmission system, it is suitable to adjust
the meshing damping ratio, which can make the gear system
move more smoothly. However, there are still some issues to be
further thought and explored, for example, the gear system affects
the gear transmission performance because of thermal
deformation during operation, and the influence of
temperature change should be considered when establishing
the model; in addition, strong nonlinear factors affecting the
gear system such as bearing lubrication should be considered.
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