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Brain organoids recapitulate a number of brain properties, including neuronal diversity.
However, do they recapitulate brain structure? Using a hydrodynamic description for cell
nuclei as particles interacting initially via an effective, attractive force as mediated by the
respective, surrounding cytoskeletons, we quantify structure development in brain
organoids to determine what physical mechanism regulates the number of cortex-core
structures. Regions of cell nuclei overdensity in the linear regime drive the initial seeding for
cortex-core structures, which ultimately develop in the non-linear regime, as inferred by the
emergent form of an effective interaction between cell nuclei and with the extracellular
environment. Individual cortex-core structures then provide a basis upon which we build
an extended version of the buckling without bending morphogenesis (BWBM) model, with
its proliferating cortex and constraining core, to predict foliations/folds of the cortex in the
presence of a nonlinearity due to cortical cells actively regulating strain. In doing so, we
obtain asymmetric foliations/folds with respect to the trough (sulci) and the crest (gyri). In
addition to laying new groundwork for the design of more familiar and less familiar brain
structures, the hydrodynamic description for cell nuclei during the initial stages of brain
organoid development provides an intriguing quantitative connection with large-scale
structure formation in the universe.
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1 INTRODUCTION

What physical mechanisms are at play in determining brain structure? In humans, the beginning
of brain structure begins about 2 weeks after fertilization with the formation of a neural plate [1].
The neural plate then folds inward on itself to form a neural tube. From this neural tube, different
brain regions, such as the forebrain and the hindbrain emerge. In the forebrain, the proliferating
progenitor cells in the innermost part of the tube form the ventricular zone, with extended, radial
glial cells linking the cells in the ventricular zone to the outer edge of the neural tube. It is these
extended radial glial cells that the inner progenitor cells crawl along to reach the outer part of the
forebrain. As they do so, they differentiate to become neurons and form a cortex, consisting of six
layers of cells, around 20 weeks later. In the hindbrain, the proliferation of progenitor cells
occurs in the outer region with their migration towards the center of the structure. In humans,
both the cerebral cortex (emerging from the forebrain) and the cerebellar cortex (emerging from
the hindbrain) undergo shape changes in the form of folds or foliations.

Until recently, many of the biophysical models for brain structure have focused on the later
stages of brain shape development, namely the development of folds of the cerebrum and the
cerebellum [2–12]. These models essentially divide into two camps. The first camp consists of
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nonlinear elastic models with differential swelling mimicking
cell growth and generating compressive forces that drive the
initiation of folds [2, 4, 6, 8–10]. They argue that the size and
shape of the folds arise via the mechanical stability kown as
buckling that occurs, for example, when a rod is axially
compressed beyond some threshold force. And yet, such
purely elastic models predict a particular pattern of cortical
thickness variations that is not observed in the developing
mouse cerebellum, or the little brain [12]. The second camp
focuses on tension-based, multi-phase models in the presence
of cell growth and generating tensile forces that drive the
initiation of folds [3, 5, 11, 12]. One such model, known as
“buckling without bending”, is able to provide a mechanism for
the patterning of cortical thickness variations observed in the
developing mouse cerebellum [11, 12]. And while such models
focus on tensile forces as initiating the folds, compressive
forces may indeed also play a role as cell growth continues
such that the tissue becomes more crowded. We must also
point out that some argue that experiments on ferret brains,
whose folds develop ex utero, rule out the initial version of the
tension-based models by observing the displacement of brain
tissue in response to cuts in particular directions [13].
However, there exists a revised version of the initial
tension-based model with a different direction of the
tension that has yet to be tested experimentally and so we
indeed should not leave tension-based models behind [5].

While many biophysical studies of brain structure focus on
the folds of the cerebrum or the cerebellum, the emergence of
the base structure of a cortex-core at earlier stages of
development is also very important. It is this emergence
that we will focus on for the first part of the manuscript
using a minimal model. Interestingly, a new in vitro brain
system, namely brain organoids [14], provides a testing ground
for understanding the emergence of brain structure [15, 16], as
well as recapitulates such phenomena as neuronal diversity
[17] and neuronal firing patterns [18]. One such study focuses
on quasi-two-dimensional brain organoids that start as a

relatively isotropic clump of cells, which is then inserted
between two “plates” separated by approximately 150 μm
[16]. Within several days, the clump morphs into several
sub-structures each with a core with globular, polyhedral-
shaped cells and radially-stretched cells surrounding each
core to form a cortex, or, there is only one cortex-core
structure. See Figure 1 in which latter result is labelled
pathway “2D A” and the former, “2D B”. After this initial
shape change in the “2D A” pathway and the cortex-core
structure continues to grow, a foliation amongst the
radially-stretched cells, or cortex, emerges [16].

Here, we will first take a step back from cortex foliation and
address how is it that at times multiple cortex-core structures
emerge, while in other cases, just one cortex-core structure
emerges. Answering this question will give us insight into
cortex-core formation. Then, we will characterize the
foliation of the cortex with the “buckling without bending”
morphogenesis (BWBM) model since it is already able to
quantitatively capture cortical foliation in blebbistatin-treated
brain organoids [11]. One, therefore, wonders whether or not
such an approach is applicable in the untreated case.

To explore how brain organoids acquire their cortex-core
structure, which we dub Stage I, and subsequent cortex foliation,
or Stage II (see Figure 1), we build continuum models for each
respective stage. We do so since once the cortex-core structure
forms, that structure provides the basis for coarse-graining at a
different scale to arrive at an extension of the BWBMmodel. As
for Stage I, many cellular aggregates often demonstrate fluid-like
behavior [19, 20], though viscoelasticity is also observed [21].
Given the cellular fluid-like behavior, an appropriate model falls
under the hydrodynamics domain. At this point, it is tempting
to go to a more detailed cellular-based model. However, we will
take a less-detailed approach since it is not entirely clear if we
can address the one versus many cortex-core structures within a
detailed computational model at the outset, given the limitation
of finite size.

Therefore, we seek a more minimal approach in which cell
nuclei are particles. The cell nuclei interact with other cell nuclei
indirectly via the surrounding active cytoplasm of, say, 2 cells,
interacting with each other via their cortical tension, which
ultimately drives the cell-cell interaction. Cell nuclei also
interact indirectly with their extracellular surroundings. In
other words, there is an effective, active force on cell nuclei
due to cell-cell interactions an effective, active force on cell nuclei
due to the extracellular environment. Specifically, since cell
nuclei are observed to move toward each other during what
is called the linear regime, we will assume that there is an initial,
effective, short-range attraction between cell nuclei. As the
organoid evolves, given the dynamic and mechanosensitive
nature of the active, cytoskeleton generating forces, we use
several observations from experiments to determine the
emergent form of the effective, active force on cell nuclei due
to cell-cell and cell-environment interactions during the non-
linear regime. From the emergent form of the effective, active
force we will infer cortex-core structures. We will use
hydrodynamic equations to describe both regimes, which will
correspond to a linear regime and a non-linear regime.

FIGURE 1 | A simplified version of different possible organoid shapes in
quasi-2D confinement (2DA and 2DB) and not in quasi-2D confinement (3D).
The cortex-core structure consists of globular-shaped cells surrounded by
cells extended radially outward. One such structure emerges in the 2D A
pathway during Stage I. Credit: Savana Swoger.
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Once cortex-core structures emerge, such individual
structures provide the basis for the BWBM model in which
cellular growth plays a key role. The BWBM model consists of
an incompressible core with a growing cortex and several other
mechanical aspects of the brain organoid structure, namely, the
mechanics of the surrounding Matrigel and cortical cells under
tension. An initial, linear version of the BWBM model provided
a physical basis for the unusual cortical thickness variations in
blebbistatin-treated brain organoids—variations that cannot be
readily explained by a purely elastic model. In addition, the
foliations were less scalloped in the blebbistatin-treated case as
compared to the untreated case, and so a linear BWBM model,
with its symmetric foliations was reasonable. Indeed,
blebbistatin inhibits myosin-II, and so the intra-cellular
tension in cells making up both the cortex and the core
decreases [16]. At higher tensions, nonlinearities in tension
are more likely to become relevant, which is what we explore
here. For context, recent work has been done to take into
account nonlinearity in tension in radial glial cells in the
developing cerebellum [22], which are not present in the
confined brain organoids at the relevant time scales. We will
explore a different form of nonlinearity here.

This paper is organized as follows. In Section 2, we uncover a
physical mechanism for cortex-core structure formation (Stage I).
In Section 3, we quantify how foliations/folds in the cortex
emerge. We conclude with implications of our findings in
Section 4.

2 STAGE I: CORTEX-CORE FORMATION

Assuming that the brain organoid begins as an aggregate of fluid-
like cells, let us begin with the dynamical equation for the one-
body distribution function for cell nuclei given by

df

dt
� zf

zt
+ zf

zxi
vi + zf

zvi
€xi � C, (1)

where C incorporates dissipation, cell division, and fluctuations
[23]. We treat the interaction between cell nuclei as mediated by
the surrounding cytoskeletons associated with two attached cells,
for instance, as an effective force on a cell nucleus. A surrounding
cytoskeleton interacting with the extracellular environment also
leads to an effective force on cell nuclei. In other words, even
though nuclei do not interact directly, they interact indirectly via
their respective, surrounding cytoskeletons.

As for how the effective force between cell nuclei is generated,
a significant player is the contractile nature of the actomyosin
cortex with cells fusing when in a fluid phase [24, 25]. This
phenomenon points to an effective, attractive interaction between
cell nuclei that is short range in the sense that the interaction
involves cells in contact. There are also effective interactions
between the cell nuclei and their passive environment as mediated
by the cell cytoskeleton [26]. Therefore, we approximate both
cell-cell and cell-environment interactions as an effective force
such that €xi in Eq. 1 refers to the effective force on cell nuclei as
mediated by the cell cytoskeleton accounting for factors such as

actomyosin contractility and the surrounding environment. This
approach for quantifying the effective force is more general than
immediately assuming that dissipative, or damping, forces
dominate, which is akin to studying Kramer’s equation [27] as
opposed to the diffusion equation (in the absence of external
potentials). We do indeed examine how dissipative forces affect
our results (see Supplementary Appendix SA).

We split Stage I into linear and non-linear eras. Since cell
nuclei density fluctuation are low initially, Eq. 1 is linear. We
will show that the magnitude and the form of the effective force
do not change the resulting structures’ shape. As soon as cell
nuclei density fluctuations increase, the equation becomes
non-linear and the exact form of the effective force becomes
relevant. We will assume that the form of the effective force can
change with time as it is generated by a dynamic cytoskeleton.
Given certain observations from experiments in the non-linear
era, we will extract the effective force from Eq. 1. The spatial
patterning of cell nuclei then emerges from the combination of
1) a robust evolution equation and 2) observation, and is
rooted in the effective force that we derive. Specifically, we
show that at the beginning of the non-linear era, the effective
force between cell nuclei is attractive. However, toward the end
of Stage I, the effective force changes in nature and becomes
almost neutral at the center and repulsive beyond some
characteristic radius of the spherical structures.

Let us now work towards a solution for Eq. 1. Since cell nuclei
are roughly round shape in Stage I of brain organoid formation,
we neglect their inherent structure and assumed that phase-
space consists of positions and velocities only. Solving Eq. 1
analytically can be challenging. The more conventional
approach is to solve its first two moments of velocities
leading to two differential equations coupling the number
density ρ ≡∫dv f, the bulk velocity �vj ≡ 1

ρ ∫dv vj f, and
vvij ≡ 1

ρ∫ dv vivj f. To proceed further, one can write a third
differential equation for vvij, which depends on higher moments
of f. Instead, we apply a data-driven hydrodynamics approach to
find a relationship between ρ and pressure for the cell nuclei
[23]. To do so, we define the stress tensor as σ2ij ≡ vvij − �vi�vj and
assume it is isotropic during the initial stages such that σ2ij =
σ2δij. From the observations reported in Ref. [16], we find that
the pressure of the cell nuclei linearly depends on the number
density with a proportionality coefficient of σ2 = 0.1 (see
Supplementary Appendix SA). Therefore, the final form of
the evolution equation set reads

ztρ + zi ρ�vi( ) � C0,

zt�vj + σ2zjρ + �vizi�vj + gj � 1
ρ

Cj − �vjC0( ), (2)

where C0 ≡∫dv C accounts for cell division and the noise, and Cj

≡∫dv C vj accounts for dissipation and noise. Since the number
density experiences minimal growth in the first 3 days of the
experiment until the cortex-core structures are first observed [16],
we assume C0 only accounts for the noise. We also assume that
the noise terms obey

〈C0noise〉 � 〈Cjnoise〉 � 0, (3)
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with

〈C0noise(t, �x)C0noise(t′, �x′)〉 � θδ(t − t′)δ3( �x − �x′),
〈Cinoise(t, �x)Cjnoise(t′, �x′)〉 � γδijδ(t − t′)δ3( �x − �x′), (4)

where θ and γ determine the strength of each type of noise. For
effects of dissipation, see Supplementary Appendix SA.

Given the coupled, non-linear equations above, we will divide
the brain organoid evolution into linear and non-linear regimes
by solving the linearized form to find the initial conditions for the
non-linear evolution. However, in the non-linear regime, instead
of deriving density growth in terms of the forces, we use the exact
form of the differential equations, and the observations, to derive
the evolution of the effective forces on the cell nuclei as they may
change over time.

The linear era is valid for any magnitude of nuclear density. It
is the smallness of the density fluctuations with respect to the
mean background density that merits the linear stage. In this case,
we can write ρ(x) = ρ0 (1 + δρ(x)/ρ0) with δρ(x) ≪ ρ0. Hence, we
can expand Eq. 2 around ρ0 and neglect the higher orders of
δρ(x)/ρ0. Therefore, the linear version of Eq. 2 sufficiently
describes the evolution of the system until δρ(x) becomes
comparable in value with ρ0, which will be the beginning of
the non-linear era.

It is possible to experimentally determine whether the era is
linear or non-linear. Practically, one can measure the cell nuclear
density, ρ(x). For this, we use the data-driven method developed
in Ref. [23], for example. The mean of the measured densities is
the background density by definition, ρ0 ≡ (∫ d3x)−1 ∫d3xρ(x).
Subtracting ρ0 from ρ(x), leads to δρ(x), or the fluctuations in
density. If the fluctuations are much smaller than the calculated
mean density, the linear era is valid. Here, we assume that the
linear regime is valid initially with an approximately uniform cell
nuclear density. Nevertheless, no matter how the experimenters
attempt to make the cell nuclear density distribution uniform,
under and over-densities are inevitable, given the hetereogenity of
cells, with δρ(x) ≠ 0.

2.1 Stage I Linear Regime
We assume that the number density is initially homogeneous
with some small fluctuations, or ρ ≡ ρ0 + δρ, with δρ ≪ ρ0.
Inserting this ansatz into Eq. 2, neglecting higher order terms,
and Fourier transforming, we find

δρ(t, �x) � ∫ d3k ei
�k· �x ~δ(t, �k), (5)

with

~δ(t, �k) � ~δ(t � 0, �k)cosh
�����������
ρ0(L−1 − σ2)

√
kt( ), (6)

where the Fourier transform of gj is assumed to have the following
general form ~gj � −ikjL−1~δ. In this equation, L is an operator in
the field equation of the force that determines the nature of the
interactions. Moreover, L−1 in Eq. 6 is the inverse of the operator
in Fourier space. For the case of brain organoids, the form of the
effective force between cell nuclei is not known explicity and, as a
result, the form of L is not known. However, the power of the

linear era is in the independence of the exact form of the force
because only the first non-zero term of the Taylor expansion of
the force enters the equations and that always has the same form
regardless of the exact nature of the force. In a conservative
system with long-range gravitational forces, L−1 � k−2. For brain
organoids, the forces are short-ranged and non-conservative, so
L−1 takes a more complex form. Nevertheless, the result is not
sensitive to the detailed form of the attractive force in the linear
regime since only the first term of its Taylor expansion
contributes to the results. We assume two generic forms below.

To model the very initial overdensities, we assume that at t = 0
there exist N point-like random fluctuations in the density such
that

δρ(t � 0, �x) � ∑N
i�1

cie
−| �x− �ri |2 , (7)

where �ri and ci are random and denoting the location and
magnitude of each density fluctuation. All magnitudes satisfy |
ci|≪ ρ0. Therefore,

~δ(t � 0, �k) � π
3
2 ∑N
i�1

ci e
−i �k· �ri e−k

2/4. (8)

Inserting all terms back into Eq. 5, the final solution for the
time-evolved number density in the linear regime reads

δρ(t, �x) � 1

2π
1
2
∑N
i�1

ci

| �x − �ri|
∫∞
0

k sin(k | �x − �ri|)e−k2/4

× cosh
�����������
ρ0 L−1 − σ2( )√

kt( )dk.
(9)

While we do not know the exact form of the initial, effective
force between cell nuclei, from observation, it is effectively short-
range and contractile. So we write L−1 in the following rather
general form

L−1 � ∑∞
n�1

ln
k2n + b2nn

, (10)

where b−1n is an effective distance beyond which the force is zero.
The form of Eq. 10 demonstrates while the final over/under-
densities slightly depend on the significant terms in L−1, as far as
the effective interactions are attractive, the structures grow with a
rather similar form. In the following, we initially work with the
first term of the sum in Eq. 10 and derive the final densities. Later,
we repeat the same calculation with an additional term in the sum
to look for sensitivity in the form of the effective force. After
retaining the first term in the expansion of L−1, we insert the
randomly generated ci and �ri and integral numerically for every �x
over a finite area in the x − y plane to determine how δρ(x, y)
changes in time.

Since we are interested in δρ/ρ0 rather than the absolute
value of the densities, we choose ρ0 = 1 in the rest of the paper
so that all of the reported densities are in units of ρ0. Also, we
set σ2 = 0.1, l1 = 1, and b1 = 0.1 to carry out the calculations. The
l1 parameter can be absorbed in the rest of parameters and its
value is not relevant here. The value for σ2, the cell nuclear
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pressure, has been inferred from data, as stated earlier. Finally,
b1 determines the range of the force and, therefore, sets the size
of the formed structure. As (ρ0)−1/3 sets the length scale, the
time and force scales are set by the duration of the cortex-core
formation, which is a few days, and the amount of force needed
to move 2 cell nuclei for the cells—embryonic stem cells—used
in the experiments, which has yet to be measured. Upon
knowing all three scales, two of which are known and one
that is not yet known, we can convert the dimensionless
quantities to dimensionful quantities. For the time being, we
work with dimensionless quantities for both Stage I and Stage
II since it is the more general approach and will allow us to
more readily draw connections with other physical systems
which differ in scales.

The density evolution for different time points is plotted in
Figure 2. Small over-density and under-density regions grow
under the contractile forces of the cells and create cortex-core
seeds for the non-linear regime. Therefore, we predict that the
difference between pathways “2D A” and “2D B” in Figure 1 is
set by the initial cell nuclear density distributions, namely, its
fluctuations. We also have repeated the calculations for L−1

containing the first two terms in Eq. 10. The final density is
presented in Supplementary Figure SA2, indicating that, as
long as the effective force between nuclei is attractive, the
larger-scale density structures grow with a rather similar form.
The difference is more in the timing of the growth. The
stronger the force, the faster the structures form. The
reason for the similar spatial structure is that regardless of
the exact form of the force, in the linear era, one can always
perform a Taylor expansion and neglect the higher order
terms.

2.2 Stage I Non-Linear Regime
At the end of the linear era, the cell nuclei around each existing
over-dense region start to migrate toward a center. However,
unlike in the linear regime, results may indeed depend on the
details of the net, effective force on cell nuclei. Given the
dynamic nature of the cytoskeleton mediating the effective
force, combined with the existence of experimental data, we
adjust our approach and use a data-driven approach to derive
the effective force on nuclei using our knowledge of density
evolution from observations. Our prediction for the emergent,
effective force can be tested with additional experiments.

We now focus on one of the over-dense centers and assume a
spherical symmetric structure with ρ ≃ ρ0, ztρ ≃ 0, �vr � −v0 and
reset time to t = 0. The evolution equations now become

zρ

zt
+ 2
r
ρ�vr + zr ρ�vr( ) � C0,

z

zt
�vr + σ2zrρ + �vrzr�vr + gr � 1

ρ
Cr,

(11)

where we have used the isotropic assumption to infer that in the
spherical coordinate system �v

→ � (�vr, 0).
We use the first equation to solve for the bulk velocity in

terms of the number density and then make the following
assumptions for the final state of what becomes the cortex-
core structure: ρ → F(r), where F(r) is the form of the number
density observed around Day 3 of the experiment (see
Supplementary Figure SA3), and �vr → 0. Given the initial
and final conditions, we construct an analytic form for ρ(t, r)
so that we can ultimately determine the interaction between the
cell nuclei. Unlike in the linear regime, the interactions between
cell nuclei can change to the cytoskeletal restructuring in
response to interactions with other cells and/or with the
environment. Hence, gr (t, r) is unknown as are the damping
effects in Cr (t, r).

With these assumptions, the time evolution for �vr(t, r) and gr
(t, r) − Cr (t, r)/ρ(t, r) can be determined. See the appendix for
details. The results for the latter are shown in Figure 3. The bulk
velocity is initially position-independent and toward the center.
Over time, it becomes a position-dependent function and
evolves toward zero. The net force is toward the center of the
core initially, but changes nature over time and becomes
position-dependent. By Day 3, near the edge, the net force is
outward, indicating that the nuclei are being indirectly pulled on
by the extracellular environment, i.e. the cell cytoskeleton has
developed subcellular structures to attach to the extracellular
environment. We have not assumed the existence of such an
effect but derived it based on data and the theoretical
framework. Experiments can measure this net force via laser
ablation.

Subtracting from the net force the assumed short-range,
attractive interaction between cell-nuclei invoked in the
linear regime, we find a new effective force that emerges
during the non-linear regime. See Figure 3. This emergent
force is attractive close to the center and repulsive around

FIGURE 2 | (A–C): The time evolution of δρ for L−1 � 1
k2+0.12 with ρ0 = 1, a = 0.1, and b = 0.1. (D): The corresponding force field at t = 40.
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the edge. Since it is attractive near the center, the density of cell
nuclei is higher than near the edge. The location in r at which the
emergent net force". on cell nuclei goes from attractive to
repulsive is where we anticipate the boundary of the cortex-
core to be. If one were to invoke a Voronoi tessellation of the cell
nuclei to obtain cell shapes [28, 29], then the cell shapes across
this boundary would be elongated radially. We interpret the
elongation of the cells in this region as an indirect indication of
this effective repulsive force. We anticipate that some forms of
subcellular structures have been created by the cytoskeleton of
the cells as they interact with the extracellular environment via
focal adhesions. These emergent structures may provide a
mechanism for altering the active force mediating the
interaction between cell nuclei. Our work explores the
interplay between cell-cell and cell-extracellular environment
interactions in the continuum limit.

Given our continuum analysis, we cannot determine
whether or not the cortex is 1 cell layer thick or many cell
layers thick. Should the cortex be many cell layers thick, then
the cells farther away from the boundary will not necessarily be
elongated. In any event, it turns out that the cortex is 1 cell
layer thick, approximately. The mechanism for this
phenomenon must be explored with a more detailed,
cellular-based model. With a Voronoi tessellation, the
positions of the cell nuclei are the positions of the center of
mass of a deformable cell nuclei. If cells are elongated just
beyond the zero-net force boundary, then cell nuclei are as well
since cell nuclei shape reflect cell shape [30]. We, thus, infer the
formation of a cortex-core structure, though, again, the overall
thickness of the cortex has yet to be determined. We use the
term “large-scale” to denote that it is a multi-cellular structure.
In the case of multiple cortex-core structures, supracellular
actomyosin cabling [31] may act as an “external” environment
such that multiple cortex-core structure can form
simultaneously. Finally, for both the linear and non-linear
regimes, the cell nuclei densities were not large enough to
consider overlaps between cell nuclei, or even shorter-range
repulsive interactions.

2.3 Connections With Cosmology
Intriguingly, Stage I vantage point draws parallels with
cosmological models of large-scale structure formation in our
Universe at the quantitative level. Both systems have the same
dynamical equation for the single-particle distribution function.
Moreover, the initial states of both systems are very similar; both
systems start from an initially uniform number density of
particles and end in spherical shape structures. This is despite
the differences such as different types of interactions, as well as
the presence of growth, dissipation, and noise, for example, for
living matter.

For a point of reference, here is a brief overview from the
cosmology side. In the early Universe, quantum fluctuations
induce negligible mass overdensities that grow over time, by
attracting nearby mass, to ultimately form galaxies [32–34].
Otherwise, despite the attractive nature of gravity, an exactly
uniform Universe will stay uniform forever. Moreover, in
cosmology, to study large-scale structure formation, one
constructs a dynamical equation for the time evolution of
matter as encoded by the one-body distribution function, f,
in the six-dimensional phase space of positions and velocities.
See, for example, the Boltzmann equation [35] and the Jeans
equation (36). In the Jeans equation in cosmology, €xi � gi,
where gi denotes gravitational acceleration [36]. Given this
mathematical correspondence, perhaps studying multi-
cellular structure formation in a Petri dish with living matter
may tell us something intriguing about the potential for
engineering new types of mini-universes, i.e., large-scale
structure formation in these new kinds of universes and
morphogenesis are inextricably linked.

Despite the similarities, there are fundamental differences
between the evolution in the Universe and the evolution of the
cells in brain organoids. In the Universe, it is the gravitational
force that drives the dynamics. In brain organoids, we do not
yet have a thorough quantification of the underlying forces at
play. As our study suggests, the nature of the forces vary over
time. The lack of detail as to the underlying forces proves
irrelevant in the linear era. Therefore, we follow the same

FIGURE 3 | (A) The time evolution of the net force on the cell nuclei as a function of the radius of one cortex-core structure. (B) The emergent net force on cell nuclei
at the final time and the initial net, attractive force between 2 cell nuclei used in the linear regime, both as functions of the radius of one cortex-core structure.
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approach as in the linear era in the evolution model of the
Universe. However, in the non-linear era, the evolution
depends on the exact form of the force. Hence, unlike in
cosmology, we change the question in the non-linear era of
brain organoid evolution and ask given the observation of the
evolution in cell nuclear density, what is the form of the
collective, effective force as a function of the distance from
the center of the cortex-core structure?

3 STAGE II: FOLIATION FORMATION

Now that cortex-core structures form, we proceed to the
subsequent foliation of the cortex observed in the “2D A”
pathway. To do so, we turn to the BWBM model, which is a
coarse-grained, continuum model at a larger scale to
accommodate the predominance of cell growth at this stage.
The initial version of the BWBM model assumes a cortex-core
structure and has demonstrated qualitative agreement with the
foliation found in the quasi-two-dimensional brain organoids in
pathway “2D A” with the addition of blebbistatin [11]. A new
nonlinearity, as we will show, extends the applicability of the
model to the untreated case.

More precisely, we model the growing cortex-core structure as
a two-dimensional annulus-like region having outer radius r and
thickness τ, which are scalar functions of an angular coordinate θ
such that τ is measured in the radial direction (see Figure 4). We
also assume that r and τ are single-valued, i.e., no overhangs. We
then introduce the quasi-static, coarse-grained energy functional

E[r, τ, dτ
dθ

] � ∫ dθ kr(r − r0)2 − kτ(τ − τ0)2 + β(1 + λτ) dτ

dθ
( )2{ },

(12)
to be minimized subject to a constraint on the area of the core,
i.e., 12∫dθ(r − τ)2 � A0 � constant. The variational problem then
becomes δ(E − μ∫dθ(r − τ)2) � 0, where μ is a Lagrange
multiplier.

Shape change as a function of time, here, is encoded in
changes in the constants at hand. Addressing Eq. 12, kr, kτ, and
β are all positive constants. The first term encodes a preferred

radius r0, which we assume to be constant. This preferred
shape represents the energy cost in deforming the Matrigel, or
the extracellular environment, so kr represents a modulus. The
second term favors thickening of the cortex with respect to a
reference thickness τ0, which we also assume to be constant,
given its negative contribution, and kτ can be regarded as a
“growth potential” in the form of an anti-harmonic term. With
this construction, the validity domain of this analysis is only
limited to those cases in which the thicknesses are small as
compared to the size of the structure, i.e., the energy functional
remains bounded. Finally, the third term penalizes spatial
variations in thickness in θ with both linear (β) and
nonlinear contributions (λ) representing the active, adaptive
contractile nature of the cells. More specifically, as cortex cells
are elongated, they build cytoskeletal structures to adapt to the
extension with the development of stress fibers, for example, to
regulate their strain and, therefore, resist the extension [37].
We note that the λ = 0 case has been studied previously [11] as
was discussed in the context of blebbistatin-treated brain
organoids. This treatment presumably inhibits the nonlinear
response of the cells to larger deformations in terms of the
functionality of stress fibers [37]. We note that another form of
nonlinearity has been studied in the context of nonlinear
elasticity of the radial glial cells spanning the cerebellum
[22]. Here, there are no such radial glial cells, at least
during these early stages.

The three terms in the coarse-grained energy functional
above compete with one another due to the incompressibility
of the core, thereby driving the system away from its preferred
shape. We assume the initial cortex-core preferred shape to be
a circle with radius r0. To quantify the resulting shape as a
result of the interplay, the Euler-Lagrange equations result in
an unconventionally driven, nonlinear oscillator equation.
Specifically, the Euler-Lagrange equation for τ(θ) is of the form

(1 + λτ) d
2τ

dθ2
+ q2τ � −1

2
λ

dτ

dθ
( )2

+ B, (13)

with q2 � kτ
β [1 + ϵc

(1−ϵ)] and B � kτ
β [t0 + ϵcr0

(1−ϵ)] after defining ϵ � μ
kr

and c � kr
kτ
. In addition, there is a linear relationship between τ and

r, i.e., r � −ϵτ+r0
1−ϵ . We can, therefore, numerically solve for the

FIGURE 4 |BWBMmodel for the foliation of wild-type brain organoids pathway 2D A as time increases to the right. Parameters used are kτ/β = 15.6, τ0/r0 = 0.7, λ r0
= 25 for (A–C) and for (A) μ/kr = 0.72, kr/kτ = 0.043, for (B) μ/kr = 0.855, kr/kτ = 0.036, for (C) μ/kr = 0.9, kr/kτ = 0.034.
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shape of the cortex-core structure as a function of the parameters.
The RK45method of the scipy.integrate package in Python is used
for the numerical integration of the above nonlinear differential
equation. Note that we treat the τ-dependent mass term
perturbatively given the existence of the usual mass term.

As with Stage I, we work with dimensionless parameters by
dividing the coarse-grained energy functional by kr to reduce
the now five (with λ) parameters to four. In the λ = 0 case, two
of the three dimensionless parameters are constrained by the
shape of the developing cortex-core structure. The
dimensionless parameter ϵμ/kr is constrained by the ratio of
the amplitude of the radial oscillations to the amplitude of the
cortical thickness oscillations as both r and τ are solutions to
driven oscillators [11]. Moreover, the number of observed
invaginations constrains kτ/β, which is a product of (kτ/kr)
(kr/β). This leaves us with one free parameter. When this
model was applied to the developing cerebellum, several
predictions were made, namely, that ϵ is not constant as the
structure develops, that the cortical thickness variations have a
specific relationship to the radial (outer) variations, and that
the number of folds/foliations does not depend on the overall
size nor initial cortical thicknesses but on the material
properties, which is something observed in cerebella across
many mammalian species of different sizes and initial cortical
thicknesses [11]. Here, we have one more parameter, namely λ

to ultimately constrain. Even though we have not constrained
all of the parameters independently with data for this system,
we can still make some predictions, which we focus on now.

The results for the subsequent brain organoid evolution are
plotted in Figure 4A–C for different krs, which decreases with
time as the Matrigel softens due to compression [38]. We see
that the model predicts the emergence of folds/foliations using
similar parameters to those used previously for the
blebbistatin-treated brain organoids [11]. We also observe
that the cortex is thicker near the troughs as compared to
the crests at the onset of the foliation. See Figure 4A. This
prediction can be explored in experiments as has been done for
the developing cerebellum. In contrast to the linear version, we
observe for the nonlinear case an asymmetry developing
between the crest (the gyri) and the trough (the sulci) to
approach a more scalloped form prominent in the untreated
brain organoids. To more clearly demonstrate the differences
between the linear BWBM model and this nonlinear version,
we present shapes for both cases in Figure 5. On the other
hand, the scallops are not as packed tightly together as
observed in the experiments. Interestingly, a recent
nonlinear extension of the BWBM model also demonstrated
more scalloped foliation with a nonlinearity introduced in kr to
account for the nonlinear elasticity of the radial glial cells [22].
Another interesting feature of the BWBM model is that once

FIGURE 5 | Top row: Results for the linear version of the BWBM model, or λ r0 = 0, with other parameters the same as in Figure 4C. Bottom row: Results for the
nonlinear version of the BWBMmodel with λ r0 = 25 for the first term in the perturbation expansion for the τ-dependent mass term and with other parameters the same as
in Figure 4C.
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the first generation of foliations/folds appear, we anticipate the
potential for subsequent generations to occur as the
boundaries of the first generation foliation create a sub-
system within the overall structure such that foliation
process can occur within the sub-system, given the number
of foliations is essentially scale-invariant [11, 22, 39]. In fact,
this type of higher-order branching process is observed in
brain organoid experiments [16] and in the developing,
approximately cylindrical cerebellum [40].

Finally, there are limitations to the buckling without
bending model. In particular, the model is coarse-grained
such that we lose information at the cellular scale. We are
currently working towards a cellular-based model that will link
the two scales—the cell scale and the tissue scale—to test the
buckling without bending model using computer-generated
data at the cell scale. Moreover, cell-to-cell variations may lead
to a disordered version of the buckling without bending model
in which the parameters now represent averages.

4 DISCUSSION

We have established a two-part framework to quantify the shape
of brain organoids as they develop. Both parts are rooted in the
assumption that the material is not purely elastic. Indeed,
tissue fluidity has emerged as a driver of shape change in
animal development more generally [41, 42]. The first part of
the framework models the interactions between cell nuclei due
to activity to examine how multiple, large-scale core-cortex
structures emerge in the confined case. If we know the initial
density map of cell nuclei, we can predict the number and size
of the cortex-core structures. With this nonlinear form of the
buckling without bending model, we have a shape-change
mechanism that predicts the anti-symmetric shape of the
foliation of an individual cortex-core structure as well as
how the cortical thickness varies along the edge of the
system. These predictions can also be tested.

While Stage II of the “2D B” pathway was reported in the
literature [16], it is not clear if such multi-core-cortex structures

exhibit Stage II behavior. Considering just two-core-cortex
structures with a very small interface in between initially,
then each cortex-core structure evolves independently of each
other until the interface increases due to the growth. Earlier
work has shown that the linear BWBMmodel in the presence of
a confining wall flattens the scallops [22]. Treating each
structure as a confining presence of the other, will thus,
flatten the scallops and so one may observe some foliation
with different shapes along the interface between the two
structures as compared to the interface with Matrigel.
However, should the interface between the two structures not
be small to begin with, then one must also treat the two core-
cortex structures as a coupled system with the spherical
symmetry now broken. We are currently extending the
BWBM model to describe multiple-cortex-core structures
with interfaces in between, suggesting that the extent of the
foliation will depend on such details as the difference in growth
potentials between the two structures, etc.

While we have focused here on the structure of quasi-two-
dimensional brain organoids, three-dimensional brain organoid
shapes typically consist of multiple large-scale structures [14].
These large-scale, or multi-cellular structures are cortex-lumen/
hole structures embedded within non-cortical/non-extended cells.
Our framework for Stage I applies under these conditions as well.
Variations in cell nuclear density, as well as variations in
contractility of the cells, determine where the large-scale
structures emerge. Regions, where the cellular contractility is
less than the average, translate to cellular material effectively
acting as a passive, or extracellular, environment. The regions of
underdensity, as before, translate to an effective repulsive force to
push cells apart. The more the cells move apart, the more likely
ruptures will occur at the cell-cell interface to create a lumen or
hole. The shape of such holes depends on the shape of the regions
of less active cells to which the more active cells are pulled towards.
Predicting the detailed shape of these large-scale structures,
therefore, requires some modeling at the cell-cell interface level
to pinpoint the rupture locations, which we do not address here.
Recent work interpolating between confluent and non-confluent

FIGURE 6 | In three dimensions, brain organoids have a hole, or lumen, at the center of large-scale/multi-cellular structure and the cell nuclei are all in the outer
cortex region (Left): The number density of cell nuclei at the end of the nonlinear era, assuming a hole in the center of the cortex-lumen structure (Middle): The time
evolution of the net force on cell nuclei for a cortex-lumen structure (Right): The initial, net attractive force on cell nuclei (red) due to cell-cell interactions and the emergent,
net force (blue) as the cytoskeleton restructures itself, using the assumed cell nuclei number density.
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tissue, thereby identifying points of rupture, may help [43]. In the
confined case, perhaps stronger interaction with the passive
environment prevents such rupture. However, our work
suggests that an essentially homogenous organoid with an
underdensity region in the center of a spherical organoid leads
to one cortex-lumen structure embedded in a sea of cells with a
purely repulsive emergent force. See Figure 6.

If we are to understand how the brain attains its shape, brain
organoids serve as an excellent in vitro platform. While brain
organoids do not currently mimic brain shape, one can now
design conditions in which higher-order foliations/folds are more
likely to occur in the confined case to more closely resemble the
cerebellum. Moreover, a three-dimensional brain organoid with
one cortex-lumen structure can potentially be engineered in
which the cortex is layered by the addition of cells at the cell-
cell rupture site in such a way that they also become extended.
Therefore, one can create more similar shapes to the mammalian
brain or even less similar to study how brain shape affects brain
function. For instance, the honeybee brain has a rather different
structure than a mammalian brain [44]. Moreover, at the heart of
subsequent brain development is the existence of elongated cells
that serve as a backbone for the initiation of neurons, cells unique
to the central nervous system, which, therefore, requires more
modeling attention.
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