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Emergency material allocation is an important issue in the urgent handling of public health
emergencies. This article models the relief allocation and transportation route planning as
an uncertain capacitated arc routing problem, which is a classic combinatorial optimization
problem that considers stochastic factors such as uncertain demand and travel time in the
service. The stochastic of demand leads to the route failure that the vehicle cannot serve
the tasks successfully unexpected. Most existing research uses the independent recourse
strategy. That is, each vehicle takes a back-and-forth trip separately when its remaining
capacity cannot meet the actual demand of the task. This leads to a considerable recourse
cost. However, a few studies have considered vehicular cooperation to deal with route
failure, which is beneficial for pooling the capacity of multiple vehicles. In this paper, we
propose a new recourse strategy called OneFAll that lets one vehicle take charge of all the
failed tasks. In this case, other vehicles can finish the service once they are full. We develop
the genetic programming hyper-heuristic with the OneFAll recourse strategy for solving the
uncertain capacitated arc routing problem. The experimental studies show that our
proposed method outperforms the existing genetic programming hyper-heuristic with
the independent recourse strategy to the uncertain capacitated arc routing problem for the
ugdb and uval benchmark instances. Moreover, our strategy outperforms the recourse
strategy that failed tasks are returned to the unassigned task set for any vehicle to
complete. This reflects that there exists resource waste if all vehicles are involved to repair
the failed routes.

Keywords: recourse strategy, uncertain capacitated arc routing problem, genetic programming hyper-heuristic,
intelligent transportation, emergency material allocation

1 INTRODUCTION

In the urgent handling of public health emergencies, the medical resources, including protective
equipments, disinfection materials, drugs, and medical supplies, are the material basis [1]. The
allocation efficiency has a direct impact on the timely control and elimination of public health
emergencies, and safeguarding the physical health and life security of the general public. However, if
the allocation is not improper, the emergencies cannot be contained timely, which has a great effect
on the recovery of social functions [2]. It is bound to cause enormous losses for our society.

From the perspective of management decision, emergency material allocation is a dynamic
decision-making problem in the complex road networks that allocate relief materials from suppliers
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to disaster areas as soon as possible. The relief allocation and
transportation route planning can be categorized under the
domain of capacitated arc routing problem (CARP) [3], which
is a classic optimization problem that has been thoroughly
studied in the operations research and has a wide range of
applications for many real-world situations [4, 5]. The
pharmacies, quarantine offices, and community offices can be
seen as demand points along the streets in the road network,
which correspond to tasks in CARP. A fleet of equipped vehicles
is appointed to meet the demands of these points, and both the
vehicles that can be dispatched and their capacities are limited,
which can be modeled as constraints in CARP. The goal is to
design the most economical routes, which corresponds to
optimizing the objective functions (e.g., minimizing costs)
in CARP.

The emergency material allocation in the real world is much
complex than the traditional CARP, which assumes that all the
information in the environment such as the demands and
traversal costs is static and can be exactly known in advance.
However, this assumption does not always hold in the real world,
especially in the environment of emergent disaster. In fact, the
demands of tasks are uncertain, which are affected by many
factors, such as the number of residents along the streets and the
severity of the disaster. Hence, the exact value of demands cannot
be exactly known beforehand. This may lead to that a vehicle
reaches a task without enough capacity to meet the demand.
Moreover, the roads may be interrupted or blocked, which leads
to that the preplanned routes cannot be traversed. Hence,
uncertain CARP (UCARP) has been a hot and active research
topic in recent years [6]. Two of the above uncertainties are
considered in UCARP, and they lead to two uncontrollable
failures, i.e., the route failure and the edge failure, respectively.

For solving the UCARP, the existing approaches can be
divided into three main categories [7, 8]: robust pro-active,
completely reactive, and predictive–reactive. Among them, the
completely reactive approaches aim to evolve policies, which can
generate routes based on practical situations in real time. They
have the advantages of flexibility and are very efficient in handling
dynamic environments [9]. Among the completely reactive
approaches, genetic programming (GP) has been proven to be
an effective hyper-heuristic method (shorted as GPHH), which
can automatically evolve routing policies for UCARP that are
much better than the manually designed ones [10, 11]. For using
GPHH to solve UCARP, an important issue is how to deal with
failures, which could influence the efficiency of routing policies
evolved by GPHH. For the edge failure, the most commonly used
strategy is to find a detour to the destination. For the route failure,
the situation is much more complex and has attracted more
attention [12]. One of the naive recourse strategies to deal with
route failure is that as soon as the capacity of the vehicle expires,
the vehicle goes back to the depot to refill and then comes back to
the interrupted place to continue the service [13]. This can be
seen as an independent recourse strategy, and there is no
collaboration between vehicles, which may lead to a
considerable recourse cost. In recent years, collaborative
transportation has been an emerging new mode, as it can
bring together all the vehicles to improve the overall

performance. Especially in the urgent disaster environment,
the relief materials are very scarce and precious. There are not
enough protective suits for workers or volunteers to participate in
the rescue job. Hence, it is highly necessary to make full use of the
cooperative abilities of vehicles in order to serve more tasks in a
shorter time. That is to say, the independent recourse strategy is
not suitable for urgent-disaster environments. We have to design
more reasonable cooperative recourse strategies to deal with route
failures, which have a great impact on the improvement of the
whole efficiency.

Hence, we aim to propose a new recourse strategy for
solving UCARP under the application of emergency
material allocation in this paper. We develop a GPHH with
the new recourse strategy to design routing policies for multi-
vehicle UCARP. To be more specific, we have the following
research objectives:

• To develop a new recourse strategy, named OneFAll, which
considers cooperation between multiple vehicles.

• To develop a GPHH with the OneFAll recourse strategy to
evolve routing policies for solving UCARP.

• To investigate the effectiveness of the OneFAll recourse
strategy by comparing with existing state-of-the-art
recourse strategies on benchmark UCARP datasets.

• To analyze the structure of the solutions obtained by
different recourse strategies.

The rest of this paper is structured as follows. Section 2
presents the background including UCARP definition and
related work. Section 3 describes the proposed OneFAll
recourse strategy and the new GPHH algorithm for solving
UCARP. Section 4 shows the experimental studies and
analysis. Section 5 gives the conclusion and future work.

2 BACKGROUND

2.1 Problem definition
A UCARP instance [13, 14] can be represented by a connected
graph G = (V, E), where V is the set of vertices and E is the set of
edges. Each edge e ∈ E is associated with three features: a demand
d(e)> �0, a serving cost sc(e)> �0, and a traversal cost (time to
travel along the edge without serving it) dc(e)> �0. Edges with
positive demands are called tasks. The set of all tasks is denoted as
T ∈ E. A fleet of vehicles with a limited capacity Q is located at a
special vertex called depot v0 ∈ V at the beginning. In the real
scenario, it is assumed that the number of vehicles is restricted.
The goal of the problem is to find out a least-cost routing plan for
the vehicles to serve all the tasks subject to the following
constraints:

1. Each vehicle starts from the depot and comes back to the depot
after serving all the tasks allocated to it. Vehicles can replenish
its capacity each time when they pass by the depot.

2. Each task is served exactly once in either direction.
3. The total demand served by each vehicle in a single trip cannot

exceed its capacity.
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A sample of a UCARP instance is obtained by sampling a value
for each random variable of the corresponding UCARP instance.
For example, a sample Iξ of the UCARP instance I is obtained by
sampling each random demand dξ(e) and each random traversal
cost dcξ(e) under the environment (e.g., random seed) ξ. For
solving a UCARP instance sample, both the task demand and
edge traversal cost are unknown until the task is served or the
edge is traversed. These lead to two unavoidable failures:

• Edge failure: the edge ahead of the route is inaccessible.
• Route failure: the actual demand of the task to be served
exceeds the remaining capacity of the vehicle.

In the case of edge failure, one can find a detour to the
destination. If the edge is a task assigned to the vehicle, the
vehicle will abandon this task and go to serve the next task
according to the routing plan. The route failure is not such kind of
easy to cope with. A typical recourse operator uses an
independent recourse strategy [11, 13]. When a route failure
occurs, the vehicle returns to the depot to refill its capacity and
then comes back to finish the remaining service of the failed task.
However, this may introduce a large amount of extra cost. We will
give a detailed review about the current recourse strategies for
route failure in Section 2.3. To summarize, avoiding a route
failure is more challenging and has a greater impact on solution
quality [12]. A good recourse strategy is expected to minimize the
extra refill cost. Therefore, in this paper, we aim to propose an
efficient recourse strategy to tackle the uncertain demands.

A solution to a UCARP instance sample can be represented as
S = (X, Y). X = {X(1), X(2), . . ., X(m)} is a set of routes, where each
routeX(k) � (x(k)

1 , . . . , x(k)
Lk
) is a sequence of vertices starting and

ending at the depot vertex (i.e., x(k)
1 = x(k)

Lk
= v0) and Lk is the

number of vertices in the kth route. Y = {Y(1), Y(2), . . ., Y(m)} is a
set of real-valued vectors indicating the fraction of service of each
edge along the routes. Specifically, Y(k) � (y(k)

1 , . . . , y(k)
Lk−1)

corresponds to X(k), where 0 ≤ y(k)
i ≤ 1. y(k)

i � 1 means that
the edge (x(k)

i , x(k)
i+1) is a task and is fully served, and y(k)

i � 0
means that the edge (x(k)i , x(k)

i+1) is traveled through by the vehicle
without being served. For other values of y(k)

i , it means that the
edge (x(k)i , x(k)

i+1) is partially served at the current route.
The total cost of a solution (X, Y) is calculated as Eq. 1,

C Sξ( ) � ∑
m

k�1
∑
Lk−1

i�1
(sc Sξ x k( )

i[ ], Sξ x k( )
i+1[ ]( ) × Sξ y k( )

i[ ]

+dcξ Sξ x k( )
i[ ], Sξ x k( )

i+1[ ]( ) × 1 − Sξ y k( )
i[ ]( )) (1)

where Sξ[x(k)
i ] and Sξ[y(k)

i ] stand for the x(k)i and y(k)
i elements

in the solution Sξ on the environment ξ.
Note that Sξ varies from one sample to another. For any sample

ξ, a feasible solution Sξ can be generated by a pre-optimized
(robust) solution or a routing policy that generates the solution
in an online fashion. In this paper, we focus on the latter.

2.2 Approaches to uncertain CARP
Based on when the decisions are made, the approaches to solve
uncertain routing problems are categorized into three categories

[7, 8]: robust pro-active, completely reactive, and
predictive–reactive.

The robust proactive typically can be divided into two stages. It
first constructs predictive solutions to satisfy performance
requirements based on the prediction of the environment.
Then, the solutions are executed, and the recourse strategies
are taken to deal with failures, as in two-stage stochastic
programming with recourse. The optimization algorithms used
in the first stage in existing studies are the branch-and-price
algorithm [15], the memetic algorithm [16, 17] and the
estimation of the distribution algorithm [18]. The recourse
actions in the second stage are summarized in the following
subsection.

The advantage of the proactive approaches is that they can
provide a robust and predictable solution when applied to new
environments. However, they are non-flexible and cannot cope
with real-time adjustment.

The completely reactive approaches treat the problem as an
online decision-making process and construct the final solution
step by step using the decision-making rule (called routing policy
in UCARP) [8]. Some common heuristics such as path scanning
[19] can be seen as a completely reactive approach. The keys to
the success of these approaches are to obtain a good decision-
making policy and the decision-making process of the policy on
instances (i.e., meta-algorithm). The two main approaches based
on the completely reactive approach are the GP algorithm and the
rollout algorithm.

GP [20] belongs to the evolutionary computation field, which
aims to evolve computer programs. In GP, populations of
computer programs are genetically bred using the Darwinian
principle of survival of the fittest and using a genetic crossover
operator appropriate for genetically mating computer programs
[21]. As a hyper-heuristic method, GPHH has been applied to
scheduling tasks. A GPHH program can be seen as a routing
policy for routing problems [22], or a dispatching rule for job
shop scheduling problems [23] for different decision
environments. Weise et al. [22] first proposed to apply GPHH
for the automated design of routing policy for solving static
CARP and tested the performance of the evolved rules for dealing
with random disappearance of tasks. Liu et al. [11] extended the
GPHH for solving UCARP with a new meta-algorithm. Later on,
many researchers have proposed the improved GPHH for solving
UCARP from the aspect of developing more effective meta-
algorithms [24, 25], evolving more interpretable routing
policies [26, 27], and discovering the reusability of routing
policies [28, 29].

The design of the rollout algorithm is motivated by the idea of
policy iteration in dynamic programming. It is a decision-making
process algorithm based on Monte Carlo simulation. Dror et al.
[30] first modeled the vehicle routing problem with stochastic
demands as a Markov decision process in theory, but they did not
provide any computational results. Secomandi [31] first proposed
the rollout algorithm to solve the vehicle routing problem defined
in [30]. Later on, the rollout algorithm was improved by many
researchers for solving uncertain vehicle routing problems [32–34].

The advantage of completely reactive approaches is that the
solutions are generated online, so the solutions are flexible, which
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is especially effective in uncertain environments [35]. However,
their disadvantage is that no baseline solution (i.e., a set of routes)
is generated, which reduces the stability of routes and causes
difficulty for planning and measuring in advance [7].

The predictive–reactive can be seen as a hybridization of the
pro-active and the completely reactive. They include a baseline
solution obtained by the pro-active part, and a reoptimization
strategy in charge of real-time reaction. Liu et al. [14] designed the
first predictive–reactive approach for solving UCARP. They
proposed a new solution representation, which is composed of
two components: a baseline task sequence and a recourse policy.
Meanwhile, a cooperative coevolution framework is designed to
optimize these two components simultaneously.

The advantage of predictive–reactive approaches is that they
generally consider both the quality of the predictive baseline
solution (efficiency) and the degree of change to be made on the
baseline solution to adapt to the new environment (stability)
[12, 14].

2.3 Recourse strategies for route failure
In [36], Gendreau et al. pointed out that the development of new
recourse strategies is one of the most critical issues and challenges
that need to be addressed to advance research in this area. By
now, there are three main kinds of recourse strategies: the
independent, the pairing, and the global.

In the independent recourse strategy, upon failure, the vehicle
returns to the depot, replenishes its capacity, and resumes its
planned route at the point of failure [11, 13]. While somewhat
simplistic, this recourse strategy has some advantages. First, it
yields relatively tractable models that enable the development of
exact algorithms. Second, from the practical view, the
independent recourse strategies warrant stable tactical routes,
which are operationally desirable, as they require little deviations
of drivers’ familiar driving environment and ensure that
customers are consistently visited by the same drivers. Hence,
it is the most widely used one for the routing problem with
stochastic demands. However, the recourse actions are based on
the realized demand of a route, independent of the demand
realizations of the other routes. No cooperation between vehicles
may cause a great degree of resource waste.

The pairing recourse strategy [37] considers a certain degree of
collaboration between two vehicles. According to this strategy,
the vehicles are paired to work, where one is identified as Type I

and the other is Type II. When the Type I vehicle shows a failure,
it returns to the depot. Moreover, the unserved tasks are
appended to the end of the route of the Type II vehicle. The
classical recourse policy is used to handle failure in the Type II
route. Lei et al. [38] proposed another form of the paired strategy,
where they allowed demands to be split between the paired routes
while applying the classical recourse strategy upon failure. Erera
et al. [39] proposed that customers were assigned to two planned
routes, a primary and a backup. The recourse decisions allow
reallocating customers to backup routes in the implementing of
the planned routes. Their experiments verified that the paired
recourse strategy can save the expected travel cost in a large
degree.

The global recourse strategy aims to construct more
collaborative forms of recourse involving multiple vehicles,
which is likely to reduce the expected costs substantially.
Unfortunately, only a few studies have considered the global
recourse strategy to data. MacLachlan et al. [12] proposed that the
failed tasks were returned back to the candidate task set. Any
vehicle can potentially complete the remaining service at any time
based on the routing policy. This can be seen as a kind of global
recourse strategy. However, it may have the drawback that all
vehicles could not cease their services until all the tasks are
fulfilled. It may appear that many vehicles had to begin a
second tour and only serve a few tasks (e.g., one or two),
which may increase the total cost in a large degree. We
compare our proposed strategy with this one in experiments
and use a case study to show their differences.

Besides the above three categories, the preventive
restocking strategy is also considered in many existing
studies [40]. It assumes that whenever the residual
capacity of a vehicle becomes low, the vehicle may execute
a restocking trip to the depot actively. The preventive
restocking can reduce the probability of route failures [36].
In our work, such strategy is used in the meta-algorithm to
filter candidate tasks for the selection of vehicles [11]. Details
are shown in Section 3.1.

As the information and communications technologies enable
communications between vehicles [41], it is valuable to develop
recourse strategies based on a high degree of vehicle
collaboration. Moreover, taking the urgent disaster into
consideration, the resources that can be used are limited and
the basic requirement is to serve the area as larger as possible in

FIGURE 1 | The flowchart of GPHH for UCARP.
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the first time. Hence, we move a step forward to propose a new
recourse strategy for route failure in the next section.

3 THE PROPOSED APPROACH

First, the general framework of GPHH for evolving routing
policies to solve UCARP is described in Figure 1.

In the GPHH, a routing policy is represented as a Lisp tree,
which is used as a priority function to select the task from the
candidate task sets for a vehicle to serve next. To evaluate the
fitness of each routing policy, a meta-algorithm is designed to
generate a feasible solution given a sampled UCARP instance Iξ
and a routing policy h (·). At the beginning of the research, the
meta-algorithm is designed as processes of building the routes
one by one, which simulates a single-vehicle situation, where all
the routes are executed by a single vehicle sequentially [11]. It
cannot handle with the multi-vehicle UCARP, in which there are
multiple vehicles on the road simultaneously. To fill this gap, Mei
et al. [25] proposed the meta-algorithms that model a multi-
vehicle decision-making process, where there can be any number
of vehicles in service simultaneously. However, the strategies to
deal with the route failure in multi-vehicle cases have been
overlooked so far, which would influence the efficiency of the
meta-algorithms. Considering the application of emergency
material allocation, we proposed a new meta-algorithm with a
new recourse strategy in the following.

3.1 The meta-algorithm with the new
recourse strategy
For the emergency material allocation, a fleet of vehicles is
appointed to allocate relief materials to communities
distributed along streets in a certain area. These vehicles
should complete the current tasks as soon as possible in order
to traverse to the next area. Not all vehicles are needed to stay at
the current area until all tasks are finished, as we want to help
residents in wider areas. That is to say, when route failure occurs,
only a few vehicles (e.g., one or two vehicles) need to stay at the
current area to finish the remaining task; other vehicles can go to
a new area straightforwardly.

Above all, an efficient cooperative recourse strategy in the
emergency material allocation can be that vehicles are divided
into two parts: flowing vehicles and stationary vehicles. Moreover,
when route failure occurs, the failed tasks are returned back to the
unassigned task set for any vehicles in the stationary category to
potentially complete. For the vehicles in the flowing category,
they just do one route, i.e., either when there is no candidate task
for them to serve or when they encounter route failure, and they
will finish the service. For the vehicles in the stationary category,
they do not stop the service until all tasks are finished in the
service. This proposal can also meet some other scenario in the
real world. For example, some drivers want to domore job to earn
more money.

Algorithm 1 describes the proposed meta-algorithm with the
cooperative recourse strategy that executes a routing policy h (·)
on a sampled UCARP instance Iξ to construct a feasible solution.

Algorithm 1. The proposed meta-algorithm of the GPHH for
UCARP

Initially, the m vehicles with full capacity are located at the
depot and ready to serve (lines 1–3). The algorithm uses a time list
Γ to record the next idle time of each vehicle. Each recording in Γ
has two parameters: 1) the vehicle ID and 2) the idle time.
Recordings are stored according to the time sequence. Then,
for each time slot when a vehicle becomes ready, the routing
policy is used to decide the next task that the vehicle should go.
For deciding the next destination of the vehicle, a subset of
candidate tasks is firstly selected from the pool by the function
Filter() (line 11). This is to eliminate the infeasible tasks whose
demands are greater than the remaining capacity of the vehicle.
Since the actual demands of tasks are unknown before the service,
their expected values are used. If no candidate task is selected,
then the vehicle goes back to the depot (line 13) to update the
capacity. The function GoTo(X(k̂)

ξ , Y(k̂)
ξ , v) updates the route

(X(k̂)
ξ , Y(k̂)

ξ ) of the k̂th vehicle by traversing through the
current location to the vertex v via the shortest path taking
the possible edge failure into account. Details of the GoTo(·)
function can be found in [11]. If the vehicle is a stationary vehicle,

TABLE 1 | The parameter settings.

Parameter Value

Population size 1,024
Generations 51
Tournament section size 7
Crossover rate 0.8
Mutation rate 0.15
Reproduction rate 0.05
Maximal tree depth 8

Frontiers in Physics | www.frontiersin.org February 2022 | Volume 10 | Article 8354125

Liu et al. Emergency Material Allocation With Uncertainty

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


TABLE 2 | The terminal set.

Notation Description

CFH Cost From Here (the current node) to the head node of the candidate task
CR Cost to Refill (from the current node to the depot)
CTD Cost from the tail node of the candidate task To the Depot
CTT1 Cost from the tail of the candidate task To its closest remaining unserved Task (the head)
DEM DEMand of the candidate task
DEM1 DEMand of the closet unserved task to the candidata task
FRT Fraction of the Remaining (unserved) Tasks
FULL FULLness of the vehicle (current load over capacity)
RQ Remaining Capacity of the vehicle
SC Serving Cost of the candidata task
ERC a random constant number between 0 and 1

TABLE 3 | Results on the ugdb dataset in terms of the average on the test set.

Name (|V|, |E|) Vehicle no GPHH GPHH-Re GPHH-OneFAll

ugdb1 (12,22) 5 351.34(7.03) (−) 350.09 (5.55) (−) 345.06 (6.21)
ugdb2 (12,26) 6 368.99 (4.46) (−) 366.23 (5.50) (−) 360.52 (3.53)
ugdb3 (12,22) 5 307.56(1.53) (−) 305.39 (3.59) 302.46 (7.60)
ugdb4 (11,19) 4 321.26 (1.98) (−) 317.19 (1.67) 317.50 (2.59)
ugdb5 (13,26) 6 423.67 (6.14) (−) 422.05 (5.76) (−) 418.09 (5.15)
ugdb6 (12,22) 5 347.50 (11.22) 345.66 (8.58) 345.83 (1.98)
ugdb7 (12,22) 5 351.41 (4.94) (−) 347.22 (4.69) 346.24 (4.26)
ugdb8 (27,46) 10 445.17 (8.04) (−) 430.91 (7.90) (−) 424.84 (6.04)
ugdb9 (27,51) 10 382.95 (8.83) (-) 374.90 (8.63) 369.73 (7.17)
ugdb10 (12,25) 4 296.47 (3.39) (-) 291.97 (3.29) 293.01 (2.58)
ugdb11 (22,45) 5 431.88 (5.93) (−) 431.07 (5.27) (−) 425.00 (5.85)
ugdb12 (13,23) 7 612.69 (14.59) (−) 592.23 (7.96) 595.61 (7.18)
ugdb13 (10,28) 6 576.08 (4.05) (−) 572.21 (4.17) (−) 568.04 (2.69)
ugdb14 (7,21) 5 107.77 (1.28) 107.88 (1.37) 107.34 (1.03)
ugdb15 (7,21) 4 58.10 (0.03) 58.09 (0.03) 58.08 (0.03)
ugdb16 (8,28) 5 136.23 (1.35) (−) 136.05 (0.36) (−) 133.17 (0.47)
ugdb17 (8,28) 5 91.07 (0.04) 91.07 (0.03) 91.06 (0.04)
ugdb18 (9,36) 5 167.86 (2.47) 167.17 (1.61) 166.50 (1.27)
ugdb19 (8,11) 3 61.58 (1.26) 61.61 (1.37) 61.69 (1.24)
ugdb20 (11,22) 4 127.31 (1.89) 127.43 (1.17) 127.24 (1.12)
ugdb21 (11,33) 6 164.15 (2.10) 163.99 (2.21) 164.10 (1.87)
ugdb22 (11,44) 8 209.60 (0.94) (−) 208.52 (0.75) 207.92 (0.78)
ugdb23 (11,55) 10 251.19 (1.86) (−) 249.60 (1.47) (−) 247.33 (1.32)

Mean 286.60 283.41 281.58

TABLE 4 | Results on the uval dataset in terms of the average on the test set.

Name (|V|, |E|) Vehicle no. GPHH GPHH-Re GPHH-OneFAll

uval1A (24,39) 2 176.68 (2.44) 175.70 (2.18) 175.76 (2.81)
uval1B (24,39) 3 184.88 (1.95) (−) 184.54 (2.17) (−) 182.87 (1.72)
uval1C (24,39) 8 314.63 (8.06) (−) 303.24 (5.62) 302.85 (6.68)
uval2A (24,34) 2 230.52 (3.47) 232.40 (3.99) 230.05 (3.39)
uval2B (24,34) 3 277.15 (3.72) 276.54 (3.54) 276.53 (3.19)
uval2C (24,34) 8 590.76 (15.67) (−) 558.72 (17.22) 558.70 (13.45)
uval3A (24,35) 2 81.75 (0.61) 81.91 (0.78) 81.86 (0.61)
uval3B (24,35) 3 97.51 (2.23) (−) 95.92 (1.35) 95.67 (1.58)
uval3C (24,35) 7 174.73 (5.04) (−) 174.71 (7.24) (−) 164.66 (7.61)
uval4A (41,69) 3 418.31 (5.79) 422.05 (9.41) 416.80 (5.70)
uval4B (41,69) 4 440.96 (4.41) 439.39 (5.68) 438.44 (3.10)
uval4C (41,69) 5 491.76 (9.16) (−) 487.25 (5.85) (−) 478.08 (5.87)
uval4D (41,69) 9 712.77 (10.05) (−) 688.26 (23.45) (−) 660.70 (19.11)

Mean 322.49 316.97 312.54
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it will continue the service. Hence, its capacity is updated and its
status is added to the time list (lines 14–17). Otherwise, the
vehicle finishes one route in the current network, and it continues
to finish the service.

If there are candidate tasks selected by the vehicle k̂, then the
task u+ with the minimal heuristic value is selected to be served
next, and the vehicle goes to its head node (lines 19–20). While
serving the task, if the remaining capacity is larger than the actual

demand, the task u+ is served successfully and both u+ and its
opposite task û+ are removed from the unserved task set (lines
21–23). Otherwise, a route failure occurs. The vehicle partially
serves the task u+ before returning to the depot (lines 25–27). The
collaborative effect shows that if the vehicle belongs to the
stationary category, it will refill to wait for assigning a new task
(i.e., it is added to the time list again, lines 28–31). Finally, all tasks
are served and vehicles go to the depot (lines 35–37).

Note that the proposed recourse strategy can be applied to any
approaches that confused by the route failure, including both
proactive and reactive approaches.

3.2 GPHH with the new meta-algorithm
The training process of GPHH with the new meta-algorithm is
described in Algorithm 2. It follows the standard GP process.
During fitness evaluation (line 9), given a training set {Iξ|ξ ∈
Ξtrain}, the fitness function of evaluating each routing policy h
(·) is calculated as Eq. 2, i.e., the average total cost of the
solutions obtained by applying this policy to the training
samples.

fit h ·( )( ) � 1
|Ξtrain| ∑

Iξ∈Ξtrain
C Sξ , h ·( )( ) (2)

where C(Sξ, h (·)) is the total cost of the solution Sξ under the
routing policy h (·).

Algorithm 2. The training process of GPHH

TABLE 5 | The detailed information of one instance of ugdb13.

Task Demand Actual Serving cost Actual traversal

(d) demand (dξ) sc cost (dcξ)

(v0, v4) 12 11.93 7 4.82
(v0, v5) 2 1.41 18 15.76
(v0, v6) 13 11.76 4 5.13
(v0, v7) 12 14.57 24 20.25
(v0, v8) 16 11.75 11 8.18
(v1, v0) 13 15.24 15 15.38
(v1, v2) 11 10.26 5 5.7
(v1, v4) 7 9.24 12 9.61
(v1, v7) 13 15.57 13 21.62
(v2, v0) 16 18.38 8 8.2
(v2, v5) 7 7.21 1 0.92
(v2, v6) 5 4.84 10 9.18
(v2, v7) 3 3.17 24 24.67
(v3, v0) 13 17.45 6 5.66
(v3, v1) 4 4.55 3 2.91
(v3, v2) 7 8.87 28 34.13
(v3, v4) 15 16.46 2 1.45
(v4, v5) 9 9.65 20 23.01
(v4, v6) 5 6.37 42 39.36
(v4, v8) 5 5.38 12 10.5
(v5, v6) 8 9.19 9 8.64
(v5, v8) 3 2.1 13 15.23
(v6, v7) 9 8.61 16 10.67
(v6, v8) 3 3.23 60 55.69
(v6, v9) 14 10.73 5 5.68
(v7, v8) 7 6.95 22 18.51
(v7, v9) 8 5.61 99 152.56
(v8, v9) 5 5.52 20 20.38

FIGURE 2 | Examples of the routes generated by (A) GPHH-Re and (B) GPHH-OneFAll on the sampled ugdb13 instance in Table 5. The solid arrow connecting
two vertices (vi, vj) means that (vi, vj) is a task and the vehicle travels from vi to vj to serve it, while the dotted arrow connecting two vertices (vi, vj) means that the vehicle
travels from vi to vj following the shortest path between these two vertices without serving any tasks. The number above the solid arrow represents the serving cost, and
the number above the dotted arrow represents the actual traversal cost of the shortest path.
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4 EXPERIMENTAL STUDY

In order to examine the effectiveness of the proposed recourse
strategy, we compare with the basic GPHH with the independent
recourse strategy (named GPHH) and GPHHwith the reassigned
strategy proposed in [12] (named GPHH-Re, which is described
as a kind of global recourse strategy in Section 2.3).

4.1 Experiment settings
All the compared GPHH algorithms share the same parameter
settings, as shown in Table 1. The terminal set is given in Table 2.
The function set is {+, −, ×,/, max, min}. The function / is
protected, which returns to 1 if divided by zero. The gdb and
val datasets are two commonly used benchmark datasets in the
area of UCARP. In the gdb dataset, the number of vertices varies
from 7 to 27, and the number of the arcs varies from 11 to 55. The
val dataset is much bigger than the gdb dataset, and its vertices
and arcs numbers vary from 24 to 41, from 34 to 69, respectively.
For the number of vehicles, we suppose that it equals to the total
demands of all tasks dividing the capacity of the vehicle in each
scenario in the experiments. Hence, combined with the proposed
new recourse strategy in Section 3.1, we let one vehicle as the
stationary and called the new algorithm as GPHH-OneFAll. The
UCARP instance generator in [13] is used to generate the training
and test instances based on the static gdb and val datasets. The
stochastic traversal costs and demands follow the normal
distribution N (μ, μ × λ), where μ is the deterministic value given
in the static instance and λ is the uncertainty level. λ is set to 0.2 in
our experiments. Especially, if the stochastic traversal cost dc(e) < 0,
then it is set to ∞. That means that the arc becomes inaccessible. If
the stochastic demand d(e)< 0, then it is set to 0. Thatmeans that the
arc has no demand and is not a task in the current environment. In
the experiments, each algorithm is trained on 5 randomly sampled
instances in each generation, and the best routing policy h*(·) is
tested on 500 unseen instances. The test performance of GPHH is
defined as the average total cost over the 500 samples.

4.2 RESULTS

Table 3 and Table 4 show the test performances of the
compared algorithms on the ugdb and uval UCARP
instances, respectively. All the algorithms are run 20 times
independently. The Wilcoxon rank-sum test with the
significance level of 0.05 is conducted to compare GPHH-
OneFAll with GPHH and GPHH-Re. The “(−)” means that
the compared algorithms (i.e., GPHH or GPHH-Re) perform
significantly worse than GPHH-OneFAll; otherwise, there is no
significant difference between the two algorithms. The results
with the minimum average are highlighted in bold.

As shown in Table 3 and Table 4, it can be seen that the
proposed GPHH-OneFAll outperformed GPHH on 22 out of the
36 instances and outperformed GPHH-Re on 12 out of the 36
instances. GPHH-OneFAll performed no worse than GPHH and
GPHH-Re on any instances. Based on the results marked in bold,
we can see that the GPHH algorithms with vehicle cooperations
in recourse (i.e., GPHH-Re and GPHH-OneFAll) have better

performance than the basic GPHHwith the independent recourse
strategy on almost all the instances. Only on two instances ugdb19
and uval3A whose vehicle number is small did the baseline
GPHH obtain slightly better results. The experimental results
show that the designed cooperative recourse strategy is useful for
saving the total costs.

4.3 Further analysis
As we described in Section 2.3, GPHH-Re has the drawback that
many vehicles may take a second small route to serve a few tasks
because of the uncertainty. This usually increases the total cost.
Furthermore, our proposed GPHH-OneFAll algorithm can
overcome this drawback by appointing one vehicle to serve
the remaining tasks if all other vehicles are full. To illustrate
this idea more clearly, we randomly select a routing policy
evolved by GPHH-Re and GPHH-OneFAll obtained from the
ugdb13 instance, respectively. The two policies are applied on the
same sampled scenario, whose detailed information (i.e., the
tasks, the expected and the actual demands, the serving costs,
and the actual traversal costs) is shown in Table 5.

The routes generated by the two routing policies are shown
in Figure 2. It can be seen that the total cost of the routes
generated by GPHH-OneFAll (i.e., 568.67) is much shorter than
that of GPHH-Re (i.e., 590.82).When looking into the details of the
route, we discover that half of the vehicles (i.e., Vehicle 1, Vehicle 4,
and Vehicle 6) in routes generated by GPHH-Re (Figure 2A) take
second routes with serving only one or two tasks. However, in
routes generated by GPHH-OneFAll, Vehicle2, Vehicle3, Vehicle4,
and Vehicle6 directly return to the depot when their remaining
capacities cannot meet the requirements of the unserved candidate
tasks. Vehicle1 is appointed as the stationary vehicle, taking a
second route to serve the remaining unserved tasks. The reason
why Vehicle5 takes a second tour is that when serving the task (v6,
v0), its capacity is refilled because v0 is the depot.

5 CONCLUSION

In this paper, the emergency material allocation in the real world was
formulated as UCARP, which was a classic combinatorial
optimization problem under the uncertain environment.
Addressing on the route failure caused by the uncertain demands
of tasks, this paper proposed a new recourse strategy that divided the
vehicles into two categories: flowing and stationary. The main idea of
the new recourse strategy came from the real scenario that not all
vehicles were needed to stay at the current area until all tasks were
finished, as the goal was to help residents in wider areas. Moreover, it
was easy to be applied to the real world. AGPHH algorithm based on
the carefully designed meta-algorithm with the new recourse strategy
for UCARP was proposed. In experiments, we let one vehicle to
handle all the failed tasks or unserved tasks if other vehicles were full
and called the new GPHH as GPHH-OneFAll. The experimental
results showed that the proposed GPHH-OneFAll significantly
outperformed the GPHH with existing recourse strategies.

For the future work, it is valuable to investigate the number
of vehicles in each category, which may have a relationship
with the total demands of tasks and the capacities of vehicles. As
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there is little knowledge on the manner of logistic companies that
handle uncertain events, the recourse strategies remain mainly
theoretical. Further work is to define more active recourse actions
from the real data. Moreover, addressing on the global recourse
strategies based on a high degree of vehicle coordination is also
valuable to investigate.
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