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Optical vortex beams are light beams that can carry orbital angular momentum (OAM).
Hence, such beams may serve as potential candidates for carriers of information in optical
communication and quantum optics applications. This is owing to their spatial
orthogonality, as these beams can be combined (multiplex) or separated
(demultiplexed). We recently demonstrated a new method to detect OAM states by
using a 3D-direct laser printing fabrication process. Measuring the mode-sorter
performance was challenging, mainly due to mechanical and optical sensitivities
originated from misalignments. In this work, this sensitivity was thoroughly examined.
Pure OAM states having lateral and angular misalignments relative to themode-sorter were
introduced, and cross-talk between resolved states was theoretically simulated. The
system is relatively vulnerable to small misalignments, which challenge its
implementations in free-space communication systems. However, this might be an
advantage for counseled communication, in which eavesdropping becomes more
challenging, due to the angle-dependent increased modal cross-talk.
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INTRODUCTION

Optical vortex beams are characterized by a winding azimuthal phase, exp (ilϕ), where l is the
topological charge and ϕ the azimuthal angle [2]. These beams can carry orbital angular momentum
(OAM). This unique property enables implementations of such beams in various applications,
including particle manipulation [3], microfabrication [4], astronomy [5], quantum optics [6], high-
resolution microscopy [7], and space-division multiplexed communication systems [8]. There are
several types of beams that can carry OAM. A commonly used type is the Laguerre-Gaussian (LG)
family of beams which is an example of a set of vortex beams that are also solutions of the paraxial
Helmholtz equation. In this case, beams with different OAM values are orthogonal; hence, they can
be spatially multiplexed and demultiplexed on the same physical channel. These beams can then be
used as carriers of information, thereby increasing the information capacity of an optical
communication channel [9]. An efficient way to separate OAM states is by applying a Cartesian
to log-polar transformation, based on two refractive optical elements [10]. This transformation maps
the azimuthal phase profile of an OAM mode into a tilted planar wavefront. As a result, linear
combination of OAM states can be simultaneously transformed into a set of planar waves with tilted
wavefronts, where the tilt angle depends on the topological charge. These tilted waves can therefore
be easily separated in the far field by a lens, enabling OAM analysis, as each mode is located at a
different location on a detector. The desired two refractive optical elements are characterized by a
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non-trivial 3D shapes. Hence, reaching small scale, 3D, and high
optical quality is a challenging task. Conventional
implementations of such transformation are based on spatial
light modulators (SLMs) [11], or large-scale (cm) diamond-
turned surfaces [10]. In general, fabrication or manufacturing
of small-scale (below hundreds of micrometers) high-quality
optical surfaces, characterized by tens of nanometer surface
roughness (RMS) is a challenging task. An innovative new
approach was able to minimize the two elements into only
one, along with 2D high-resolution diffractive surfaces using
electron beam lithography [12, 13]. Furthermore, the
generation of vortex beams (l ≤ 1) and mode analysis was
demonstrated in an all-fiber device [14]. However, all
mentioned approaches do not provide direct integration to
other optical elements (such as optical fiber), enable cost-
effective processes, or provide simple and straightforward
lithography procedures for various states. Our recent work
showed a new fabrication method that provides high-quality
and integrated mode-sorter, based on the two optical elements
[1]. This method used a 3D-Direct laser writing (3D-DLW) [15]
system, which is based on a nonlinear two-photon absorption
process [16]. This concept allows reaching accurate 3D elements
of complicated surfaces using the polymerization of a light-
sensitive material volume (Voxel). Although implementations
of 3D-DLW technology for micro-optics devices are widely
reported [15–20], we were able to harness, for the first time,
this platform for analyzing OAMmodes using the transformation
optics theory [21, 22]. This approach may induce new and
exciting opportunities for vortex beam detection and analysis
in integrated devices, in communication systems, or for quantum
optical applications. In our previous work [1], we demonstrated
that the two-element 3D-printed free-space mode sorter is
capable of handling both pure and mixed vortex beams with
topological charges l≤ |3|. These results were rather preliminary,
as further analysis was needed to explore its functionality and
performance. Some of the remaining open questions regard the
system capabilities upon lateral misalignment and optical
directionality (i.e. incoming tilted waves). Hence, in this work,
these issues are examined, as various calculations were performed
to study the sensitivity of this system.

PRINCIPLE OF THE OAM MODE-SORTER

The Cartesian to log-polar transformation is constructed by two
refractive optical elements [11]. These two elements map the
coordinates of the incoming beam (in the x-y plane) to an output
plane (u-v) using the following relations:

u � −a · ln(
������
x2 + y2

√
b

) (1)

v � a · tan−1(y
x
) (2)

The coordinates u and v describe the Cartesian coordinates at
the first element’s Fourier plane. The parameter a is a scaling
factor, equals to d/2π, as d is the width of the second element, and

b determines the beam location along the v axis. The elements’
surfaces are hereby described:

Z1(x, y) � −( a
f (nm − nair))[y · tan−1(y/x) − x · ln(

������
x2 + y2

√
b

)
+ x − 1

2a
(x2 + y2)]

(3)
Z2(u, v) � −( a · b

f (nm − nair))[cos(v/a) · exp(u/a)
− − 1

2a · b (u2 + v2) ] (4)

Z1 and Z2 describe the height profiles of the first and second
element, accordingly. The distance between the elements is
determined by f, and the material and air refractive indices are
denoted as nm and nair accordingly. Modes carrying OAM values
that pass through the second element are characterized by
rectangular shapes and tilted wave-fronts, dictated by 2πl.
Introducing a lens to the tilted waves will result in a focus
movement perpendicular to the elongated diffraction limited
spot size, by the following connection:

Δ � l · (λf
d
) (5)

THEORETICAL DESIGN AND
CALCULATIONS

In order to reach optimal phase elements, based on the two
surfaces provided in Eqs 3, 4, a simulation code based on a split-
step Fourier method [23] was used to study the OAM beam
propagation through those surfaces. In this way, the elements’
functionality was explored and tailored to the experimental
system, as the free parameters were determined. The

FIGURE 1 | The mode-sorter comprising two elements. 3D (A,C) and
2D (B,D) representations of the first (A,B) and second (C,D) elements are
presented. In 2D, both height and phase accumulation are described. Scale
bar, 50 μm.
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parameters a, b, and f were chosen to be 19, 25, and 800 μm,
accordingly. The final obtained elements are brought in Figure 1,
as 3D structural representation (top) and 2D surfaces and phase
modulations (bottom) can be seen. The lateral dimensions of the
first element were chosen to be 100 × 100 μm2 reaching 12.5 μm
at maximum height. The second element lateral size was 160 ×
100 μm2 with maximal height of 30 μm. Figure 2 provides a
schematic illustration of the operating principle. Here, an OAM
mode of l = 1, characterized by a ring-shaped intensity profile
passes through the first element, as the ring gradually becomes
open until reaching a rectangular shape at the second element
plane. The second element return the mode’s initial phase. Then,
a lens focuses the mode into an elongated shape at the detector.
Combined representations of the mode’s intensity and phase are
also provided before and after the elements, as brightness and
colors refer, respectively, to intensity and phase of each beam.
Figure 3 provides further understanding of the OAMmode sorter
operation, as front view intensity and phase calculations of l = 0
and l = 1 modes can be seen in the vicinity of Element 2 (surface
Z2). Here, the two modes possess unresolved phase distribution
prior entering the element. However, passing through the second
element reorganizes the phases according to the OAM values. It is
worth emphasizing that the intensity profile of all modes remains
the same before and after each element, as only the phase is

transformed, which enables a gradient phase change that is
manifested in the focused spot position variations on the detector.

NOMINAL PERFORMANCE OF THE
MODE-SORTER

The nominal performance of the OAM mode-sorter is hereby
described. This means that OAM states were injected to the mode-
sorter perpendicular to the elements, with no tilt or spherical
aberration. The detector that registered the incoming mode-
dependent spots was also located at the center of the beam’s axis
(for l = 0). This provides a reference point for further understanding
the sensitivity and misalignment issues. By using a measurement
system, consisting of a CW laser source (690 nm), phase-only spatial
light modulator (SLM), and additional optics, the mode-sorter
performance was examined, according to a previous work [1]. The
SLM provided various OAM modes, −3 ≤l ≤ 3, that propagated
toward the mode sorter two-element system, which were than
detected using a CCD. The element fabrication process, detailed
measurement system, and additional results and information are
further elaborated in a previous work [1]. Figure 4 provides the
experimental results along with predicted simulations of the mode-
sorter functionality for the mentioned OAM values at the detector
plane. The incoming modes are also provided for convenience. It can
be seen that the modes are clearly resolved, as various states are
introduced to the system. High l values may cause fringes that lower
the ability to determine the OAM state. In general, small beams have
short Reighley length. When working with longer distances, the beam

FIGURE 2 | Schematic illustration of the mode-sorter as incoming l = 1
OAM mode propagates through the elements. Additional phase and intensity
profiles are presented at certain locations with respect to the two elements.

FIGURE 3 | Combined representations of the intensities and phases of
modes l = 0, 1 are provided before and as after the elements, as brightness
and colors refer, respectively, to intensity and phase of each beam. Scale bar,
50 μm.

FIGURE 4 | Simulation results of a free-space OAM mode-sorter
followed by experimental results. Each OAM state propagates onto a different
location on the detector, with correlation to the state’s topological charge.
Scale bar, 100 μm.
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carries a spherical phase front rather a plane one. This induces fringes
and reduces the device performance to detect accurately OAM states.
Furthermore, the influence of production inaccuracies tends to
minimize as dimensions increase. The mode sorter consists of two
refractive phase elements. The coupling loss for an incoming LG10

mode in this system is 30%. The main cause for such losses is due to
Fresnel reflections. Additional losses such as absorption and
diffraction caused by the device itself are negligible. This is because
it is a phase-only device that is made of a transparent polymer.

SORTING SENSITIVITY

In this chapter, the system performance is investigated under lateral
misalignment of the incoming beam. Such misalignment often
happens in free optic applications. This was carried out by moving
the mode-sorter laterally to the beam propagation axis. Since the two-
phase structures consisting themode-sorter device have a complex 3D
surface, the performance and OAM spectral purity are expected to be
affected. It is convenient to describe the OAM of an LG light beam by
its optical axis. Hence, by choosing different axis, these light beams
could be represented by a span of various LGmodes, which also serve
as orthogonal states of the paraxial wave equation, providing discrete
OAM spectrum. A lateral displacement of a symmetric beam will not
alter its OAM value [24]. However, such a displacement may alter a
single photon OAM state, with respect to the reference axis. Meaning,
the pure OAM state of an individual photon will be represented by a
superposition of many OAM states in the new displaced coordinate
system [25]. In other words, by changing the observation axis, the
mode purity is disturbed and redistributed as a span of discrete states.
Hence, the ability to analyze theOAMstate of a certainmode becomes
more challenging due to this spectrum broadening. As shown here
and in [1], themode-sorter is capable of detecting variousOAMstates.
However, exploring the system’s performance upon displacements or
due to beam wondering effects should be further investigated. In this

work, we characterize theoretically the system ability to detect
incoming OAM states, when the whole mode-sorter system is
displaced from its center (x � 0, y � 0), and also when the mode-
sorter is not displaced but is introduced to tilted modes at different
angles. Figure 5 provides a schematic illustration of the calculation
principle. The mode-sorter, as one system, is displaced to various
(x,y) locations, with respect to the axis origin, and then introduced to
incoming LGmodes carrying different OAMvalues. As a first step, we
show an example that exhibits the challenging task to detect the OAM
spectrum solely from the incoming spiraling phase front. This is given
in Figure 6, where the phase of OAM state l = 2 (Figure 6, top left) is

FIGURE 5 | Schematic representation of the lateral displacement
calculative method. The entire two-element system moves together in each
direction (only the first element is shown).

FIGURE 6 | OAM attained spectrum, in the case of l = 2, when phase
analysis is carried out for different areas and locations in the phase distribution.
The pure state is screened, as modal spanning is formed.

FIGURE 7 | OAM modes of l � 0,± 2, ± 4 reaching the detector upon
various lateral displacements. Scale bars, 60 μm.
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redistributed to regions (a, b, c). Analysis of only partial areas of the
phase distribution will lead to mixed states rather than a pure OAM
determination. It can be seen that for different, smaller, and displaced
regions, the OAM spectrum is increased (a, b), compared to a pure
state (c). Figure 7 describes how the simulated beams appear on the
detector. Here, the system was introduced to l � 0,± 2, ± 4 OAM
states when also subjected to lateral displacements
(x � 0, 15μm; y � 0, 15μm). The top row of Figure 7 describes
a process without displacement, as center and bottom rows provide
shifts of 15 μm in y- and x-axis, accordingly. Movement in the y-axis
blurs the center spot, by broadening the lobes. Displacement in the
orthogonal dimension narrows the lobes, as more fringes appear.
Figure 8 provides spectrum analysis of l � ± 5 states, for Δy �
0, 15, 30 μm displacements. The focused spots are accompanied
with line scans (y-axis) that provide the spectral broadening. It
seems that there are no symmetrical effects for l � ± 5. As
expected, increasing the displacement up to 30 μm decreases the
modal purity, as the intensity of the peaks is rather similar.Meaning, it
would be difficult to differentiate algorithmically the desired mode
from the spectrum. To summarize these results, a light beam that has a
partial vortex phase, or only partially detected, would induce wider

OAM spectrum that interfere with the desired state sent. This is
without even using any sorting devices. Since the mentioned mode-
sorter is highly sensitive to misalignments, separating higher modes
becomes challenging. This is manifested in wider OAM spectrum and
additional fringes that screen the required specific state. It seems that
small displacements, even as 10% from the sorter dimensions, induce
sufficient disturbance to analyze the OAM states.

THE SYSTEM’S MODAL CROSS-TALK

Here, the cross-talk between various OAM states due to lateral
and angular misalignment is investigated. This provides a two
dimensional map of all modes there were sent and detected.

Another representation of the modal purity could be described as
the modal cross-talk. In this approach, the system misalignment
(x,y≤ 30μm) is analyzed, where the lateral size of each mode is
plotted with respect to themodes that were sent versus those that were
detected. By sending an OAM mode through the system and
calculating the intensities in each subsection, it is possible to
construct a 7 × 7 discrete cross-talk matrix for detecting all OAM
modes, with respect to the existence of additional signal. Figure 9
presents the cross-talk matrices for six cases of misalignments, for
l≤ |6|. It seems that displacement in y provides distinguishable
spectrum for 15 μm, as only positive states could be detected when
reaching 30 μm.There is a spectrumbroadening for displacement in x,
as could be seen in the case of (30 μm, 0) compared to (0, 30 μm).
So far, the cross talk was investigated upon lateral misalignment. Now
the mode-sorter performance is examined with correlation to the
angle of the incoming modes reaching the system’s center (0, 0). In
Figure 10, the cross-talk matrix is constructed by various incoming
beams, with directionalities that equal to phase tilts of 3–12mrad, at
each axis. For a small tilt of 3mrad, there is no clear symmetry in both

FIGURE 8 | Intensity profiles of the l � ± 5 modes on the detector when
displacements on y-axis are added. The OAM spectrum is analyzed for each
case. The OAM spectrum is obtained by line scanning the obtained modes in
the y-axis of the intensity distribution picture. Scale bars, 60 μm.

FIGURE 9 |Calculated cross-talk matrix for 13 modes, for various cases
of system displacements (15, 30 μm).
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directions, and there is a spectral blur that exists in the y-axis. This
effect further increases for stronger tilts in the y direction. For the
orthogonal (x) direction, there is a rather unchanged spectrum width,
as the tilt in x increased. Furthermore, a strong blur effect
disables the ability to analyze low-order modes. By analyzing the
cross talk maps, it is clear to comprehend the necessary
sensitivity requirements for such system. Small shifts and
phase gradients damage the ability to analyze currently the
OAM states. However, this sensitivity could be an advantage for
secure communication systems as any interference could be
noticed in the receiver plane. In any case, to eliminate their
effects, the system may need to be designed differently, for
example, printing the two elements as one for better accurate
alignment, or by adding a light-collecting term that collects the
shifted light to the elements, to reduce tilting issues.

CONCLUSION

The system is highly sensitive to misalignments, which is a
disadvantage in most cases. However, this might be an
advantage for private/secret communication, in which
“listening” is almost impossible. The operation of the 3D-
miniature mode-sorter system was examined. Two concerns
were theoretically investigated, shedding more light on the
system functionality to serve as a key element for future
OAM-based communication systems: first, the system
performance when misalignments (respect to the optical axis)
are introduced; second, the ability of the mode-sorter to
distinguish the OAM states as the beams arrive from various
directions, as each beam has a different tilt, but still reach the
center of the system. All calculations were based on a mode-
sorter that was experimentally capable to separate pure and

mixed OAM states, up to l≤ |3|; however, higher modes were
also being investigated here. The cause for achieving limited
experimental sorting capability (l≤ |3|) is investigated as the vast
calculation enabling shedding more light on this limitation. The
calculative approach displaced the mode sorter laterally, in
respect to the incoming beams as the performance was
examined. Displacements of 15 and 30 μm were chosen for
l≤ |5|. From the results, the sorting process is sensitive to
displacements of 15 μm and above, as the ability to analyze
the modes become challenging. Hence, a robust system should
be printed directly on the optical axis of the entire system, which
would limit misalignments to the printer precision lateral
ability. The printed 3D is equipped with a 3D-sensitive (nm)
piezo stage. Hence, a 3D-DLW process could be suitable for
robust systems. The mode-sorter performance is sensitive to
incoming beams, characterized with tilted phase fronts, except
for values down to 3mrad which do not affect the system
performance substantially. However, increasing the linear
phase gradient to 12mrad would damage the ability to
separate incoming OAM states. This effect is more dominant
for one angle (∅y), rather the perpendicular one (∅x). For
conclusion, the system can be operated for small OAM values, as
the measurement system is well aligned. The power of the 3D-
DLW method allows allocating the printed elements with high
precision according to the optical axis. This ability would
improve the system demultiplexing performance.

The conclusion of the carried out analysis of the mode-sorter
exhibits high sensitivity to optical and mechanical misalignments.
This is commonly conceived as a disadvantage in most cases.
However, this might be an advantage for secure communication,
where the eavesdropper encounters signal broadening and
impure states. Thus, our future goal is to construct a free-
space integrated communication system, based on the reported
insights. Furthermore, the mode-sorter could also be integrated
on top of a suitable optical vortex fibers [26–28], combined with a
collimating lens. This would enable precise alignment between
the fiber core and the mode-sorter center, with low-probability
for tilted modes, along with fiber-based communication system
foothold.
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FIGURE 10 |Calculated cross-talk matrix for 13modes, as the incoming
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modes that propagate with an additional linear phase gradient terms.
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