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We study the magnetic and spectral properties of a single-band Hubbard model for the
infinite-layer nickelate compound LaNiO2. As spatial correlations turn out to be the key
ingredient for understanding its physics, we use two complementary extensions of the
dynamical mean-field theory to take them into account: the cellular dynamical mean-field
theory and the dynamical vertex approximation. Additionally to the systematic analysis of
the doping dependence of the non-Curie-Weiss behavior of the uniform magnetic
susceptibility, we provide insight into its relation to the formation of a pseudogap
regime by the calculation of the one-particle spectral function and the magnetic
correlation length. The latter is of the order of a few lattice spacings when the
pseudogap opens, indicating a strong-coupling pseudogap formation in analogy to
cuprates.
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INTRODUCTION

With the discovery of superconductivity in Sr-doped NdNiO2 in 2018 [1] it is likely that a new
branch of the family of unconventional superconductors (i.e. with non-phonon mediated
pairing) was revealed. At this time nickelates, as bulk materials and heterostructures, have
already been in the focus of an intense search for high-Tc cuprate anaolgue oxides for a while
(see e.g. [2–9]). One of the current challenges is therefore to understand similarities and/or
differences between nickelate and other unconventional superconductors like, e.g., cuprate-,
organic-, iron pnictide-, and heavy-fermion compounds. While there is currently no
consensus if these materials could be covered by a single theory, there are strong
indications that for all of them purely electronic (in particular magnetic) fluctuations are
at least part of the key to understand their pairing mechanism. Such fluctuations are also
expected to be responsible for unusual observations above the critical temperature which for
the high-Tc cuprates include non-Fermi liquid behaviour in 1) temperature dependence of
resistivity (universal in all cuprates, e.g. [10, 11], and found also in organic- and iron pnictide-
SC [12, 13] 2) magnetic susceptibilities which are neither Pauli- nor Curie-like but exhibit
sharp drops at a new temperature scale commonly denoted T* [14], and 3) partially (i.e.
momentum dependently) gapped quasi-particle Fermi surfaces [15–17]. The region of these
phenomena in the temperature/hole-doping phase diagram is commonly referred to as the
“pseudogap” region.
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Motivated by our recent combined experiment/theory
multi-method study of the static uniform magnetic
susceptibility χ in LaNiO2 [18] and other recent
experimental studies [19–21], in this manuscript we
investigate deeper how the two-particle magnetic response
is linked to one-particle spectra A(k, ω) for different
temperatures and different doping levels. With the help of
complementary quantum many-body techniques, we show
that the emergence of a maximum in χ is concomitant with
a significant drop in the antinodal weight of A(k ≈ (π, 0), ω =
εF) at the Fermi level. On the basis of these results we argue that
- like cuprates - also nickelate superconductors feature a
pseudogap region in their phase diagram.

The paper is organized as follows: in Section 2 we
introduce the effective single-band model of infinite-layer
nickelates and a brief overview of the numerical methods
used to analyze it. In Section 3 we present our results starting
with the temperature/doping phase diagram obtained from
the maxima of χ (Section 3.1). Afterwards we show the one-
particle spectral functions (Section 3.2) and provide
magnetic correlation lengths as a function of temperature
(Section 3.3). We conclude the paper in Section 4 by
commenting on the relevance of our findings to infinite-
layer nickelates and their cuprate analogues.

MODEL AND METHODS

For our study we use the single-band repulsive Hubbard model
[22–27] on a two-dimensional square lattice:

H � − ∑
〈i,j〉

∑
σ

ti,j ĉ
†
i,σ ĉj,σ − μ∑

i

∑
σ

n̂i,σ + U∑
i

n̂i,↑ni,↓, (1)

where σ is the spin of the electron, ĉ†i,σ (ĉi,σ) creates (annihilates)
an electron on lattice site i with spin σ and n̂i,σ is the number
operator.

Such models has already been successfully applied in the
description of the superconducting phase in NdNiO2 [28–30]
and the non-Curie-Weiss behavior of the magnetic susceptibility
in LaNiO2 [18]. The material realistic hopping parameters,
resulting from a Wannier- and tight-binding projection are t =
395meV, t′ = − 0.25t = − 95 meV, and t″ = 0.12t = 47 meV as well

as the local Hubbard interaction U = 8t = 3.16 eV from a cRPA
calculation [28]. All energies are given in units of eV except for
temperatures, which are given in Kelvin. The chemical potential μ
is adjusted to an average filling of n = 1 − δ, where δ indicates the
hole-doping of the single dx2−y2 band. When relevant we will also
give the corresponding level of Sr-doping.

We investigate the properties of the model in Eq. 1 as a
function of temperature T and doping δ by applying three
numerical methods. Besides dynamical mean-field theory
(DMFT) [31–34], which includes all temporal onsite-
correlations of the lattice problem, we use two complementary
extensions of it: cellular dynamical mean-field theory (CDMFT)
[35] and the dynamical vertex approximation (DΓA) [36, 37], a
diagrammatic extension of DMFT [38]. The combination of
complementary numerical methods (“multi-method approach”
[39, 40]) turned out to be very useful and versatile recently for
both purely model- [39, 41] and material-based [18] studies.

For the present work we make use of this approach in order to
study the influence of (non-local) magnetic fluctuations captured
by the different approximations on different length scales.
CDMFT is a conceptually simple real-space cluster extension
of DMFT and controlled in the sense that it recovers the exact
solution for infinite cluster sizes (Nc → ∞). For finite Nc (for the
present study we use Nc = 4 × 4) it captures correlations up to the
characteristic length scale of the cluster. For the DΓA we employ
its ladder-version in the particle-hole (magnetic) channel with
Moriyaesque λ-corrections in the spin channel [42–44]. This
choice of the scattering channel greatly simplifies the algorithm
(as it bypasses the general, but complicated, parquet treatment)
and is justified in the pseudogap regime of the Hubbard model,
where fluctuation diagnostics methods could demonstrate
unequivocally the dominance of the spin channel on the
single-particle spectrum [45–48].

Different from CDMFT, DΓA captures short- and long-range
fluctuations in the magnetic channel on equal footing which, as
previous studies have shown, is indispensable in the vicinity of
second order phase transitions [49–52]. Moreover, DΓA respects
the Mermin-Wagner theorem [53, 54] and shows no ordering
instability at finite temperatures for our two-dimensional model
Eq. 1. This is not the case for DMFT and CDMFTwhere the finite
cluster size (for DMFT Nc = 1) leads to an antiferromagnetic
phase transition at a finite Néel temperature TNéel. We therefore

FIGURE 1 | Left: phase diagram of the Hubbard model given by Eq. 1 as a function of temperature T and doping δ. T* indicates the maximum of χ calculated in DΓA
(black triangles). The orange squares indicate the magnetic ordering temperature in CDMFT TNéel

CDMFT, signalling the onset of non-local correlations. The
points—(diamonds) refer to Figures 3, 4. Right: The correlation length ξ in units of lattice spacings is shown for the temperatures T*.
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restrict ourselves to results obtained at temperatures above TNéel

for these methods.
As impurity solver we use the latest generation of a continuous

time quantum Monte-Carlo solver in its interaction expansion
(CT-INT [55]) which is an application of the TRIQS
package [56].

RESULTS

PhaseDiagramandUniformSusceptibilities
We start the presentation of our results by discussing the phase
diagram of Figure 1, a summary of the data obtained by our
different numerical techniques applied to Eq. 1 as a function of
doping (δ as the bottom horizontal axis, Sr-doping as the top
one). In the left panel the black triangles represent the
temperatures T* where the static uniform magnetic
susceptibility χ := Re χm (q = (0, 0), iΩn = 0) displays a
maximum in DΓA. This temperature scale T* is highest in the
half-filled case and monotonously decreases with increasing
doping. Interestingly, for the doped system, this line follows to
very good agreement the magnetic ordering temperature of
CDMFT TNeCel

CDMFT, indicating the increased importance of non-
local correlations. In the right panel we show the magnetic
correlation length ξ (red triangles) calculated with DΓA for
varying doping levels at the respective temperature T*. ξ(T*)
varies from around 1.2 to 2.5 lattice spacings (see also
Section 3.3).

For the determination of T* we turn to Figure 2, which shows
χ calculated by DMFT (blue circles), CDMFT (orange squares)
and DΓA (black triangles) for three representative levels of
doping. The shaded areas indicate magnetically ordered phases

of DMFT (below TNéel
DMFT) and CDMFT (below TNéel

CDMFT<TNéel
DMFT),

at the boundary of which the respective antiferromagnetic
susceptibility diverges, indicating a second order phase
transition. In contrast, as TNéel

DΓA � 0 we can trace χ obtained by
DΓA down to the lowest temperatures allowed by the impurity
solver. Here, we determine its maximum at TDΓA* (shown as a
black dashed line) by a third order polynomial fit of the numerical
data. Please note that an additional hopping in c-direction would
lift the constraint of the Mermin-Wagner theorem also for DΓA
and lead to long-range order [49, 50]. Also please note that
disorder [18], affecting the transition temperature, is neglected in
this study. Overall we see that χDMFT > χCDMFT > χDΓA which can
be attributed to the increasing consideration of longer-ranged
correlations in the approximation. Next we observe that hole-
doping away from half-filling reduces TNéel

DMFT [50] and TNéel
CDMFT

[57, 58] (for the cluster size dependence of TNéel
CDMFT see [59]). In

DΓA, instead, the doping leads to a reduction of TDΓA* as
highlighted in the bottom right panel of Figure 2.

For all hole dopings considered in our nickelate model the flat
maximum χmax := χ(T*) is a clear indicator of non-Curie-Weiss
(and non-Pauli) behavior [18, 58, 60–62]. In high-Tc cuprates
such behavior is also seen in the suppression of the nuclear
magnetic resonance (NMR) Knight shift [63], which is the
original hallmark of the onset of the pseudogap phase [14]. Its
second hallmark, observed in angle-resolved photoemission
spectroscopy (ARPES [17]) is the non-isotropic suppression of
spectral weight and emergence of Fermi arcs in the one-particle
spectrum, which we investigate in the next section.

Spectral Functions
For the analysis of the one-particle spectral function
A(k,ω � 0) � −1

π ImG(k, iωn→0) in the paramagnetic phase we

FIGURE 2 | Static uniform magnetic susceptibilities χ as a function of T for 2.5% (upper left panel), 5% (upper right panel) and 7.5% (lower left panel) hole doping.
The transition temperature of DMFT TNéel

DMFT is indicated in blue and the DMFT-ordered regime in blue shadings (for CDMFT TNéel
CDMFT in orange). The lower right panel

summarizes χ from DΓA for different hole dopings.
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restrict ourselves to a DΓA analysis. Figure 3 shows the
temperature evolution of A(k, ω = 0) obtained by a linear fit
of the first two Matsubara frequencies of the lattice Green
function and extrapolation to zero frequency. Starting at the
high-temperature point o at T = 1533 K we follow the vertical
dashed line (i.e. at fixed 7.5% hole doping) in the T/δ phase
diagram of Figure 1. At the highest temperature o both the
spectral intensity (indicated by the color scale) as well as the
interacting Fermi surface (solid black line) follow the (hole-like)
shape of the non-interacting Fermi surface (dashed black line).
The locations of the Fermi surface points have been obtained
from the roots of the quasi-particle equation (QPE)

~ε k( ) :�ε k( ) − μ + ReΣ k, iωn→0( ), (2)
where ε(k) is the non-interacting dispersion relation and Σ(k, iωn)
the self-energy from DΓA (which is zero in the non-interacting
case).

Cooling the system across T*, and passing 920 and 657 K, one
first notices that the shape of the Fermi surface starts to deviate
strongly from the non-interacting case. This can be attributed to
self-energy effects stemming from non-local correlations. This
behaviour is also in qualitative agreement with recent numerically
exact diagrammatic Monte Carlo calculations [64] for smaller
interactions. Second, at low temperatures, one can observe a clear
Fermi arc structure of the spectral intensity. Third, the
temperature dependence of the spectral weight at the antinode
(black circle) starts to differ strongly from that of the node (purple

square): At high temperatures, both values increase when the
system is cooled. After reaching T*, however, only the spectral
weight at the node continues to grow, whereas at the antinode it
starts to decrease. Together with the decrease in the uniform static
magnetic susceptibility (see Section 3.1) this is an unequivocal
indication of the onset of a pseudogap regime. Topologically at T*
the Fermi surface is hole-like, i.e. ~ε(k � (π, 0))<0 in Eq. 2, in
accordance with the finding of [65] that a pseudogap develops
only for hole-like Fermi surface topologies. We also note that our
results for T* agree for small dopings with the ones obtained
within the dynamical cluster approximation (DCA) on eight sites
with similar model parameters [65], however, the drop with
doping is less pronounced within the compared doping range
for our data. We sense that this is an effect of both, slightly
different model parameters and the DCA momentum patching,
which for this model and small cluster sizes is not able to resolve
the exact location of the antinode away from k = (π, 0). This
resolution, however, is possible within DΓA so that the location of
antinode and node can be precisely determined within the
Brillouin zone [e.g. kAN = (π, 0.51) and kN = (1.51, 1.51) for ].

In Figure 4 we show the complementary evolution of the
spectral intensity across the T* line at fixed T = 920 K following
the horizontal dashed line in phase diagram Figure 1. On can
observe here that the progressive reduction of the doping from 7.5
to 2.5% leads to a significant drop of spectral intensity at both the
node and the antinode and, eventually, to a mitigation of the
nodal-antinodal differentiation. Furthermore, there is a strong

FIGURE 3 | Spectral intensities A(k, ω = 0) for a constant doping of 7.5% and temperatures of 1533K, 920K, and 657K, calculated by DΓA. The black lines indicate
the Fermi surfaces of the non-interacting case (dashed) and interacting case (solid) [for increased readability, these are only shown for one quadrant of the Brillouin zone].
The nodal (purple square)-antinodal (black circle) differentiation of the spectral weight together with the suppression of it at the antinode (right-hand panel) is a clear
indication of a pseudogap.

FIGURE 4 | Analogous plots to Figure 3 at fixed T = 920 K for dopings 2.5%, 5%, and 7.5%.
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tendency visible toward a reconstruction of the topology of the
Fermi surface from hole-like [~ε(k � (π, 0))<0, within the
pseudogap regime] to electron-like [~ε(k � (π, 0))>0, at small
dopings [65, 66]], what can be attributed to strong non-local
spin fluctuations approaching half-filling, where the magnetic
correlation length is increased (see also Figure 1, right-hand
panel).

In order to investigate more closely the nature of the emerging
pseudogap, in the next section we analyse the magnetic
correlation length and the momentum-dependent magnetic
response.

Momentum-dependent Susceptibility and
Correlation Lengths
We first calculate the fully momentum-dependent static magnetic
susceptibility χm (q, iΩn = 0) within DΓA. The top leftmost panel
of Figure 5 shows results for (δ = 7.5% and T = 960 K), which is
slightly above T* for this doping. The maximum value of χm (q,
iΩn = 0) is assumed at q =Q = (π, π) at T*.We note in passing that
also incommensurate Néel order with Q ≠ (π, π) may occur in
different parameter regimes of the model [50, 62, 67, 68]. For
obtaining the correlation length ξ we perform an Ornstein-
Zernike fit with [39, 49, 69, 70].

χm q, iΩn � 0( ) � A

4sin2 qx−Qx

2( ) + 4sin2 qy−Qy

2( ) + ξ−2
→q → Q

q → Q
A

q −Q( )2 + ξ−2
, (3)

whereQ denotes the momentum vector where the susceptibility
assumes its maximum value. Assuming this functional form for

the fit is justified by two exemplary fits in the momentum
directions q = (qx, π) and q = (qx, qx) shown in the upper
center and right panels of Figure 5. The so-obtained
temperature dependence of ξ for several dopings is plotted in
the lower panel of Figure 5. For small dopings we fit this
dependence with

ξ � ξ0e
2πρS/T (4)

(with ρS being the spin stiffness), characteristic of a low-T gapped
regime in two dimensions. The fit works reasonably well for
temperatures T < T*, hinting towards a magnetically ordered
ground state in DΓA for the dopings investigated.

As already commented in the discussion of Figure 1, the
correlation lengths at the pseudogap temperature T* range
from 1.2 to about 2 lattice spacings. This is a clear indicator
that the pseudogap mechanism in our case is not the one
observed in the weak coupling regime of the Hubbard model
[39, 70–76]: there, in contrast, the pseudogap is opened when
the magnetic correlation length exceeds the thermal de Broglie
wavelength of the quasiparticles ξ ≫ vF/(πT) (Vilk criterion),
where vF is the Fermi velocity. Hence, in the weak coupling
regime, large correlation lengths have to be present for opening
the (pseudo-)gap. This, however, does not need to be the case
for stronger coupling: here, already the treatment of short-
ranged (spin) fluctuations allows for the development of a
pseudogap as momentum-differentiated gap, which is the
reason for the successful description of this regime by
cluster extensions of DMFT (like CDMFT and DCA [45, 60,
61, 77–79]).

FIGURE 5 | Top, from left to right: χm (q, iΩn = 0), χm (q = (qx, π), iΩn = 0), and χm (q = (qx, qx), iΩn = 0) for a doping of δ = 7.5% and a temperature of 960K, calculated
by DΓA. Circles denote calculated points, the solid line an Ornstein-Zernike fit by Eq. 3. Bottom: Correlation lengths ξ of DΓA plotted over the temperature for different
dopings. The insets shows a double-logarithmic plot and temperature fits [see text and Eq. 4].
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DISCUSSION AND CONCLUSION

To summarize, we analyzed a material-realistic single-band
Hubbard model for the infinite-layer nickelate compound
LaNiO2. By a combination of cellular dynamical mean-field
theory and dynamical vertex approximation calculations we
could trace the temperatures sufficiently low to determine a
flat maximum in the uniform static magnetic susceptibility for
the hole-doped system at T*. This temperature marks the onset of
the pseudogap regime whichmanifests on the one-particle level as
Fermi arcs in the spectral function. Concomitant on the two-
particle level, the momentum-resolved magnetic susceptibility
shows short-ranged magnetic fluctuations, which is characteristic
of a strong coupling pseudogap. The exact location of the change
from a weak-coupling to a strong-coupling pseudogap regime is a
matter of current debate. Three indicators for this change can be
mentioned: 1) a sudden increase in electronic correlations leading
to a change in Fermi surface topology [65], 2) this strong
correlation regime hosts relatively short-ranged correlations
with the occurrence of (partial) localization [45, 68] and 3) the
electron-boson coupling vertex develops a significant imaginary
part [80, 81]. Our investigations of 1) and 2) in this manuscript by
means of the DΓA, hence, allow us to characterize the found
pseudogap as driven by strong coupling (Mott) physics.

In conclusion, our results for LaNiO2 support the idea that the
infinite-layer nickelates and new nickelate superconductors are
indeed close relatives of other unconventional superconductors
and, in particular, high-Tc cuprates. This is a most promising
perspective as contrasting nickelates with cuprates might lead to a
much deeper understanding of non-phonon mediated pairing.
Indeed future research should focus on apparent differences
between the two material classes. Specifically, the absence of
magnetic order in the infinite-layer nickelate compounds as
well as their reduced covalency with oxygen [3, 82] compared
to the cuprates is remarkable. Whether this means that also
pairing mechanisms are distinct remains to be investigated.

COMPUTATIONAL DETAILS

For applying DΓA with Moriyaesque λ-corrections we solve the
Bethe-Salpeter equations in Matsubara frequency space with Niω =
90 positive fermionic and NiΩ = 89 positive bosonic Matsubara
frequencies for the two-particle Green function at all temperature
shown, as well as 200 linearmomentum grid points. To converge the
DMFT calculation self-consistently we used the continuous-time
quantumMonte Carlo solver in an interaction expansion (CT-INT)
as part of an application of the TRIQS package. Every iteration was
done using 256 · 105 cycles and roughly 6,200 core hours per

temperature. For all shown spectral function plots over the
Brillouin Zone we used a momentum resolution of 3,000 k-points.

In order to extract the magnetic susceptibility in a CDMFT
approach we apply a ferromagnetic field on each lattice site
with field strengths HF = 0.02, 0.04, 0.06 to get the slope of a
linear fit which enables us to calculate the magnetic
susceptibility:

Re χm q � 0, 0( ), iΩn � 0( ) � zm

zH

∣∣∣∣∣∣∣H�0
≈

m

HF
. (5)

For each doping/temperature point we checked that all the
applied fields are still within the linear response regime. All
CDMFT calculations are again performed using the CT-INT
quantum Monte Carlo solver in a continuous-time approach.
For every data point we used twenty self-consistency steps, each
using 6.4 million Monte Carlo cycles.
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