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Cellular traction forces that are dependent on actin-myosin activity are necessary for
numerous developmental and physiological processes. As traction force emerges as a
promising cancer biomarker there is a growing need to understand force generation in
response to chemical and mechanical cues. Our goal is to present a unified modeling
framework that integrates actin-myosin activity, substrate stiffness, integrin bond type, and
adhesion complex dynamics to explain how force develops under specific conditions. Our
simulation results show that substrate stiffness and number of myosin motors contribute to
the maximum actin-myosin forces that can be generated but do not solely control the force
transmitted by the cells to the surface, i.e., the traction force. The kinetics of the bonds
between the cell and the substrate plays an equally important role. Overall, we find that
while the cell can generate large actin-myosin forces in individual stress fibers (> 300 pN),
themaximum force transmitted to the surface per cell-substrate attachment only reaches a
fraction of these values (approx. 50 pN). Traction stress, the sum of forces transferred by all
cell-substrate attachments in a unit area, is biphasic or sigmoidal with increasing substrate
stiffness depending on the number of active myosin motors generating forces. Finally, we
conclude that adhesions < 1 μm2 generate widely variable traction forces and that
impulse, the magnitude and duration of a force generating event, is a key limiting
factor in traction stress.
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1 INTRODUCTION

Cellular traction forces that are dependent on actin-myosin activity are necessary for numerous
developmental and physiological processes [1]. Traction forces also contribute to undesired
pathological states such as cancer metastasis [2–4]. Metastatic cancer cells generate larger
traction forces, are more motile, and more invasive relative to their non-metastatic counterparts
[3]. As traction force emerges as a promising cancer biomarker [5], there is a further need to
understand force generation in response to chemical and mechanical cues. Here, with the help of
computational, physics based models we aim to understand howmuch force a cell can really generate
and what are the factors that limit this force. We are interested in the effects of four key components
in traction force generation: number of active myosin motors, substrate stiffness, cell substrate
adhesion dynamics, and mechanical reinforcement at adhesion complex.

The number of active motors can be controlled by biochemical signals that activate myosin light
chain 2 (MLC2) phosphorylation. Number of active motors has been shown to alter force-velocity
relationship [6–9]. While force generation is myosin dependent, force magnitude depends on other
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factors. Substrate stiffness has been shown to be an important
parameter in cellular force generation. Stiffer substrates increase
traction force [10–13]. Substrate stiffness also regulates the degree
of cell-substrate adhesion and the size of the adhesion complex
[14, 15]. Cells anchor to the substrate with adhesions ranging
from 200 nm2 to > 4 μm2 [16, 17] adhesion size depending on the
makeup of the adhesion plaque. Adhesions are protein plaques
that have transmembrane components that interact with
intercellular and extracellular components. Adhesion assembly
is a hierarchical process [18]. Adhesion proteins are added as the
plaque grows. The adhesome is variable between cell types but is
highly complex and organized [18–20]. Regardless of the cell
type, adhesion plaques physically connect the intracellular force-
generating actin-myosin machinery to the cell’s substrate. This
mechanical pathway allows cells to transfer the endogenous force
to the substrate as traction force [21]. Of the proteins in the
adhesion complex, integrins transmit endogenous force to the
substrate [22–26]. Integrins span the membrane with an internal
component where actin-myosin can attach via talin/vinculin and
an external component that binds to substrate ligands [27–31].
Integrins are essential in force transmission as integrins have a
force-dependent dissociation rate. As force increases, so does the
probability that the integrin-substrate bond will rupture. Actin-
myosin forces generated by the cell are transmitted as traction
forces to the substrate via actin-myosin-integrin-substrate bonds.

We show stall force magnitude, the maximum force an actin-
myosin contractile unit can generate and sustain without slipping,
increases with actin-myosin activity and substrate stiffness. We
also show that this max force is rarely achieved in contracting
epithelial cells as the integrin bonds coupling actin-myosin to
substrate break at far lower forces. Integrins with catch-slip bonds
generate greater forces than slip bonds. Bond lifetimes for both
slip and catch-slip integrins decrease with increasing actin-
myosin activity and substrate stiffness. For these results, we
focus on integrins attached so single actin-myosin filaments.
Next, we probe how talin-mediated dynamics alter cellular
force generation. Force dependent unravelling of talin can add
additional actin-myosin filaments (recruitment) or cause talin
branching to bind additional integrins (branching). Traction
stress for catch-slip bonds with and without recruitment and
branching exhibit biphasic or sigmoidal behavior that is
dependent on the combination of myosin activity and
substrate stiffness. Adhesion size, defined by the number of
integrins actively contributing to traction stress, decreases with
actin-myosin activity and substrate stiffness, however this is not a
limiting factor in traction stress generation.

2 COMPUTATIONAL MODEL

To understand how much force a cell can generate, we assume
that traction stress, the force per unit area, is generated by actin-
myosin filaments attached to integrin receptors [32–34]. We
simulate a predefined adhesion plaque with a density of 100
integrins per 1 μm2 [35, 36]. The adhesion plaque is a 10 × 10 grid
representing 100 integrins precomplexed with talin and vinculin
[37]. Talin is necessary to activate integrin [38–41] and does so by

binding to integrin’s cytosolic domain [42]. Furthermore, talin’s
force dependent unfolding is used to attach more filaments or
integrins (Figure 1A). There are 100 actin-myosin filaments that
are 3 μm [43] long, each containing 60 myosin motors [44–47].
Filaments bind to talin via vinculin [48–50].

The forces we are investigating originate from myosin binding
and pulling along the actin filaments. We use a stochastic model
of the myosin crossbridge cycle [51–53] modified with non-
muscle myosin II transition rate parameters [54] to capture
ATP hydrolysis, actin-myosin binding, conformational
changes, and detachment (Figure 1B) [55, 56]. Simulations are
performed using a timestep (Δt) of 1 ms. We model individual
myosin motor head state changes stochastically, limiting
individual motors to a single state change per timestep.
Myosin binding sites on actin filaments are spaced by a fixed
distance, bsd. Actin-myosin binding occurs when a myosin head
is aligned to a binding site. Myosin undergoes thermal
fluctuations that affects its ability to reach available binding
sites. The distance is calculate based on the assumption that
the potential energy of the myosin head is equal to the average
unidirectional translational kinetic energy from the Boltzmann
distribution, PE = 〈KE〉 where

PE � 1
2
kmd

2

and

〈KE〉 � 1
2
kBT

The thermal fluctuation distance, d, that myosin can extend
from its current position is

± d �
����
kBT

km

√
where, km is the stiffness of the myosin motor stalk, defined

below, kB is the Boltzmann constant, and T is the temperature.
Thus, a free ADP bound myosin head can bind to its respective
actin filament if there is a binding site within this distance
bsd ± d from myosin’s equilibrium position. The distance the
myosin head has traveled away from it’s equilibrium unbound
position to bind to the actin filament sets the initial strain, ϵ,
in the myosin stalk, the coil-coiled region of the myosin tail
that is not part of the thick filament [57]. The strain in the
motor stalk, ϵ, is positive when strained in the direction that
actin filament is actively sliding in along the myosin fibers.
However, this strain in the myosin stalk/tail segment
generates a force that opposes the sliding (Supplementary
Figure S7).

Myosin state changes are calculated from the transition rates.
The forward transition rates are k12, k23, k34, and k41 with k23
representing ATP hydrolysis and myosin head binding to actin.
ATP hydrolysis and myosin binding to actin is a reversible
process dependent on the ATP and ADP with k32 representing
the reverse transition rate from state 3 to state 2. The crossbridge
model consists of 4 states (state 1 through state 4) with respective
transition rates from the current state, i, to the next state, j. Each
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motor state is independently updated during each time step. State
transition rates follow the form kij.

Myosin dependent forces are regulated in part by the number
of active myosin. We assume that only myosin with phosphorylated
MLC2 can enter the crossbridge cycle and interact with the
actin. Myosin that is not phosphorylated or that is
dephosphorylated–phosphorylation being reversible–do not
participate in the crossbridge cycle. Inactive myosins transition to
state 15 from state 2 [58], modifying the 4-state cycle to a 5-state
cycle [59]. Phosphorylation and dephosphorylation rates, k215 and
k152 respectively, represent the transition rates from phosphorylated
to dephosphorylated states. We define the ratio of phosphorylated
MLC2 (ppMLC2) to non-phosphorylated MLC2 (MLC2) as

k152
k215

� ppMLC2
MLC2

(1)

where the phosphorylation ratio is the input parameter that
modifies MLC2 phosphorylation.

Transition rates where the motor is bound to actin (states 1
and 3) are modified by strain in the motor’s stalk. The strain-
dependent transition rate modifications are

ks12 � k12e
1
2kmϵ2
kBT (2)

and

ks34 � k34e
kmϵδ
kBT (3)

where km is the stiffness in the current motor’s stalk, ϵ is the strain on
the motor’s stalk, kB is Boltzmann’s constant, T is the absolute
temperature, δ is the characteristic bond length of the myosin bond
[7], 12kmϵ2 is the potential energy in the elastic motor head, and kmϵδ is
the work done by the motor head. For now, the effect of strain on only
these two transitions is considered as the rate ofmotor stepping ismore
responsive to forces during the first stage (3–4 transition), which is also
the rate limiting step here, than the second stage (4–1 transition) [60].

Each motor’s state is independently updated. The probability,
Pij, that a motor will transition from state i to state j within a
particular time step Δt is given by

Pij t<Δt( ) � ∫Δt
0

kije
−kijtdt

yielding

FIGURE 1 | (A) We use a stochastic model of the actin-myosin crossbridge cycle. The force generated by myosin motors interacting and stepping along actin
filaments. Force is transmitted to the integrins attached to the adhesion plaque. (B) Integrin dynamics: 1) Deactivated integrin. 2) Integrin activates when talin binds to
integrins intracellular domain. 3) This activates the extracellular domain and allows it to bind to substrate ligands. 4) Once attached to the substrate, vinculin and actin-
myosin filaments attach to talin. The force is transmitted to integrin. 5) If the force is too great, the integrin-substrate bond will break. If the applied force does not
break the integrin-substrate bond it is possible for talin to 6) recruit additional actin-myosin filaments via vinculin binding, or 7) branch to a neighboring integrin.
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Pij t<Δt( ) � 1 − e−kijΔt (4)
for transition rates that are not modified by strain, and

Pij t<Δt( ) � 1 − e−ksijΔt (5)
for transition rates modified by strain. This relationship can also
be arrived to by assuming the state transition reaction to be a
binomial process with a fixed probability of success and a large
number of trials.

States with only one transition rate (states 1, 15, and 4)
transition to the next state (state 2, 2, and 1, respectively)
when Pij > rand, where rand is a uniformly distributed
random number between 0 and 1. If Pij ≤ rand, the motor
stays in its current state. For states with two transition rates
(states 2 and 3), states are updated based on joint probabilities.
State 2 transitions as follows:

if P23 + P215 ≤ 1
rand < P23 2 → 3
P23 < rand and rand < (P23 + P215) 2→ 15
rand > (P23 + P215) 2 → 2

if P23 + P215 > 1
rand≤ P23

P23+P215
2 → 3

P23
P23+P215

< rand and rand< P23
P23+P215

2→ 15

and state 3 transitions as follows:

if P34 + P32 ≤ 1
rand > (P34 + P32) 3 → 3
P34 < rand and rand < (P34 + P32) 3 → 2
rand < P34 3 → 4

if P34 + P32 > 1
rand≤ P34

P34+P32
3 → 4

P34
P34+P32

< rand and rand< P34
P34+P32

+ P32
P34+P32

3 → 2.

Adhesion plaques form in a hierarchical process (Figure 1B
[61], Zaidel-bar et al. [62]. The first step in forming an adhesion
plaque requires integrin activation. Integrin activates by
complexing with talin at a rate kact. Activated integrins attach
to the substrate ligand at a rate katt. Once attached to the
substrate, actin-myosin filaments bind to talin. These
dynamics are temporally regulated. Integrin activation, integrin
attachment, and actin-myosin attachment occur at independent
time steps. The force generated in a single actin-myosin ensemble
due to myosin activity is calculated by

Fact t( ) � kmy N1 +N4( )( ) − ∑N
i

kmϵi⎛⎝ ⎞⎠ (6)

where N1 and N4 are the number of motors in the ensemble in
states 1 and 4 and y is the motor step size. The force in the actin-
myosin filament is myosin-dependent. The first term represents
the number of motors actively generating force by pulling on
actin while the second term is the contribution of passive force
from the strain of all actin-bound myosin in the ensemble.
Negative strain in the motor stalk applies a force on the actin
filament in the direction of active sliding between the actin

filament and myosin bundles, while positive strain opposes
active sliding (contraction). Motors that are not bound to
actin do not contribute to the passive force.

Conversion of endogenous actin-myosin force to traction
force requires a physical pathway. Integrins provide the physical
link that determines if the endogenous force is converted to
traction force. The force experienced at integrin-substrate bond
is dependent on the displacement from pulling on integrin by the
actin-myosin filament. We solve for the displacement

Fact − kspringx � γ
dx

dt
(7)

where x is the displacement, kspring is the effective spring constant
between substrate and integrin, and γ is the drag on the actin-myosin
filament [63]. Integrin-substrate bond lifetimes have force-
independent association rates and force dependent dissociation
rates. Two integrin dissociation rates are reported: slip bonds and
catch-slip bonds [64, 65]. Slip bond lifetimes continuously decrease
with increasing force whereas catch-slip bonds have a force range
that strengthens the bond and increases the bond lifetime [65, 66].
Catch-slip integrins experience an increase in bond lifetime up to an
optimum applied force before reverting to a slip bond. Slip bond
force-dependent dissociation rates are modeled by

koff Fi( ) � k0e
Fi
Fb (8)

where k0 is the unloaded off rate, Fi is the force at the integrin-
substrate interface, and Fb is the characteristic bond rupture force.
Integrins with catch-slip dynamics are modeled by [67].

koff Fi( ) � Ae
−Fiξ
kBT + Be

Fiξ
kBT + Ce

−Fiξ
kBT( )−1[ ]−1

(9)

where A, B, and C are constants, ξ is the unbinding length, and Fi
is the load on the integrin. We use the dissociate rate, koff, to
calculate the dissociation probability

Poff � 1 − e−koff Fi( )Δt. (10)
Simulation for slip and catch-slip bond dynamics require

talin-mediated integrin activation before integrin-substrate
binding. The probability of integrin activating is

Pactivate � 1 − e−kactΔt (11)
where kact is the integrin activation rate. Activated integrins are
then available to bind to the substrate. The probability for an
integrin to bind to the substrate is

Pattatch t<Δt( ) � 1 − e−kattΔt (12)
where katt it the rate at which activated integrin attach to the
substrate. Activated and substrate-bound integrins are available
for an actin-myosin contractile unit to attach. The probability
that an actin-myosin filament attaches to integrin is

Psfatt t<Δt( ) � 1 − e−ksfattΔt (13)
where ksfatt is the actin-myosin filament binding rate. We track
integrin activation, integrin-substrate binding, actin-myosin
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filament attachment, and talin-mediated actin-myosin filament
recruitment (more than one actin-myosin filament per integrin)
or talin-integrin branching (more than one integrin per actin-
myosin filament). We use talin-mediated dynamics to create a
more realistic model. A complete physical pathway from actin-
myosin to substrate enables transmission of endogenous forces to
the cell’s immediate surrounding via integrin-substrate
attachment. We calculate the force on individual integrin-
substrate bonds by the actin-myosin filament activity as

Fi t( ) � kspringxi t( ) (14)
where kspring is the spring constant of the substrate and xi is the
displacement of the filament. We use this force in Eq. 9 to update
the attachment status of integrins. In the case that the force does
not rupture the integrin-substrate bond, the force is successfully
transmitted to the substrate. Non-ruptured bonds allow myosin
to continue to increase the displacement of the filament,
increasing the forces experienced at the integrin-substrate
bond. As force increases linearly with displacement there will
be amax force at which the bond will break, ending its attachment
period. Individual integrins experience force generated by actin-
myosin. We use the individual forces at the integrins to determine
the traction stress, or the collective force of all filaments actively
generating and transmitting force. Traction stress is sensitive to
bond lifetimes of individual integrins in the adhesion plaque.
Traction stress is

FTF � ∑FiHi
Hi � 1 if physically linked
Hi � 0 if not physically linked.

{ (15)

Similarly, adhesion size, which we define as only those
integrins bound to the substrate actively transmitting actin-
myosin force, is

FA t( ) � ∑Hi t( ) Hi � 1 if physically linked
Hi � 0 if not physically linked.

{ (16)

For simulations where talin is permitted to recruit filaments or
branch to integrins, we calculate the probability of talin unfolding
and allow up to eight actin filaments to attach to a single integrin-
talin complex or branching to two integrins. Talin unfolding
probabilities are

Prec � 1 − e−krecΔt (17)
and

Pbranch � 1 − e−kbranchΔt (18)
with krec representing the talin unfolding rate for recruiting
filaments and kbranch representing the talin unfolding rate for
branching. We represent the adhesion plaque and the proteins
required to establish a physical link from actin-myosin to
substrate with matrices that are n × m where n is the number
of integrins/filaments/attachment status, etc., andm is time inms.
Each matrix tracks motor state changes, integrin activation,
integrin attachment, filament displacement, force, recruitment,
and branching. For talin recruiting filaments, the displacement of
the filaments is calculated by

∑R
i�1

Fact − kspringx � γ
dx

dt
(19)

where R is the number of recruited stress fibers. The force on the
integrin is calculated using Eq. 14. Similarly the displacement of
branched filaments attached to multiple integrins is calculated by

Fact − bkspringx � γ
dx

dt
(20)

where b is the number of branches. The force on the integrins is
calculated using Eq. 14. Single filament average bond lifetimes are
calculated by determining the time intact mechanical pathways
are bound to the substrate

�τ � 1
n
∑n
1

Lt (21)

where n is the number of intact pathways and Lt is the duration in
ms of the binding event.

The stall force for the actin-myosin fibers is calculated by
fitting the force generated over time with

f � fstall 1 − e−αt( ). (22)
The stall force reported is the average stall force over 100 actin-

myosin filaments. When integrins bonds break in a force
dependent manner, we obtain the maximum force generated
by the actin-myosin filament during any attachment event. We
report the average of the maximum force as

Fmaxavg � 1
n
∑n
i�1

FAM j( ) (23)

where FAM is the vector n elements long that contains the
maximum force generated in all binding events of filament j.
Similarly, the average non-zero force generated is

Fnonzero � 1
N

∑FNZ (24)

where N is the number of filaments and Fnz is the non-zero
average of the filament. We report the maximum traction force
per μm2 by fitting

FTF � FTFmax 1 − e−βt( ). (25)
All model parameters and their values are given in Table 1.

3 RESULTS

The model described above explicitly simulates force and ATP
dependent cycling of individual myosin motors as the enter and
exit the crossbridge cycle and bind to and pull on the actin fibers.
This allows us to exclude making any implicit assumptions
regarding the force velocity dependence of myosin motors.
The model also explicitly calculates the forces that these
individual motors apply on actin fibers at each time point,
how these forces are transmitted to the surface when the
filament is bound to it via an elastic bond, and the dynamics
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of the individual bonds forming and breaking. In addition, the
model simulates force dependent recruitment or branching of
additional actin-myosin fibers at these bonds in order to simulate
some of the mechanosensitive features of cell-substrate adhesion.
We explore how nascent force develops in single filaments by
varying integrin bond type, number of active motors, substrate
stiffness, and talin-mediated actin-myosin filament recruiting or
talin branching. Furthermore, we show how these factors
influence traction stress transmitted by the actin-myosin fibers
to the substrate.

3.1 Stall Force
The force at which the sliding velocity of the actin filament along the
myosin bundles approaches zero is the stall force, or the isometric
force as defined by Huxley and others, for which the length of the
actin-myosin bundle stays constant (the fibers do not contract).
Simulations on single actin-myosin filaments pulling against a
constant load using the model described above, where kspringx
term is replaced by a constant force, gives a hyperbolic force-
velocity relationship (Supplementary Figures S9, S10). This
matches the force velocity relationship of muscle actin-myosin
bundles described by [68] and more recently observed by [69].
The low force actin filament speeds from our simulations
(Supplementary Figure S10) also match the observed free actin
filament sliding speed driven by non-muscle myosin 2B motors.

Increasing ppMLC2:MLC2 and substrate stiffness increases
stall force (Figure 2A). An obvious factor that controls the stall
force of an actin-myosin filament has to be the number of active
motors generating forces. However, the nature of relationship
between biochemical activation-deactivation rates of motors, the
number of active motors at any given instant and the total force
generated in each actin-myosin filament is not well characterized.
We explore these relationships by changing the number of active
motors in the crossbridge cycle by increasing the ratio of
ppMLC2:MLC2. Stall force is dependent on the number of
motor proteins actively generating force per actin-myosin
filament. Stall force increases linearly with the number of
motors in force-generating states [44] (Supplementary Figure
S1). Interestingly, the stall force is not linear with the total
number of active motors for low number of active motors,
and the rate of stall force increase as more active motors are
added to the system depends on the substrate stiffness
(Supplementary Figure S11). Additionally, the stall forces
show a saturating relationship with the motor phosphorylation
(activation)/dephosphorylation (deactivation) rate ratios
(Supplementary Figure S12).

A less obvious factor that controls the stall force of an actin-
myosin filament is the stiffness of the substrate against which the
actin-myosin filament is pulling. We observe that in the absence
of unbinding/breaking of the actin-integrin-substrate connection,
the stall force generated in a single actin-myosin filament strongly
depends on the stiffness of the substrate, kspring, it is pulling
against (Eq. 14). This result matches the prediction by Stam et al.
[7], and is extremely relevant to other models describing cell
traction force generation and migration [70]. Most models assume
a constant isometric force for actin-myosin filaments, dictated by
the stall force of individual motors and the number of active
motors available to interact with the actin filament. However,
our results suggest that there is not one fixed isometric force
when the filament is contracting against a spring element as
opposed to a constant force. Instead, the spring stiffness dictates
the maximum stall force that can be generated in the actin-
myosin filament, and this can exceed the stall force observed
using a constant force application. This dependence of the stall
force on substrate stiffness arises because pulling against a stiffer
substrate synchronizes myosin cross-bridge cycling and recruits
more myosin into the actin bound, force generating states
(Figure 2B). The results show that the forces transmitted by
individual actin-myosin filaments (and consequently the
traction stress) is not limited by the stall forces of the
filaments, as these stall forces are far greater than observed
forces transmitted across individual actin-integrin-
substrate bonds.

3.2 Forces Transmitted Across the
Adhesion Complex in the Presence of Force
Dependent Integrin-Substrate Bond
Lifetime
Stall force shows us how much force is possible in the absence of
integrin-substrate unbinding. Clearly, one would expect that a
higher stall force for an actin-myosin filament would result in a

FIGURE 2 | (A) Stall force, the maximum force an actin-myosin fiber can
generate increases with ppMLC2:MLC2 and substrate stiffness. (B) The
number of motors actively generating force increases with ppMLC2:MLC2
and substrate stiffness. Our simulations show that approximately one
quarter or less of available motors are actively in the force generating state at
any given instant, even for large stall forces. Error bars represent ±SEM for 100
filaments over three independent simulations.

Frontiers in Physics | www.frontiersin.org February 2022 | Volume 10 | Article 8317766

Vazquez-Hidalgo et al. Factors Limiting Cellular Force Generation

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


higher overall traction force generated by the cell. Integrins,
however, do break their attachment with the substrate in a
force-dependent fashion. If we allow integrin bond to break,
then the stall force in an actin-myosin filament does not limit
the forces transmitted across the cell-substrate bond. Instead,
bond lifetime emerges as a critical limiting factor. The bond
lifetime can limit the force being transmitted from the cell to the
substrate in two ways—1) by restricting the maximum forces
possible in individual actin-integrin-substrate adhesions can
ramp up to before the individual integrin-substrate bond
breaks, and 2) by affecting how many actin-integrin-substrate
adhesions are actively transmitting cellular forces to the
substrate at any given instance. We test the contributions of
both these mechanisms under slip as well as catch-slip integrin-
substrate binding detachment kinetics. We observe that the
maximum force increases with ppMLC2:MLC2 and substrate
stiffness in both bond types (Figures 3A,C). Both bond types
have monotonically increasing maximum forces with catch-slip
bonds generating larger forces than slip bonds. The maximum
force captures the force at which the integrin-substrate bond
ruptures. Slip bonds generate forces > 30 pN while catch-slip
bonds generate forces > 50 pN which agrees with experimental
observations [71, 72]. As expected, the increase in force
decreases the bond lifetime in both bond types (Figures
3B,D). At low forces, slip bond lifetimes outlast catch-slip
lifetimes. As force builds, bond lifetimes for each bond type
settle to similar values under similar experimental conditions.

This is due to the slip regime driving the bond lifetimes at high
forces.

3.3 Total Traction Stress Transmitted by the
Cell With and Without Mechanosensitive
Actin-Myosin Fiber Recruitment and
Branching
In the above sections, we focused on individual actin-myosin
fibers interacting with individual cell-substrate adhesions. Next,
we describe the collective effect of multiple actin-myosin fibers
binding to, pulling against, and breaking cell-substrate adhesion
bonds. Here we study two different scenarios—1) when actin-
myosin fibers act independently of each other, and 2) when there
is force dependent, talin mediated recruitment of additional
actin-myosin fibers to existing integrin-attached fibers (Eq.
19), or if there is a force dependent recruitment of additional
integrins at already stressed adhesion sites (Eq. 20). We estimate
the traction force, defined as the sum of the forces transmitted by
all the adhesion sites within a region of the cell [73] for both of
these scenarios. We report this as the traction stress, which is the
force generated over a unit area 1 μm2. Only those actin-myosin
filaments with an intact mechanical pathway contribute to
traction stress. We test whether talin-mediated recruitment of
actin-myosin fibers and integrin branching have any effect on
traction stress. Talin contains four domains that unfold with
applied force as low as 2 pN [27, 28]. Three of these domains (I, II,

TABLE 1 | Model parameters.

Parameter Definition Value Unit References

k12 State 1 to 2 rate 1.4 × 10–4 ms−1 [54]
k23 State 2 to 3 rate 7.0 × 10–3 ms−1 [54]
k32 State 3 to 2 rate 1.1 × 10–2 ms−1 [54]
k34 State 3 to 4 rate 1.6 × 10–4 ms−1 [54]
k41 State 4 to 1 rate 2.8 × 10–2 ms−1 [54]
k152 State 15 to 2 rate 1 ms−1 Estimated
k215 State 2 to 15 rate k152 × ppMLC2

MLC2
ms−1 Calculated

ppMLC2
MLC

Phosphorylation ratio 0.1–10 Fold [104]

km Motor stalk stiffness 4 pN/nm [105]
kB Boltzmann’s constant 1.389 0,610 ×−2 J/K —

T Temperature 300 K —

δ Myosin bond length 2.5 nm [7]
kact Integrin activation rate 23 ms−1 [106]
katt Integrin attachment rate 1 × 103 ms−1 [96]
y Motor step size 5.3 nm [107]
kspring Substrate spring constant 0.1–1,000 pN/nm —

k0 Slip bond off rate 0.1 ms−1 [108]
γ Drag on actin-myosin 6 × 10–4 pNms/nm [109]
A Fitting constant 3,309 ms−1 [67]
B Fitting constant 3.942 × 10–7 ms−1 [67]
C Fitting constant 5.819 × 10–2 ms−1 [67]
ξ Unbinding length 0.74 nm [67]
ksfatt Actin-myosin attachment rate 0.65 ms−1 [96]
krec Talin recruiting rate 1.8 × 10–2 ms−1 [110]
kbranch Talin branching rate 2.5 × 10–5 ms−1 [110]
R No. of recruited filaments From simulation — —

b No. of branched integrins From simulation — —
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and IV) have vinculin binding sites and one domain (III) has an
integrin binding site. Regions II-IV have force-dependent
unfolding rates < 2.5 × 10−5s−1 [27]. These unfolding rates are
too slow and occur only rarely during our simulations. Region I
has an unfolding rate fast enough, 0.018 s−1 [27], for talin-
mediated actin-myosin recruitment to occur within our
simulation time. For the parameter space and simulation times
we explore, we find that traction stress and adhesion size for
integrins with and without talin-mediated dynamics are relatively
unchanged (Figures 4A,C). Furthermore, adhesion size for both
conditions is remarkably similar (Figures 4B,D). Both conditions
show traction stress is nonlinear with trends are ppMLC2:MLC2
and substrate dependent. Low ppMLC2:MLC2 traction stresses
demonstrate a sigmoidal trend while high ppMLC2:MLC2
traction stresses are biphasic.

We have identified how force develops in single filaments and
how both ppMLC2:MLC2 and substrate stiffness are sufficient to
increase force. These observations of force generation in
individual actin-myosin filaments does not scale up to traction
stress per μm2. Instead, if we consider the impulse transmitted by
individual actin-myosin filaments during each active binding
event, a trend emerges (Figure 5B). Impulse is calculated by

I � ∫τ2
τ1

Fdt (26)

where τ1 to τ2 is the time window when an actin-myosin filament
is actively transmitting force to the substrate via an integrin bond.
Impulse then uniquely predicts traction force.

4 DISCUSSION

The maximum force a single actin-myosin unit can generate is
context-dependent and can be modulated by either one or more
of the following conditions: integrin bond type, ppMLC2:MLC2,
and substrate stiffness. Traction stress, the contribution of all
force generating filaments in an adhesion complex, and force per
filament have drastically different profiles even though traction
stress is entirely dependent on single filament forces. Forces
generated by actin-myosin filaments are modulated by two
independent mechanisms: the number of motors and substrate
stiffness. For example, simulations with integrin bonds that do
not break show that if we hold ppMLC2:MLC2 constant, traction
force increases with substrate stiffness. Likewise, if we keep
substrate stiffness constant, stall force increases with ppMLC2:
MLC2. Furthermore, force generation has a positive effect on
myosin as myosin is mechanosensitive [74]. Myosin duty ratio
shifts in a force-dependent manner [7]. The duty ratio increases
with load which increases the number of attached motors as
substrate stiffness increases in a ppMLC2:MLC2 independent
mechanism. The increase in motors is not a response to stiffer

FIGURE 3 | Maximum force transmitted to the substrate is bond type dependent and limited by the bond adhesion lifetime. Both slip bonds and catch-slip bond
integrins transmit increasing forces with increased ppMLC2:MLC2 and substrate stiffness with slip bonds (A) transmitting lower forces than (C) catch-slip bonds. Both
slip (B) and catch-slip (D) integrins experience decreased bond lifetimes with increased ppMLC2:MLC2 and substrate stiffness. Error bars represent ±SEM for 100
filaments over three independent simulations.
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substrates but a response to increased force. Stall force then is a
response to both the number of activated motors and substrate
stiffness. Our simulations with catch-slip bonds with and without
talin-mediated actin-filament recruitment or integrin branching
agree with experimental results showing that single integrin
bonds withstand forces ranging from 10–30 pN [75, 76], up to
> 54 pN [72]. Although catch-slip bonds can withstand forces
greater than the 10–30 pN range reported, slip bonds rupture at
forces < 30 pN (Figure 3A). As forces increase, bond lifetimes
decrease. Interestingly, bond lifetimes for slip bond and catch-slip
bonds settle at similar bond lifetimes while having different
maximum force profiles. This is likely due to distribution of
the bond lifetimes. At low ppMLC2:MLC2 and low substrate
stiffness bond lifetimes for slip bonds skew farther right while at
high ppMLC2:MLC2 and substrate stiffness catch-slip
distributions skew farther right (Supplementary Figure S3). It
is this extended positive skewness that increases the maximum
force for catch-slip bonds. Bond lifetimes impact adhesion size.
Increasing the force in individual actin-myosin filaments
decreases the adhesion lifetime and consequently adhesion
size. Adhesion size defined by only those integrins that are
actively contributing to traction force is likely too narrow as it
disregards scaffolding proteins that contribute to the composition
of the adhesion. Nonetheless, our simulations show that
depending on substrate stiffness, approximately 40–70% of the
integrins are load bearing at any given time. These observation

agree with experiments showing that approximately 60–75% of
integrins in an adhesion are load bearing [71].

However, adhesion size seems to be a poor predictor for
traction stress. Contrary to reports that use adhesions to
predict traction force [17] there is a large range of traction
stress at adhesions containing approximately 50 bound
integrins (Figure 5A). Additionally, We see that traction stress
is biphasic with adhesion size. There is an optimal adhesion size
that maximizes traction force, past which, the traction force
decreases. These results could explain how highly motile cells
exhibit inverse correlation between adhesion size, migration
speed, and increased invasiveness [3, 67, 77]. Increasing forces
increases the likelihood that integrins will rupture their bond with
the substrate and decreases the bond lifetime. Decreasing bond
lifetimes affect adhesion size. We can make a generalization that
large adhesion have integrins that experience longer bond
lifetimes but transmit lower forces than small adhesions whose
integrins experience shorter bond lifetimes but transmit greater
forces. In this respect, our results agree with trends that relatively
small adhesions transmit greater forces than large adhesions [78]
and that adhesions < 1μm2 exhibit widely variable traction stress
[79, 80]. However, below a certain adhesion size, there might not
be sufficient active attachments transmitting forces and traction
force falls again. Individual integrins experience a range of forces
that when evaluated as an aggregate reveal traction stress.
Traction stress is not simply the product of motor activity,

FIGURE 4 | (A) Traction stress without and (C) with talin-mediated adhesion reinforcement demonstrate similar profiles. Both conditions show biphasic trends at
high ppMLC2:MLC2 and high substrate stiffness. (B) Adhesion size without and (D) with talin-mediated reinforcement decrease with increased ppMLC2:MLC2 and
substrate stiffness. Error bars represent ±SEM for 100 filaments over three independent simulations.
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substrate stiffness, bond lifetime, or adhesion size. Experiments
measuring traction stress report 3 trends: traction stress increases
monotonically with substrate stiffness [81–88], increase then
plateaus [89, 90], or decreases monotonically [91]. Our model
predicts all 3 trends and under which conditions those trends
occur. Within a specific substrate stiffness range spanning three
orders of magnitude, regardless of ppMLC2:MLC2, we predict an
increase in traction stress. Passing this stiffness threshold,
traction stress plateaus for ppMLC2:MLC2 ≤ 0.2 or decreases
then plateaus for ppMLC2:MLC2 ≥2. The traction stress biphasic
behavior we observe is predicted in other models, either by fitting
experimental data with a Gaussian curve [91] or by including
actin retrograde flow, which occurs as actin-substrate anchoring
proteins that act as molecular clutches disengage from the actin
[92–94]. We note that the biphasic behavior of traction stress is
context dependent. The biphasic behavior is not seen in
simulations with low ppMLC2:MLC2. These simulations
instead show a sigmoidal behavior. The existence of both
biphasic and monophasic traction force response is a novel
model prediction beyond what is reported in other models.
While qualitative agreements between the model predictions
and various experimental observations can be made, further
testing of specific model outcomes is required to validate the
model assumptions. For example, manipulating myosin
activation rates by using Rho/ROCK blockers and agonists,

integrated with single molecule force spectroscopy in cells
attached to or embedded within substrates with different
stiffness would further help test a number of specific model
predictions made above.

Overall, the model presented here is an extension of, or
borrows from, a number of prior actin-myosin force
generation and filament sliding models [51, 57, 95]. It also
borrows from other traction force, actin-integrin-substrate
adhesion models [13, 36, 96]. Specific features new to this
model are—1) The model describes five stages to allow for
myosin activation via phosphorylation, as compared to the
one [51]. This allows the future possibility of integrating it
with systems biology models focused on upstream signals that
can promote or inhibit myosin phosphorylation. Additionally, it
incorporates mechanical regulation of cross-bridge cycling rates
as a function of individual motor strains, fluctuations in myosin
distributions along the actin-myosin fibers, and the ability to
track activity at the level of individual motors. Beyond the
detailed incorporation of actin-myosin cross-bridge cycling,
the model also incorporates differences in cell-substrate
adhesion bond kinetics, substrate mechanical stiffness,
mechanochemical regulation of focal adhesion formation via
Talin binding and mechanosensitive recruiting or branching of
actin stress-fibers, along the lines of the model described by [63].
These allow for easy extension of the model to probe biochemical
signaling downstream of mechanosensitive focal adhesions.
While we limit the use of the model to focus on factors that
govern instantaneous traction force generation in cells, there are
many other potential applications of this model, especially when
coupled with biochemical signaling models. A limitation of this
model is that it tracks the generation of traction forces only on the
order of minutes. Thus, cell scale events such as cytoskeletal
remodeling ([97], actin fiber depolymerization and
reorganization [98], adhesion remodeling occurring over
longer time-scales [99, 100], as well as changes to protein
expression levels within the cell cannot be accounted for.
These phenomena could transiently alter traction stress which
might differ from the short timescale steady state predictions
made here. The bridging of phenomena across times scales and
observing transient changes to traction stress generation is a
challenge that we look to addressing in the future iterations and
applications of this model.

5 CONCLUSION

Different cell types generate different levels of traction stress. The
forces themselves are not exclusive to a cell type. Rather, forces
are dependent on actin-myosin organization, myosin
contractility, cell-substrate adhesion and coupling between the
cell cytoskeleton and the cell-substrate adhesions. These factors
are in-turn governed by intra-cellular and extra-cellular chemical
and mechanical signals such as hypoxia, adrenergic signaling,
growth factor signaling, substrate viscoelasticity and so on. [82,
101, 102]. In this work, we focused on the immediate regulators of
cell traction force generation—myosin motor activity (primarily
non-muscle myosin 2 interactions with actin filaments), actin-

FIGURE 5 | (A) Traction stress is biphasic with adhesion size. There is an
initial increase in traction stress with adhesion growth, followed by a regime
where traction stress is decouple from the adhesion size. Interestingly, largest
adhesion sizes correspond to lowest traction forces generated. (B)
Traction force increases almost linearly with the impulse transmitted by
individual actin-myosin filaments to the substrate.
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myosin filament coupling to cell-substrate adhesions, and
substrate elastic response. We find that stall forces are not the
limiting factor for the traction force that cells can generate.
Instead, as substrate stiffness increases the number of active
motors in the force generating states increase, consequently
increasing the stall force for individual actin-myosin filaments.
Investigating the actin-integrin-substrate adhesion dynamics, we
find that traction stress is limited by the integrin-substrate bond
lifetime, which decreases with increasing substrate stiffness and
myosin activity. Ultimately, we show that traction stress is
proportional to the impulse transmitted by individual actin-
myosin filaments to the substrate via focal adhesions. Our
model integrates the nanoscale, microsecond activity of
individual myosin motors interacting with actin filaments with
nanoscale cell substrate adhesion mechanics to estimate traction
forces generated by cells over microscale adhesion regions over a
timescale of minutes. It also allows for ways to integrate
biochemical signals that alter myosin phosphorylation states,
actin organization, focal adhesion protein concentrations and
activity, as well as mechanochemical feedback between these
elements to provide a detailed cell traction force generation
model. The results of this model can further be integrated
with systems biology models focusing on intra-cellular
chemical signaling to include the effects of mechanical force
generation on certain mechanically activated reaction
pathways such as talin-vinculin binding and focal adhesion
kinase (FAK) activation and signaling [103].
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