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This numerical study is about the steady incompressible non-Newtonian fluid flow in a
channel with static obstacles. The flow field is governed by the Generalized Navier-Stokes
equations incorporating the constitutive relation of power-law fluids. Three cases are
considered: 1) circular obstacle (C1), 2) semicircular obstacle (C2), and 3) both circular
and semicircular obstacles. A range of values of the power-law index 0.3≤ n≤ 1.7 are
considered at Re � 20 to check the impact of shear-thinning and shear-thickening
viscosity on the drag and lift coefficients. The correlation between drag and lift
coefficients is calculated against the power-law index. The simulated results of velocity
and pressure are investigated at different sections of the channel. Benchmark results of
drag and lift for the Newtonian fluid are reproduced as a special case. A strong positive
correlation is observed between drag and lift coefficients in the case of a single obstacle,
while in the case of dual obstacles and inverse correlation, drag and lift coefficients have
been found.
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INTRODUCTION

The fluid flow past solid bodies is one of the practical problems being investigated in the domain of
fluid mechanics, and hence, it has attained the focus of engineers and scientists. The phenomenon
has a lot of engineering and industrial applications. In the past, a lot of work has been done, and
many aspects of flow have been investigated for Newtonian fluid both in experimental and numerical
ways [1–7]. The investigation of flow around rigid bodies has many engineering applications such as
the aerodynamics of chimney stacks, skyscrapers, suspension bridges, etc. During the last decade, the
fluid past the bluff bodies of different shapes and sizes has been investigated by many researchers
[8–10]. The wake produced by the separation of fluid past the bluff bodies mainly depends on the
shape and size of the obstacles [11–15]. To investigate the steady and periodic wake, the effective
Reynolds number is used by Dumouchel et al. [16]. The effect of different Reynolds numbers on fluid
flow past non-spherical bodies was observed by Berrone [17], Liu and Kopp [18], and Schewe [19].

The medical and engineering contribution of viscous fluid has been truly recognized for the last
couple of centuries. Engineers and medical scientists paid special attention to understanding the
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nature of fluids and more specifically to the visible fluids. As
science evolved, the types of fluids, the flow characteristics, and
the invisible forces involved in fluid flow are the major discoveries
that are being used nowadays for the benefit of mankind. In
recent times, flow geometry is one of the main focuses of attention
for many researchers. Understanding the elastic and plastic
characteristics of some fluids is due to such attention. The
fluid flow is mainly dependent on certain factors like pressure,
velocity, and viscosity. Mathematically speaking, the shear stress
and shear rate of strain are the key factors to be investigated
together with viscosity [20–24].

Based on generalized Newtonian fluids, this work is related to
the fluid flow around the obstacles of circular and semicircular
shape. The flow regime is compared for both cases. For different
values of Reynolds numbers, the Newtonian fluid flow around
obstacles of different shapes has been investigated by many
[25,26]. The laminar flow characteristics can be observed for

low values of Reynold numbers, generally for Newtonian fluids.
The fluids with shear-thinning viscosity are considered the
simplest version of non-Newtonian fluids, but with the
advancement of computational techniques, the fluids with
shear-thickening viscosity are attaining the interest of
researchers [27]. For many non-Newtonian fluids, the shearing
characteristics are investigated in reference [28].

Recognizing the industrial applications of flow around semi-
cylinders, this work is confined to some numerical results. The
comparison is made with the results of the circular cylinder. We
organize the manuscript as follows. Section 2 is concerned with
the mathematical modeling and numerical approach for this
work. Section 3 displays the results and discussion for the
involved factors. The conclusion of the present study is
revealed in Section 4.

MATHEMATICAL MODELING AND
NUMERICAL SCHEME

The Navier Stokes equations provide the way to understand and
deal with fluid engineering [29–33]. These equations are set on
nonlinear partial differential equations, due to which analytical
solution of such problems as well as of other problems arising as
models of wave propagation [34,35] is often difficult. In order to
solve them, one needs to approach a numerical solution. Among
many numerical tools reported in the literature to deal with the
mechanics of fluid flow, the finite element method (FEM) is the
prominent one. The functionality of the finite element method

FIGURE 1 | Schematic diagram of the problem.

FIGURE 2 | Hybrid mesh at coarse level. (A) Circular cylinder case. (B) Semi-circular cylinder case. (C) Dual cylinders case.
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and the mathematical modeling for our problem is described in
references [36–42].

∇ · u � 0 (1)
ρ(u · ∇u) � −∇p + ∇ · τ, (2)

where the symbols have their usual meanings.

Power-Law Fluid
The power-law fluid was first suggested by W. Ostwald in 1925.
Although the simplest model shows dependence upon the shear
rate with the minimal number of parameters, it is representative
of many non-Newtonian fluids. One of the advantages of this
model is that it gives rise to analytical solutions in many cases,
and hence, this model is widely used in applications. The model
[25] is given by the following:

τ � m( _γ)n, (3)
where τ and _γ are the shear stress and shear rate while n andm are
the power-law index and consistency index, respectively.

Flow Configuration
A circular cylinder with a diameterD � 0.1 is placed in a channel
at various positions. The dimension of the given domain is
[0, 2.2] × [0, 0.41]. The circular obstacle C1 and semi-circular
C2 are fixed at (0.2, 0.2) in the channel for two different studies.
Later, C1 and C2 are placed in the channel simultaneously in a
series at (0.2, 0.2) and (0.5, 0.2), respectively. The flow analysis is
two-dimensional as there is no flow in the z-direction. The
x-directional inlet is set at the left-hand side of the channel.
An inflow profile is parabolic with maximum velocity umax � 0.3
at the inlet of the channel. The y-direction explains the fully
developed x-directional flow profile. A do-nothing boundary

condition at the outlet is chosen. The other walls of the
channel are set with no-slip conditions.

As the fluid interacts with the bluff body, the flow pressure
exerts some forces on the surface of the cylinder(s) which are
quantified as drag and lift. The dimensionless coefficients of these
forces are as follows:

CD � 2Fd

ρU2
meanD

, (4)

CL � 2Fl

ρU2
meanD

. (5)

Here, the average velocity is Umean and D is the diameter of the
obstacle. Figure 1 shows the schematic diagram of the geometry used
for this analysis. Figure 2 shows the computational grids at
refinement level 1 for all three cases. The governing equation is
discretized using FEM to approximate the important quantities like
velocity and pressure. The reduced equations are solved using
Newton’s method. To stop the nonlinear iterative process, we
adopt the following criteria:

∣∣∣∣∣∣∣∣
ψk+1 − ψk

ψk+1

∣∣∣∣∣∣∣∣
≤ 10−6 (6)

here, k displays the number of iterations andψ denotes a component
of the solution. The non-Newtonian power-law fluid is used to
investigate the velocity and pressure behavior. For a fixed value of
Re � 20, the power-law index is used as an input parameter.

RESULTS AND DISCUSSIONS

A) Code Validation
To validate the solution scheme, the results of Schäfer et al. [43]
are reproduced for the circular cylinder case at Re � 20 and n � 1,
which is the Newtonian case. The close correspondence is
observed for the values of drag and lift between the present
work and the published work [43], which gives them confidence
in solution methodology. The reference values of CD and CL as
given in reference [43] are as follows:

CD � 5.579535,
CL � 0.010618.

B) Correlation of Fluid Forces
In the present case, viscosity is the function of shear rate _γ and the
power law exponent (n) which can give rise to different flow

TABLE 2 | Impacts of n on drag and lift coefficients for dual obstacles.

n CD Dual cylinders CL Dual cylinders

C1 C2 C1 C2

0.3 2.238,806 0.628,784 −0.01286 0.048534
0.5 2.941,278 1.189,861 −0.01046 0.045178
0.7 3.811,935 1.853,629 −0.00488 0.048908
1.0 5.443,447 3.242,317 0.014348 0.057837
1.3 7.578,352 5.417,577 0.061964 0.056739
1.5 9.494,071 7.431,205 0.131,950 0.040403
1.7 11.96733 9.94492 0.255,813 0.029470

TABLE 3 | Correlation coefficient for CD and CL (single cylinder).

Circular Semi-circular

Correlation coefficient (r) 0.955 0.952

TABLE 4 | Correlation coefficient for CD and CL (dual cylinder).

Circular (upstream) Semi-circular (downstream)

Correlation coefficient (r) 0.956 −0.611

TABLE 1 | Impacts of n on drag and lift coefficients for single obstacles.

n Circular cylinder Semi-cylinder

CD CL CD CL

0.3 2.285,163 −0.01598 2.621,777 −0.01572
0.5 3.022671 −0.01433 3.311,908 −0.01482
0.7 3.919,195 -0.00904 4.134,044 −0.01232
1.0 5.578,019 0.010645 5.646,302 −0.00185
1.3 7.736,785 0.060306 7.589,954 0.025846
1.5 9.672,510 0.132,124 9.286,573 0.064137
1.7 12.16879 0.256,646 11.45529 0.131,802
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regimes as shear thinning, Newtonian, and shear thickening. To
visualize the influence of n, equidistant values of the n are chosen
around the Newtonian case (n � 1) for shear thinning and shear
thickening behaviors.

Tables (1)-(2) show the results of CD and CL calculated for 1)
circular cylinder, 2) semi-circular cylinder, and 3) dual cylinder.
For a steady flow, the drag is directly related to n. For the shear-
thinning case (n< 1), the drag is a bit higher at a semi-cylinder
than the drag on a circular cylinder. For the shear-thickening case
(n> 1), the situation is reversed. In the dual cylinder case, less
drag is observed than in the single cylinder.

The strength of association between hydrodynamic forces
using software SPSS-23 is represented in Tables (3)-(4). A
strong and positive correlation is observed between drag and
lift when cylinders are taken separately. However, in the case of a
dual cylinder placed in a channel, an inverse association between
drag and lift is observed at the semi-circular (downstream)
cylinder.

C) Impact on Velocity and Pressure
In the present work, the steady, laminar, and incompressible
flow is observed using generalized power-law fluid. The

FIGURE 4 | Effects on the velocity profile with Re � 20 for n � 0.3, 1 and 1.7.

FIGURE 3 | Effects on velocity with Re � 20 for n � 0.3, 1 and 1.7.
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dimensionless parameter n is used to observe the velocity and
pressure behavior for shear-thinning (n< 1), shear thickening
(n> 1), and the Newtonian case (n � 1) when the fluid
encounters an obstacle. At the stagnation point, the fluid
elements come to rest and then accelerate, bifurcating the fluid
around the cylinder in the direction of velocity. The maximum
velocity is observed at the corner of the cylinder for a specific
region. This maximum velocity region around the cylinder
increases and moves ahead with the increasing value of n (see

Figures 3, 4, 5). It is also observed that the velocity increases
around the central horizontal axis of the channel as fluid
thickening increases. As in Figures 3, 4, 5, the flow separation
is observed in the rear side of the obstacle. The flow separation
gets reduced for increasing n. Moreover, in the case of a semi-
circular cylinder, the flow separation gets a longer range (see
Figure 4).

For all three cases, the pressure profiles can be visualized in
Figures 6, 7, 8. In the free stream region, the pressure gets

FIGURE 6 | Effects on pressure with Re � 20 for n � 0.3, 1 and 1.7.

FIGURE 5 | Effects on the velocity profile with Re � 20 for n � 0.3, 1 and 1.7.
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reduced with increasing n. In the case of the semicircular
cylinder (Figure 7), an interesting pressure visualization
appears for the shear-thinning case (n = 0.3). An invisible
mild stagnation region appears at around 0.6≤x≤ 0.9, and
then it gets evenly distributed afterward. In the dual cylinder
case (Figure 8), the increasing pressure is observed up to the
walls of the channel before the first obstacle (see Figure 8C),
and the presence of the second obstacle has a significant
impact on the pressure spread together with the increasing
value of n.

D) Line Graph Behavior
In Figure 9, we demonstrate the executed u-velocity at several
power-law indexes. In detail, x � 0.0 the fluid is initially
injected at the inlet of the channel with a parabolic profile.
The line graphs of u-velocity are drawn in the free stream
region at x � 1.5 to observe the impact of the n on velocity. It is
observed that shear-thinning fluid moves closer to the channel
walls like in the n = 0.3 case. The distance of the fluid flow and
the channel walls increases with the increasing fluid thickness
like n � 1.7 in Figure 9.

FIGURE 8 | Effects on pressure with Re � 20 for n � 0.3, 1 and 1.7.

FIGURE 7 | Effects on pressure with Re � 20 for n � 0.3, 1 and 1.7.
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CONCLUDING REMARKS

The influence of shape and orientation of obstacles on hydrodynamic
forces has been studied in the present work. A statistical analysis is also
performed by computation on the correlation coefficient for all cases.
Code validation is performed as a special case, and results show
excellent agreement with the reference values of the drag and lift
coefficients. The main findings are mentioned below:

• High-velocity magnitude is observed for the shear-
thinning cases.

• Pressure dispersion from the stagnation point is also highly
associated with the power-law index.

• A strong and positive correlation is observed between drag
and lift when cylinders are taken separately.

• The case of a dual cylinder placed in a channel; an inverse
association between drag and lift is observed at the semi-
circular cylinder.
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