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Deep neural networks (DNNs) with long-range dependence (LRD) have attractedmore and
more attention recently. However, LRD of DNNs is proposed from the view on gradient
disappearance in training, which lacks theory analysis. In order to prove LRD of foggy
images, the Hurst parameters of over 1,000 foggy images in SOTS are computed and
discussed. Then, the Residual Dense Block Group (RDBG), which has additional long
skips among two Residual Dense Blocks to fit LRD of foggy images, is proposed. The
Residual Dense Block Group can significantly improve the details of dehazing image in
dense fog and reduce the artifacts of dehazing image.

Keywords: long-range dependence, residual dense block, residual dense block group, deep neural network, image
dehazing, Hurst parameter (H)

INTRODUCTION

The single image dehazing based on deep neural networks (DNNs) refers to restoring an image from
a foggy image using DNNs. Although some efforts on dehazing have been proposed recently [1–6],
foggy image modeling is still an unsolved problem.

The early image model is Gaussian or Mixture Gaussian [7], but it cannot properly fit with foggy
images. In fact, the foggy images seem to show long-range dependence. That is, the gray levels
seemed to influence pixels in nearby regions. In our framework, each foggy image withm rows and n
columns in SOTS is reshaped as is an m×n column vector by arranging the elements of the image
column by column. Thus, we can fit the images by fractional Gaussian noise (fGn) [8–12] and discuss
dependence of an image by its Hurst parameter. The main conclusion of the Hurst parameter of a
fGn is as follows.

The auto-correlation function (ACF) of fGn is as follows:

CfGn(τ) � VH

2
[(|τ| + 1)2H + (|τ| − 1)2H − 2|τ|2H] (1)

where

VH � Γ(1 − 2H) cos πH
πH

(2)

is the strength of fGn and 0 < H < 1 is the Hurst parameters [8–10].
If 0.5 < H < 1, one has the following:

∫
∞

0

CfGn(τ)dτ � ∞ (3)
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Thus, the fGn is of long-range dependency (LRD) when 0.5
<H < 1.

When 0 <H < 0.5, one has the following:

∫
∞

0

CfGn(τ)dτ <∞ (4)

The above fGn is of short-range dependence (SRD) [8–12].
Recently, some deep neural networks (DNN) with LRD are

proposed [4–6, 13], whose motivation is mainly from avoiding
gradient disappearance in training. However, the LRD of these
DNNs has never been discussed and proven in theory. In this
study, the Hurst parameters of test images in SOTS datasets [14]
are computed and LRD of foggy images is proven. Motivated by
LRD of foggy images, we proposed a new network module, the
Residual Dense Block Group (RDBG) composed of two bundled
Residual Dense Block Groups (DRBs) proposed in reference [13].
The RDBG has additional long skips between two DRBs to fit
LRD of foggy images and can be used to form a new dehazing
network. This structure can significantly improve the quality of
dehazing images in heavy fog.

The remainder of this article is as follows: the second section
introduces the preliminaries of fGn; the third section gives the
case study; then a framework based on LRD of foggy images is
presented; finally, there are the conclusions and
acknowledgments.

PRELIMINARIES

Fractional Brownian Motion
The fBm of Weyl type is defined by [8].

BH(t) − BH(0) � 1
Γ(H + 0.5)

⎧⎪⎨⎪⎩∫
0

−∞
[(t − u)H−0.5

− (−u)H−0.5]dB(u) + ∫
t

0

(t − u)H−0.5dB(u)
⎫⎪⎬⎪⎭
(5)

where 0 <H < 1, and B(t) is Gaussian.

fBm has stationary increment: BH(t + τ) − BH(t)
� BH(τ) − BH(0) (6)

and self -af f inity property: BH(at) � aHBH(t), a> 0 (7)

Fractional Gaussian Noise
Let x(t) be the gray level of the tth pixel of an image and be a
fGn [8–12].

x(t) � BH(t) − BH(0) (8)
Its ACF follows Eqs 1, 2.
An approximation of CfGn (τ) is as follows:

CfGn(τ)∝ |τ|2H−2 (9)

CASE STUDY

Data Set
Synthetic data set RESIDE: Li et al. [16] created a large-scale
benchmark data set RESIDE composed of composite foggy
images and real foggy images.

Synthetic data set: the SOTS test data set is used as the test set.
The SOTS test set includes 500 indoor foggy images and 500
outdoor foggy images.

Real data set: it includes 100 real foggy images in the SOTS
data set in the RESIDE and the real foggy data collected on the
Internet.

Calculate Hurst Parameter
Rescaled range analysis (RRA) [15] for foggy images is closely
associated with the Hurst exponent, H, also known as the
“index of dependence” or the “index of long-range
dependence.” The steps to obtain the Hurst parameter are
as follows:

1. Preprocessing: An image with m row and n column is
concatenated column by column to form an m×n column
vector. For better understanding, a simple example is
presented: the size of the foggy image in Figure 4A is
348×248, and then it is concatenated column by column to
form an 86,304-column vector.

2. Rescale vector: The original vector can be divided equally into
several ranges for further RRA, as follows. The first range at
the first layer is defined as RS11, representing the originalm×n
vector, and then it can be divided into two parts, RS21 and
RS22, at the second layer, whose dimension equals to (m×n/2)
where (.) represents the floor integer. Repeat the above process
until the vector dimensions at a specific layer are less than
(m×n/26).

Layer 1. RS11: original m×n vector.
Layer 2. RS21: (m×n/2), RS22: (m×n/2).
Layer 3. RS31: (m×n/4), RS32: (m×n/4), RS33: (m×n/4),
RS34: (m×n/4).
Thus, the dimensions of ranges of the foggy image are as follows:
Layer 1. RS11: 86,304.
Layer 2. RS21: 43,152, RS22: 43,152.
Layer 3. RS31: 21,576, RS32: 21,576, RS33: 21,576, RS34: 21,576.

3. Calculate the mean for each range.

mij � 1
nij

∑nij

kij�1 Xkij (10)

where nij represents the number of the elements in the
jth range of the ith layer; Xkij represents the value of
the kij

th element in the jth range of the ith layer; mij

represents the mean value of the elements in the jth range
of the ith layer.

4. Calculate the deviations of each element in every range. The
deviation can be calculated as follows:
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Ykij � Xkij −mij (11)
where Ykij represents the deviation of the kij

th element in the jth
range of the ith layer.

5. Obtain the accumulated deviations for each element in the
corresponding range.

yij,N � ∑N

kij�1Ykij, N � 1, . . . nij (12)

where yij,N represents the accumulated deviation for N elements
in the jth range of the ith layer.

6. Calculate the widest difference of the deviations in each range.

Rij � max(yij,1, yij,2 . . .yij,N) −min(yij,1, yij,2 . . .yij,N),
N � 1, . . . , nij (13)

where Rij represents the widest difference for the jth range of the
ith layer.

7. Calculate the rescaled range for each range.

Rescaled range � (R
S
)
ij
� Rij

σ ij
(14)

where R/S represents the rescaled range for the jth range of the ith
layer, while σij represents the standard deviation of the
accumulated deviations for the jth range of the ith layer.

8. Obtain the averaged rescaled range values for each layer.

(R
S
)
i
� 1
2l−1

∑[m×n/2l−1]
j�1 (R

S
)
ij

(15)

where l is the layer of the ranges with the identity size. The R/S is
calculated using Eq. 15 and the R/S of the example image is
shown in Table 1.

9. Obtain the Hurst exponent. Plot the logarithm of the size (x
axis) of each range in the ith layer versus the logarithm of the
average rescaled range of the corresponding layer using Eq. 15
(y axis) (Figure 1), and the slope of the fitted line is regarded
as the value of the Hurst exponent, that is, the Hurst
parameter.

Hurst Parameters H of Foggy Images
The plots of four image sets in SOTS, 500 indoor images, 500
outdoor, 1,000 outdoor and indoor images, and 100 real foggy
images, are shown in Figure 2. The x axis represents the serial
numbers of the test images while the y axis is the Hurst
parameters of the images. That is, the ith point in Figure 2
represents the Hurst parameter of the ith image. Thus, we can
know the Hurst parameters of over 1,000 foggy images by
observing y values of the points in Figure 2.

From Figure 2, we can observe that the least y values of
subfigures in Figure 2 are 0.6 or 0.65, which means that the Hurst
parameters of four image data sets are all above 0.6. Thus the
foggy images are of LRD, which can help us design some novel
dehazing methods.

Moreover, although the Hurst parameter for each image is a
constant, the different images have different Hurst parameters
because of their different contents. For example, the Hurst
parameter of a complex image with more colors and objects
(Figures 5A,B) is bigger than a simple image (Figure 5C).

Based on the LRD of the foggy images, the Residual Dense
Block Group (RDBG) based on RDB is proposed. The RDBG,

TABLE 1 | Some intermediate results of calculating the Hurst parameter of the foggy image in Figure 5A.

Layer Numbers of
ranges in
layers

Numbers of
data points
in ranges

(x)

Log(x) R/S Log (R/S) Slope of
the fitted

straight line
(i.e., the value

of Hurst
parameter)

1 1 86,304 10.6725 25,754 15.3667 0.990
2 2 43,152 9.9793 16,445 14.9181
3 4 21,576 9.2862 7,367 14.1151
4 8 10,788 8.5930 3,567 13.3899
5 16 5,394 7.8999 1784 12.6969

FIGURE 1 |Data in the third column (x axis) and the fifth column (y axis) in
Table 1 and their fitting straight line whose slope is 0.990.
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which has additional long skips between two RDBs to fit LRD of
foggy images, can significantly improve the details of
dehazing image in dense fog and reduce the artifacts of
dehazing image.

DEHAZING BASED ON RESIDUAL DENSE
BLOCK GROUP

Dependence in Neural Network
The neural network can be considered as a hierarchical graph
model whose nodes are connected by weighted edges. The
weights of edges are trained according to some predefined cost
functions. Generally, the value of the ith node in the kth layer is
decided by the nodes in the (k-1)th layer connected to the ith
node [18–24]. That is,

x(k)(i) � f(W(k−1,k)(i)x(k−1)(i)) (16)

where x(k)(i) is the value of the ith node in the kth layer, f is an
activation function, W(k−1,k) is a vector of weights of edges to
connect nodes in the (k-1)th layers and the ith node, and x(k−1)(i)
are values of nodes in the (k-1)th layers connected to the ith node.

Thus, the value of the ith node is only influenced by its
directly connected nodes. This assumption may be correct in
some cases, but it is not true in images since we have proved
the LRD of foggy images. Thus, we should design a new
module of the neural network to fit the LRD of the foggy
images.

Residual Dense Block Group
Just as discussed in the above subsection, the most straight
method to design a structure fitting LRD of images is to
connect a node to nodes with longer distance to it directly.
Thus, the information of faraway nodes is introduced
to help us to recover the real gray level from foggy
observations.

FIGURE 2 | Plots of H of four foggy image datasets.
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Following this intuitive explanation, the length of a skip
(connection edge between two nodes) which is defined as the
number of crossing nodes can be used to measure the dependence
of a time series approximately.

In this context, motivated by the LRD of foggy images, a
new residual module RDBG is proposed by two bundled
resident dense blocks (RDBs). As shown in Figure 3A, the
RDB is a module with dense connections only in the block. In
Figure 3, the features which are values of nodes in different
layers of the RDB form a time series. Thus, an RDB only with
dense connections in blocks cannot fit the LRD well, especially
in dense fog, while the proposed RDBG which adds an
additional long skip from the beginning of the first block
to the end of the second block can fit the LRD better than the
RDB. In heavy fog, since the RBDG fits LRD of images to
utilize more information of images, it can obtain a better
dehazing image.

As shown in Figure 3C, Yang Aiping [16] et al. and X Liu [17]
et al. used consecutive RDBs in a cascade manner. Since
connections are also in blocks, in essence, it cannot fit LRD of
images well.

Experimental Results and Discussions
The method proposed in this article will be compared with four
state-of-the-art dehazing methods: DehazeNet, AOD-Net, DCP,
and GFN.

Three metrics: PSNR, SSIM, and reference-less FADE are used
to evaluate the quality of dehazing images. Our proposed method
gets the best PSNR and SSIM among all methods (Table 2), which
means that our method has the largest similarities between the
original images and the dehazing images in both image gray levels
and image structures. It also has satisfied results in FADE
(Table 2; Figure 4), which means that our method is robust
and stable in dehazing.

The dehazing examples are given in Figures 5, 6, and their
Hurst parameters are given under the foggy images.

FIGURE 3 | Comparison of RDB, CRDB, and RDBG. (A) RDB: it is a module with dense connections in the block. (B) RDBG (proposed method): it is composed of
two RDBs. RDBG forms the LRD between blocks. (C) CRDB: the RDB is cascaded to form a network.

TABLE 2 | PSNR, SSIM, and FADE between the dehazing results and original
images of synthetic image in SOATS. The best results are marked by bold.

Dataset Metric DCP DehazeNet AOD-net GFN OURS1

Indoor PSNR 16.16 19.82 20.15 24.91 28.479
SSIM 0.8546 0.8209 0.8162 0.9186 0.9665
FADE 0.7792 0.7943 0.8052 0.5364 0.5602

Outdoor PSNR 19.14 24.75 24.14 28.29 30.033
SSIM 0.8605 0.9269 0.9181 0.9621 0.9714
FADE 0.5941 0.7671 0.7677 0.8238 0.7442

FIGURE 4 | Average FADE of test results of different algorithms in real
fog images collected in SOAT and the Internet.
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FIGURE 5 | Some dehazing images and their image quality metrics of synthetic foggy data in SOATS.
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CONCLUSION

Assuming the foggy images are of fGn and calculating
their Hurst parameters, the LRD of over 1,000 foggy

images are proven by the fact that their Hurst parameters
are all more than 0.6. Motivated by the LRD of foggy
images, the Residual Dense Block Group (RDBG) with
additional long skips between two RDBs is proposed. The

FIGURE 6 | Some dehazing images and their image quality metrics of real foggy data in SOATS and on the Internet.
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RDBG utilizes information of LRD foggy images well and can
obtain satisfied dehazing images.
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