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Pattern structures are usually used to describe the spatial and temporal distribution
characteristics of individuals. However, the corresponding relationship between the
pattern structure and system robustness is not well understood. In this work, we use
geostatistical method–semivariogram to study system robustness for different pattern
structures based on three dynamical models in different fields. The results show that the
structural ratio of different pattern structures including the mixed state of spot and stripe,
cold spot, stripe only, and hot spot are more than 75%, which indicated those patterns all
have strong spatial dependence and heterogeneity. It was revealed that the systems
corresponding to the mixed state of spot and stripe or cold spot are more robust. This
article proposed a method to characterize the robustness of the system corresponding to
the pattern structure and also provided a feasible approach for the study of “how
structures determine their functions.”
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1 INTRODUCTION

Due to some behavior mechanisms of individuals, species present heterogeneous but regular spatial
distribution structures in both space and time, which is called as “pattern.” These pattern structures
exist widely in nature such as the clouds in the sky [1], the patterns on zebra [2], and the ripples on
the water [3]. Except for these, Getzin et al. found the gap vegetation pattern—fairy circles inWestern
Australia [4], the regular stripes vegetation distribution on the hillside of Niger studied by
Klausmeier et al. [5], and mussel beds in the intertidal zone show different scales of
distribution, namely, large-scale banded distribution at the ecological level and small-scale
reticular distribution at individual mussels level [6, 7]. There are also thermal convection
patterns, spiral wave patterns, and hexagonal patterns observed in the experiment [8, 9].

The scientific community has a wide range of interest in the formation mechanism and structural
characteristics behind the pattern. Consequently, theories of pattern dynamics have been deeply
studied and form a more systematic theoretical research area [10–21]. Here, we present some typical
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works on this topic. In 2001, von Hardenberg et al. pointed out
that when the bare state and spot pattern state coexist, and it is
also unstable, if exceeding a certain threshold, the system will be
completely transformed to a bare state or desertification, that is,
the spotted pattern will be used as an early warning signal of
desertification [22]. In 2014, Liu et al. revealed that the interaction
of self-organization behavior between different scales can
improve the robustness, persistence and productivity of mussel
ecosystem; in other words, the mosaic patterns with large and
small scales imply the ecosystem is more robust [6]. In 2020,
Bastiaansen et al. quantified the resilience of ecosystems with
spatial patterns by using phase portrait [23]. However, due to the
complexity of the system dynamical process and the lack of
uniformity on robustness definition, many studies and
conclusions are not comprehensive and have certain
limitations, even lack of quantitative indicators for the
robustness of each pattern structure.

In order to better answer the question “how the pattern
structures determine the robustness of the system,” we obtain
a series of different pattern structures based on three dynamical
models in different research fields: vegetation–water coupled
model [24], epidemic spatial model [25], and predator–prey
model [26], and use geostatistical methods to quantitatively
describe and analyze the characteristics of all different pattern
structures, so as to find out which type of pattern structures are
more robust for the corresponding systems.

2 CHARACTERIZATION INDEX OF SYSTEM
ROBUSTNESS

In ecology, the related concepts of robustness is complicated
and imprecise, but most people agree that robustness can be
divided into two categories: one is the ability of the system to
resist leaving (maintain) the current state after the system is
subjected to external disturbance [27]; the other one is the
ability of the system to return to the original stable state after
suffering disturbance [28]. Therefore, in this study, we will
use semi-variogram to analyze the interaction and
dependence of each component within the system, and
thereby give the quantitative index of the second type of
system robustness.

The semivariogram is a mathematical statistical method that
can reflect the randomness and structural characteristics of the
variable in the spatial distribution and also is the theoretical basis
of geostatistics. First, in order to avoid the proportional effect in
the study, it is necessary to test the data of the studied variable (Z)
and judge whether it is normal distribution or approximate
normal distribution; if not, data conversion shall be carried
out to make it conform to normal distribution. Afterward, the
calculation of the semi-variance function value is carried out.
Finally, through simulation, we obtain the best fitted
semivariogram model and some important indicators, such as
nugget C0, sill C0 + C, range A, and the structural ratio C/(C0 + C).
Figure 1 shows the basic process of this method and the
calculation formula of the semivariogram as follows [29]:

γ h( ) � 1
2N h( ) ∑

N h( )

i�1
Z xi( ) − Z xi+h( )[ ]2, (1)

where γ(h) represents semivariogram, h is the step length, that is
the sample point spatial distance, N(h) indicates the total number
of data pairs when the sample point distance is h, and Z (xi) and Z
(xi+h), respectively, are the values of the variable(Z) at the spatial
position xi and xi+h.

In Figure 1, the nugget C0 represents the degree of random
heterogeneity of variables in the region and the sill (C0 + C)
refers to the maximum variation of the system induced by
structural variation and random variation. Then, the structural
ratio C/(C0 + C) indicates the contribution rate of structural
factors to spatial heterogeneity, which can reflect the spatial
dependence and the spatial heterogeneity of variables [31].
When the structural ratio is less than 25%, it indicates that the
variable has weak spatial dependence; if 25% ≤ structural ratio
≤ 75%, it means that the variable has moderate spatial
dependent; and the structural ratio > 75% indicates the
spatial dependence of the variable is strong [32, 33].
Generally speaking, the larger the structural ratio is, the
stronger the spatial dependence and spatial heterogeneity of
the variables within the system will be. For the species
community, the greater the heterogeneity is, the richer the
diversity will be. In other words, if the structural ratio of the
pattern structure is larger, then it means that the corresponding
system is more robust.

FIGURE 1 | Flowchart of quantitative system robustness index [30]. The
analysis of semivariogram is mainly divided into three phases: normal test of
research data, calculation of the semi-variance of variable, and simulation
semivariogram to obtain the best fitted model. Structural ratio C/(C0 + C)
can reflect the robustness of the system.
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FIGURE 2 | Schematic diagram of three feedback mechanisms between vegetation and water. (A) Difference of infiltration rate between bare soil and vegetation
covered area causes surface water flow, (B) vegetation roots extend laterally to absorb water, and (C) soil water diffusivity exceed the spread of vegetation biomass. The
blue arrow indicates the direction of water flow, and the length of the straight arrow represents the size of infiltration rate.

TABLE 1 | Biological significance and value of all parameters in the model (2).

Symbol Biological significance Value Source

Parameters (dimensionless) λ The rate of vegetation water absorption 0.457 1 [24]
η Lateral extension of vegetation roots 2.8 [24]
p Precipitation 1.517 [24]
v Evaporation of soil–water 1.428 6 [24]
δw The diffusion ratio of water resources to vegetation 125 [24]
ρ Shading rate [0.6, 0.94] [24]

Variable n Vegetation density
w Soil–water density
t Time

FIGURE 3 | Vegetation pattern structure under different shading rates ρ. (A) Hot spot pattern with ρ = 0.6; (B) spots–stripes mixed pattern with ρ = 0.75; (C) stripe
pattern with ρ = 0.9; (D) cold spot pattern with ρ = 0.94. See Table 1 for the other parameter values.
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3 THE CORRESPONDING RELATIONSHIP
BETWEEN PATTERN STRUCTURES AND
SYSTEM ROBUSTNESS
3.1 Vegetation–Water Dynamical Model
In arid and semi-arid areas, vegetation growth is mainly limited
by water resources [5]. In 2004, Gilad et al. considered three
feedback mechanisms between vegetation biomass and water
resources, infiltration feedback, root augmentation feedback,
and soil–water diffusion feedback mechanism (Figure 2), and
established a dynamical model for coupling a single vegetation
species with water [34, 35]. On this basis, scholars made the
following assumptions: 1) the lateral extension of vegetation roots
is restricted and 2) the infiltration rate of bare soil and vegetation

covered area is the same, and then obtained a simplified
dimensionless model as follows [24]:

zn

zt
� λwn 1 − n( ) 1 + ηn( )2 − n + Δn,

zw

zt
� p − vw 1 − ρn( ) − λwn 1 + ηn( )2 + δwΔw.

(2)

In the previous dimensionless model, the biological
significances and values of all parameters are shown in
Table 1. Next, we study the influence of the shading rate ρ on
the robustness of vegetation ecosystems. Fixing other parameters,
through numerical simulation, we get a series of vegetation
pattern structure, as shown in Figure 3.

For the previous four different vegetation patterns, hot spot,
mixed spots and stripes, stripe, and cold spot, we use vegetation
density as a research variable and perform a semi-variogram
analysis on them. According to Table 2, it is found that the
structural ratio C/(C0 + C) of these four vegetation patterns in
descending order are as follows: mixed spots and stripes > cold
spot > stripe > hot spot, and the value of the aforementioned
four vegetation patterns are both more than 75%, which shows
that they all have strong spatial dependence and spatial
heterogeneity. However, compared with the other three
structures, the vegetation system with mixed spots and stripes
has the strongest spatial heterogeneity, which means that the
system under this pattern structure will be the most robust. For
the vegetation–water dynamical model, the more robust the
system is, the lower the possibility of desertification is. The
spot–stripe mixed structure is conducive to vegetation
diffusion in space, while the hot spot pattern shows that the
vegetation presents an isolated high-density distribution, which
implies the system is more susceptible to desertification. Based on
experiments, Bertolini et al. also found that the vegetation system
corresponding to the mixed spot–stripe pattern (labyrinthine-like
pattern) is relatively robust [36], and thus, our conclusion is
consistent with the previous findings.

3.2 Spatiotemporal Dynamical Model for
Disease Transmission
The spread of infectious diseases will be affected by the spatial
movement of the susceptible or infected, which will eventually
lead to spatial patterns of the susceptible and infected individuals

TABLE 2 | Fitted semivariogram models (SV) and their characteristic parameters
for different vegetation pattern structures (Figure 3). The high value of R2 and
the low of RSS indicate good fitted effect.

Pattern structure SVa C/(C0 + C)d Ae R2f Class

Hot spot Gaub 0.863 5.889 0.859 Sj

Spots–stripes mixed Sphc 0.998 8.000 0.910 S
Stripe Gau 0.884 6.409 0.851 S
Cold spot Gau 0.960 5.889 0.777 S

aResidual (RSS) are both less than 10–4.
bGaussian model.
cSpherical model.
dC0 − nugget, C0+C − sill.
eRange.
fCoefficient of determination.
jStrong spatial dependence.

FIGURE 4 | Schematic diagram of infectious diseases transmission
process. The model satisfies the following conditions: 1) the epidemic cannot
be cured after being infected; 2) the susceptible is exposed to the disease
repeatedly, leading to a non-linear transmission rate.

TABLE 3 | Biological significance and value of all parameters in the model (3).

Symbol Biological significance Value Source

Parameters A The recruitment rate of the population 1 [25]
d The natural death rate of the population 1 [25]
μ The disease-related death rate from the infected 1.8 [25]
D1 The susceptible individual diffusion coefficient 6 [25]
D1 The infected individual diffusion coefficient 1 [25]
β The force of infection or the rate of transmission [32, 42] [25]

Variable S Susceptible individual
I Infected individual
t Time

Frontiers in Physics | www.frontiersin.org February 2022 | Volume 10 | Article 8279294

Sun et al. Pattern Structures with System Robustness

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


[37, 38]. In view of the characteristics of acquired
immunodeficiency Syndrome (AIDS), hepatitis B virus (HBV),
ebola virus, and other infectious diseases that are difficult to be
cured after infected, meanwhile considering the complex spatial
dynamics of the susceptible and the infected, scholars proposed
an epidemic spatial model with non-linear incidence rates [25].
The non-linear incidence rate is caused by twice exposures of

susceptible before infection. The transmissionmechanism of such
infectious disease can be described in Figure 4. The biological
significances and values of all parameters in the model are shown
in Table 3. The specific mathematical model is as follows:

zS

zt
� A − dS − βSI2 +D1ΔS,

zI

zt
� βSI2 − d + μ( )I +D2ΔI.

(3)

Based on the spatial infectious disease model (3), we studied
the impact of the spatial distribution of infected individuals on
the spread of infectious diseases in the population. First, fixing
other parameters, only changing the transmission rate β, and a
series of numerical simulations are carried out on model (3).
Finally, we get the pattern structure, as shown in Figure 5.

With the increase in the transmission rate, the spatial
distribution of infected individuals present four different
pattern structures: hot spot, mixed spots and stripes, stripe,
and cold spot (Figure 5). From Table 4, we find that the

FIGURE 5 |Different patterns of infected individuals. (A)Hot spot pattern with β = 32; (B) spots and stripes mixed pattern with β = 35; (C) stripe pattern with β = 40;
and (D) cold spot pattern with β = 42.

TABLE 4 | Fitted semivariogram models (SV) and its characteristic parameters for
different infected pattern (Figure 5). The meanings of other parameters are
consistent with Table 2.

Pattern structure SVa C/(C0 +
C)

A R2 Class

Hot spot Gau 0.943 6.9 0.487 S
Spots–stripes mixed Gau 0.999 5.369 4 0.533 S
Stripe Gau 0.944 5.542 6 0.483 S
Cold spot Gau 0.998 5.542 6 0.452 S

aResidual (RSS) is less than 10–4.

TABLE 5 | Biological significance and value of all parameters in the model (4).

Symbol Biological significance Value Source

Parameters (dimensionless) ε Biomass conversion rate from prey to predator 0.5 [26]
δ The ratio of diffusion coefficient 10 [26]
θ The death rate of predator 0.6 [26]
γ Prey consumption rate [1.95, 2.05] [26]

Variable x Prey density
y Predator density
t Time
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structural ratio C/(C0 + C) of the four different spatial
distributions of the infected are all greater than 75%, and
their ratios are arranged in the following order: spot–stripe
mixed > cold spot > stripe > and hot spot (Table 4).
Although their structure ratio gap is small, its order is highly
consistent with the order of the vegetation patterns, which
demonstrates that our conclusion has certain universality.

3.3 Predator–Prey Model With Spatial
Diffusion
The predator function response is an indispensable part of
describing the predator–prey model. This function can reflect
the influence of the competition between predators on the
predation efficiency, such as the coyotes, and jackrabbits in
the western wilderness of North America and the plankton
experiment [39]. In particular, when the predator can capture
a large amount of prey per unit time, or when saturation is not
considered, a ratio-dependent functional response is obtained
[40]. However, with the addition of spatial diffusion, this ratio-
dependent predator–prey model will produce a heterogeneous
spatial distribution structure [26]. As a result, we consider this
ratio-dependent predator–prey model with diffusion terms. After
introducing dimensionless variables, the model is simplified to
the following equations [26]

zx

zt
� 1 − x( )x − γxy

x + y
+ Δx,

zy

zt
� εγ

xy

x + y
+ δΔy.

(4)

The dimensionless variables in model (4) and their values are
shown in Table 5. Fixing other parameters and changing the prey
consumption rate by predator γ, through numerical simulation,
we obtain prey pattern structures, as shown later (Figure 6).

On the basis of the previous method, we conduct a semi-
variogram analysis on the previous two spatial distribution
structures of prey. The detailed results are shown in Table 6.
According to the heterogeneity classification standard, we find
that the structural ratio C/(C0 + C) of these two patterns is
significantly higher than 75%. However, by comparison, the
structural ratio of the cold spot pattern is larger than that of
the stripe pattern, that is, its corresponding system is more robust.

FIGURE 6 | Different pattern structures of prey population. (A) Cold spot pattern with γ = 1.95; (B) stripe pattern with γ = 2.05.

TABLE 6 | Fitted semivariogram models (SV) and its characteristic parameters for
different prey pattern (Figure 6). The meanings of other parameters are
consistent with Table 2.

Pattern structure SVa C/(C0 + C) A R2 Class

Cold spot Gau 0.999 9.179 9 0.595 S
Stripe Gau 0.989 8.487 0.665 S

aResidual is less than 10–4.

FIGURE 7 | Recovery of different pattern structures for same
disturbance. (A) Trajectories of different patterns when they return to steady
state after the 20% disturbance occurs. Solid lines: trajectories of patterns
formation; dashed lines: recovery track after the equilibrium point is
reduced by 20%. (B) Recovery rates after a disturbance.
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Compared with the stripe structure, the cold spot pattern makes
the prey to gather together and is not easy to be captured by the
predators, and thus, the system is more robust.

The range A is an important index in geostatistics that can
reflect the spatial heterogeneity or spatial dependence scale of
regional variables. From the perspective of the range, we find that
all the ranges obtained by analyzing the pattern structure above
are larger than the sampling interval − − 1. Therefore, it shows
that the sampling interval used in the study is credible for
unbiased estimation of this area.

4 CONCLUSION AND DISCUSSION

System robustness and pattern structure are two important
characteristics to portray the spatiotemporal complexity of
systems. However, the analysis of their corresponding
relationship is lack of systematic research results. Focusing on
the scientific problem of “which pattern structure implies the
robustness of the system, and which pattern structure means the
vulnerability of the system,” we combined three dynamical
models from different fields, vegetation-water dynamical
model [24], epidemic spatiotemporal dynamical model [25],
and predator–prey spatial evolution dynamical model [26],
and used geostatistical methods to analyze a series of different
pattern structures produced by them. Finally, we found that the
robustness of the system corresponding to different pattern
structures is arranged as follows: spots and stripes mixed > ,
cold spot > , stripe > , and hot spot. The research results may
provide some early warning signals for desertification prevention,
infectious disease prevention and control, biodiversity
conservation, and other related fields.

In addition, we explored the systems’ resilience of different
vegetation pattern structures (Figure 7), combined with the latest
research methods [41]. We once again confirmed that the
recovery rates of ecosystems with hot spot are the worst,
compared with the other three pattern structures. And it also
revealed that the recovery rate of the ecosystem corresponding to
the spots and stripes mixed is greater than that of the cold spot.
However, the only difference is that the recovery rate of system
with stripe is the largest, which may be because the added
disturbance increases the local density and finally affects the
characteristics of the strip structure.

The evaluation of system robustness generally requires a large
number of monitoring data or experimental data [42, 43].
However, our study is mainly based on the dynamical model
to obtain the pattern structures, which can not only dynamically
reflect the evolution of the system in time and space but also
quantitatively predict the future spatiotemporal distribution

structure. At the same time, the semi-variogram analysis
method can comprehensively analyze and compare the spatial
characteristics of each pattern structure, overcome the complexity
of the previous analysis system robustness, and provide a new
idea for describing the corresponding relationship between the
pattern structure and the system robustness.

It is worth noting that our research ignores the scale
dependence and does not combine with real data, while the
pattern structure has different scales and can be completely
corresponded to the real data. In this case, we can improve
and verify our theoretical results based on GIS and big data
analysis. Furthermore, the pattern structure can be divided into
steady-state and non–steady-state structures, and this study only
focuses on the former case. While for the non–steady-state
pattern, its existence in the real world is more extensive, and
hence, the correspondence between the unsteady structure and
the robustness of the system is also an important scientific issue.
We hope these questions will be systematically addressed in
future research.
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