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There is much discrepancy in the literature concerning the possibility of a superconductor
expelling gravito-electromagnetic fields just as it expels electromagnetic fields in the
Meissner effect. Contradicting results are found in at least 18 papers written
collectively by more than 20 authors and published over the course of more than
55 years (from 1966 to the present year of 2022). The primary purpose of this paper is
to carefully explain the reason for the discrepancies, and provide a single conclusive
treatment which may bring coherence to the subject. The analysis begins with a covariant
Lagrangian for spinless charged particles (Cooper pairs) in the presence of
electromagnetic fields in curved space-time. It is known that such a Lagrangian can
lead to a vanishing Hamiltonian. Alternatively, it is shown that using a “space + time”
Lagrangian leads to an associated Hamiltonian with a canonical momentum and minimal
coupling rule. Discrepancies between Hamiltonians obtained by various authors are
resolved. The canonical momentum leads to a modified form of the London equations
and London gauge that includes the effects of gravity. A key result is that the gravito-
magnetic field is expelled from a superconductor with a penetration depth on the order of
the London penetration depth only when an appropriate magnetic field is also present. The
gravitational flux quantum (fluxoid) in the body of a superconductor, and the quantized
supercurrent in a superconducting ring, are also derived. Lastly, the case of a
superconducting ring in the presence of a charged rotating mass cylinder is used as
an example of applying the formalism developed.
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1 INTRODUCTION

Over the course of many decades, researchers have investigated a wide variety of new theoretical
gravitational effects and the possibility of experiments that can detect these effects. Many of these
include the use of superconductors [1–3], [11–27], [30–35], [38–47], [49, 50, 58, 59, 62], [63–66],
[71–78], [80], [83–91], [100, 101, 104, 105], [109–111]. Some of the earliest interest in this topic is
exhibited by the founding of the Gravity Research Foundation (GRF) in 1949 by Roger Babson. “His
views were reflected by the wording in the announcement of the first essay competition that said the
awards were to be given for suggestions for anti-gravity devices, for partial insulators, reflectors,
or absorbers of gravity, or for some substance that can be rearranged by gravity to throw off
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heat - although not specifically mentioned in the announcement,
he was thinking of absorbing or reflecting gravity waves.” [1]

Yet by 1953, the winning GRF essay by Bryce DeWitt
dispensed with such endeavors as unrealizable. DeWitt
expressed doubt that a material which absorbs or reflects
gravity exists [2]. He states, “... first fix our sights on those
grossly practical things, such as ‘gravity reflectors’ or
‘insulators,’ or magic ‘alloys’ which can change ‘gravity’ into
heat, which one might hope to find as the usual by-products of
new discoveries in the theory of gravitation... Of primary
importance is the extreme weakness of gravitation coupling
between material bodies ... The weakness of this coupling has
the consequence that schemes for achieving gravitational
insulation, via methods involving fanciful devices such as
oscillation or conduction, would require masses of planetary
magnitude.”

However, in 1966 DeWitt’s viewpoint apparently changed
when he published a highly influential paper predicting the
gravito-magnetic field (also known as frame-dragging or
Lense-Thirring field) is expelled from superconductors in a
Meissner effect [3]. It is evident DeWitt considered quantum
mechanical systems (such as superconductors) may possess
properties that were not previously considered when the
statement was made barring the possibility of gravitational
reflectors or insulators.

In [3], DeWitt begins with the Lagrangian for a relativistic
spinless charged particle in an electromagnetic field in curved
space-time and develops the associated Hamiltonian. He
identifies a minimal coupling rule involving a gravitational
vector potential and concludes this result implies the
associated gravitational field must be expelled from a
superconductor, just as the magnetic field is expelled from a
superconductor in the Meissner effect.

DeWitt’s novelty and intuition is highly commendable, and
his paper in [3] has been extremely influential in the field of
gravity and superconductors. However, it will be shown that there
may be some technical shortcomings in his treatment. Also, his
interpretation of the flux quantization condition, and his order of
magnitude calculation for an induced electric current, are
questioned. In particular, the following items will be
demonstrated.

• In [3], the Hamiltonian for a relativistic spinless charged
particle in curved space-time is given by DeWitt as

HDW � c gjkg0jg0k − g00( )1/2 m2c2 + gjk Pj − eAj( ) Pk − eAk( )[ ]1/2
−cgjkg0k Pj − eAj( ) − ceA0

(1)
where gμ] is stated as the inverse metric, and �P is the canonical
momentum. However, it will be shown that gjk is the inverse
metric only if g0i = 0, or if the Hamiltonian is kept to first order in
the perturbation.

• In [3], the weak field, low velocity limit of the Hamiltonian is
written as

HDW � 1
2m

�P − e �A −m �h0( )2 + V (2)
where

V � −eA0 − 1
2
mh00 and �h0 � c h01,h02,h03( ) (3)

Here e and m are the charge and mass of an electron,
respectively. The appearance of m �h

2
in this Hamiltonian is not

consistent with a linear approximation in the metric perturbation.
Also, the term involving PiA

i will be shown to be absent.
Furthermore, several other terms of comparable order are
missing in Eq. 2.

• The Hamiltonian in Eq. 2 implies a minimal coupling rule
given by �P → �P − e �A −m �h0. However, this coupling rule is
missing other terms of comparable order. The missing terms
impact the associated London equations, London gauge, and
penetration depths for the magnetic field and the gravito-
magnetic field.

• It is also stated in [3] that the flux of �G � e∇× �A +m∇× �h0
must be quantized in units of h/2. In actuality, there is an
additional term in the flux condition which involves the flux
of �EG × �A, where �EG � c2

2∇h00.
• The gravito-magnetic field used in [3] is coordinate-dependent.
With an appropriate coordinate transformation, the field can be
made to vanish. Therefore, the corresponding gravitational
Meissner-like effect is also coordinate-dependent and can be
made to vanish as well. By contrast, a coordinate invariant
formulation can be used which does not vanish by a coordinate
transformation (to linear order in the perturbation).

• Lastly, it is claimed in [3] that a magnetic flux must arise in a
superconducting ring that is concentric with a massive
cylinder that begins rotating since it will produce a
gravito-magnetic flux in the ring. It is predicted that the
ring will remain in the n = 0 state, and an electric current will
therefore be induced with an order-of-magnitude given by

IDW ~
GmMV

ed
(4)

where V is the rim speed, M is the mass, and d is the diameter of
the rotating cylinder. However, it will be shown that the electric
current predicted by Eq. 4 is actually limited to I< h/(2eL), where
L is the self-inductance. Furthermore, it will be shown that if there
is no external magnetic field present, and the system remains in
the n = 0 state, then the flux of the gravito-magnetic field will
produce an electric current with a different form compared
to Eq. 4.

1.1 A Summary of the Sections in This Paper
Section 2 begins with a covariant Lagrangian for a relativistic
spinless charged particle in an electromagnetic field in curved
space-time. The Euler-Lagrange equation of motion leads to
the geodesic equation of motion modified by the Lorentz four-
force in curved space-time. Although the equation of motion
correctly describes the dynamics of the particle, the associated
Hamiltonian is identically zero and therefore cannot be used to
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describe a quantum mechanical system such as a
superconductor.

Alternatively, a “space + time” Lagrangian is used to obtain a
canonical three-momentum and Hamiltonian valid to all orders
in the metric. The result is compared to DeWitt’s in Eq. 1. Some
relevant metric relationships will be used to match the
Hamiltonian with that of other authors for confirmation of its
validity. The Hamiltonian is then expanded to first order in the
metric to show the lowest order coupling of the momentum,
electromagnetic fields, and gravity. Again, the result is compared
to DeWitt’s result in Eq. 2. The Hamiltonian is further simplified
by introducing the trace-reversed metric perturbation and
assuming non-relativistic gravitational sources. Alternative
Hamiltonians are also discussed as well as the conditions
necessary for a Hamiltonian to be quantized.

In Section 3, gravito-electric and gravito-magnetic fields are
defined in terms of the metric perturbation. Using the stress
tensor of a non-relativistic ideal fluid, and the linearized Einstein
field equation in harmonic coordinates, leads to gravito-
electromagnetic field equations. In addition, the canonical
momentum is used to develop constitutive equations for the
supercurrent. These lead to a modified set of London equations
describing the interaction of electromagnetic and gravito-
electromagnetic fields with a superconductor. A modification
to the London gauge condition is also identified.

In Section 4, the constitutive equations are used in the field
equations to identify a penetration depth associated with the
magnetic field and the gravito-magnetic field. It is found that the
usual London penetration depth for themagnetic field is modified
by the presence of a gravito-magnetic field, however, the
modification is miniscule. It is also found that in the absence
of a magnetic field, the superconductor demonstrates a
paramagnetic effect rather than a diamagnetic (Meissner)
effect for the gravito-magnetic field. In other words, the
gravito-magnetic field is not expelled. However, when the
magnetic field and the gravito-magnetic field are both present,
it is possible for the gravito-magnetic field to be expelled with a
penetration depth on the same order as the London penetration
depth. However, it is demonstrated that the gravito-magnetic
field is a coordinate-dependent quantity and therefore effects
associated with it can be made to vanish with an appropriate
coordinate transformation.

In Section 5, it is found that the usual London penetration
depth for the electric field is modified by the presence of a gravito-
magnetic field, however, again the modification is miniscule. In
the process of developing these results, a penetration depth is also
found for a field defined as the linear combination of the magnetic
and gravito-magnetic vector potentials. However, since the
gravito-magnetic vector potential is time-independent in this
approximation, then it is shown not to have an associated
penetration depth. This is expected since it is known that the
Newtonian gravitational field generally cannot be shielded.

In Section 6, the new minimal coupling rule obtained in
Section 2will be used to write the Ginzburg-Landau supercurrent
with coupling to electromagnetism and gravity. The complex
order parameter must be single-valued around a closed path
according to the Byers-Yang theorem. Then using the fact that all

the fields vanish within the body of the superconductor leads a
quantization condition for the flux of the magnetic and
gravitational fields.

Lastly, in Section 7, the canonical momentum is used to
develop an expression for the Ginzburg-Landau phase around
a superconducting ring. Once again, using the fact that the wave
function is single-valued around a closed path leads to a
quantization condition involving the flux of the magnetic and
gravitational fields, as well as the supercurrent around a
superconducting ring. A charged, rotating mass cylinder is
introduced as a source for electromagnetic and gravitational
fields. The effect of placing the rotating cylinder coaxial with
the superconducting ring is carefully analyzed. It is argued that
the electric current predicted by DeWitt in Eq. 4 is not induced.
Rather, the supercurrent in the ring is quantized along with the
flux of electromagnetic and gravitational fields through the ring.

2 THE “SPACE + TIME” HAMILTONIAN FOR
A CHARGED SPINLESS PARTICLE IN
CURVED SPACE-TIME
Using an action of the form S � ∫τ2

τ1
~Ldτ, where τ is proper time,

leads to a Lagrangian for a relativistic spinless charged particle in
an electromagnetic field in curved space-time that can be
written as1

~L � −mc
								−gμ]uμu]

√ − qgμ]A
μu] (5)

where uμ = dxμ/dτ is the four-velocity, Aμ � (φ/c, Ai) is the
electromagnetic four-potential, and m and q are the rest mass
and charge of the test particle, respectively. It is well known that
using Eq. 5 in the Euler-Lagrange equation of motion

z~L

zxμ
− d

dτ

z~L

zxμ/dτ( ) � 0 (6)
leads to the geodesic equation of motion modified by the Lorentz
four-force in curved space-time

dpμ

dτ
+mΓμσρuσuρ � qg]αu

αFμ] (7)

where Γμσρ are the metric connections (Christoffel symbols).2 This
demonstrates that the Lagrangian in Eq. 5 correctly characterizes
the dynamics in a covariant form. Evaluating a canonical four-
momentum, Pμ � z~L/zuμ, and using q = −e leads to pμ = Pμ − eAμ.
This implies a covariant minimal coupling rule given by Pμ →
Pμ − eAμ.

1The signature of the Minkowski metric used here is diag(−1,+1,+1,+1). Greek
space-time indices μ, ], . . . run from 0 to 3. Latin spatial indices i, j, . . . run from
1 to 3. The notation ~L in Eq. 5 is used to distinguish the Lagrangian parametrized in
proper time, ~L � ~L(uμ), from the “space+time” Lagrangian, L � L(vμ), in Eq. 11
which is parametrized in coordinate time. Likewise, the corresponding
Hamiltonians that follow from ~L � ~L(uμ) and L � L(vμ) will be denoted as
~H(xμ, pμ) and H(xi, pi), respectively.
2See Box 13.3 in MTW [4], 3.3 in Wald [5], or 3.6 and 4.4 in Weber [6].
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However, it is known that using Eq. 5 in a covariant Legendre
transformation, ~H � Pμuμ − ~L, leads to a Hamiltonian that is
identically zero and therefore cannot have the interpretation of
energy. This issue of a vanishing Hamiltonian is discussed in
Jackson [7] and Barut [8] in the context of flat space-time, and by
Bertschinger [9, 10] in curved space-time. The problem stems
from the fact that uμuμ = −c2 imposes an additional constraint on
the Lagrangian in Eq. 5. This issue is discussed in further detail in
the subsection, “Alternative methods of obtaining the
Hamiltonian” found further below.

For the purposes of this paper, we will take an approach
similar to [3, 11] by reparametrizing the action for the Lagrangian
in Eq. 5 in terms of coordinate time rather than proper time.3

Note that the four-velocity can be written as uμ = γvμ, where the
Lorentz factor is γ = dt/dτ, the coordinate velocity is
vμ � dxμ/dt � (c, vi), and t is the coordinate time. Then the
action for the Lagrangian in Eq. 5 can be written as

S � ∫ τ2

τ1

−mc
								−gμ]uμu]

√ − qgμ]A
μu]( )dτ (8)

� ∫ τ2

τ1

−mc

																	
−gμ] vμ

dt

dτ
( ) v]

dt

dτ
( )√

− qgμ]A
μv]

dt

dτ
⎛⎝ ⎞⎠dτ (9)

� ∫ t2

t1

−mc
							
−gμ]v

μv]
√

− qgμ]A
μv]( )dt (10)

Therefore the action can be written as S � ∫t2

t1
Ldt, where the

“space + time” Lagrangian is

L � −mc
							−gμ]vμv]

√ − qgμ]A
μv] (11)

This is the Lagrangian used by DeWitt [3] except he uses the
notation vμ � _xμ and sets c = 1. DeWitt and other authors such as
[11] leave the electromagnetic field in the Lagrangian Eq. 11 as
Aμv

μ instead of qgμ]A
μv] which masks the explicit coupling of

gravity to the electromagnetic field. Using gμ]u
μu] = −c2, the

Lorentz factor in curved space-time can be evaluated as

γ �
							
−gμ]v

μv]
√

� −g00 − 2vj

c
g0j − vivj

c2
gij( )−1/2

(12)

Then the canonical three-momentum, Pi = zL/zvi, can be found
from Eq. 11 to be

Pi � γm cg0i + gijv
j( ) − q g0iA

0 + gijA
j( ) (13)

Note that pμ = gμ]p
] and p] � γm(c, vi) lead to pi � γm(cg0i +

gijvj) which is the first term on the right side of Eq. 13. Also note
that Aμ = gμ]A

] leads to

Ai � g0iA
0 + gijA

j and A0 � g00A
0 + g0iA

i (14)
Therefore Eq. 13 can be written as simply pi = Pi − eAiwhich is

consistent with the covariant canonical momentum relationship,

pμ=Pμ− eAμ. Similarly, in [10]acovariant canonicalmomentumof
theformPμ=mgμ]v

]+qAμappears. In[13],acanonicalmomentum
is shownasPi=mgiju

j− eAi, whereu
j= γvj. This form ismissing the

terminvolvingγmcg0i inEq.13whichmaybebecause thecanonical
momentum in [13] is not formally derived from a Lagrangian but
obtained by replacing the canonical momentum in flat space-time
with a form proposed for curved space-time. Also [14, 15], have a
result similar to Eq. 13 but without the terms involving A0 and Ai.
This is due to starting from a Lagrangian similar to Eq. 11 but
without the electromagnetic field.

Using gμ] = ημ] + hμ], where ημ] is the Minkowski metric of flat
space-time, and hμ] is a perturbation, makes Eq. 13 become

γmvi � Pi − γm ch0i + hijv
j( ) + q ηijA

j + h0iA
0 + hijA

j( ) (15)
In [16], a result similar to Eq. 15 is obtained but with h0i = 0

and γ = 1 due to using transverse-traceless coordinates (hμ0 � 0)
and remaining to lowest order in vi. Likewise, a result similar to
Eq. 15 appears in [17–27], but the terms involving hijv

j, h0iA
0, and

hijA
j are all missing4.
Note that in the absence of electromagnetism and gravity, the

canonical momentum reduces to Pi = γmvi. Therefore, Eq. 15
implies that the presence of electromagnetism and gravity leads to
a minimal coupling rule given by

Pi → Pi − γm ch0i + hijv
j( ) + q ηijA

j + h0iA
0 + hijA

j( ) (16)
For an electron (q � −e) this is the usual minimal coupling

rule, Pi→ Pi − eAi. As previously stated, the first term on the right
side of Eq. 13 can be identified as

pi � γm cg0i + gijv
j( ) (17)

Using a Legendre transformation, H = Pkv
k − L, requires

solving Eq. 17 for viwhich requires constructing the inverse of gik.
This is shown in (209) of Supplementary Appendix SA to be

~gjk ≡ gjk − g0jg0k

g00
(18)

which satisfies ~gjkgik � δji . Then the velocity and the Lorentz
factor can be expressed as, respectively,

3For a more detailed discussion of the reparametrization of the action from proper
time to coordinate time, see [9,10], and Appendix M of [12].

4The missing terms are due to the fact that [21–27] uses a Lorentz-like force
equation written as �F � q( �E + �v × �B) +m( �Eg + �v × �Bg), which has an associated
Lagrangian given by L � 1

2mv2 − q(ϕ − �v · �A) −m(ϕg − �v · �Ag). The canonical
momentum is found from this Lagrangian to be �P � m �v + q �A +m �Ag, where
�P � −iZ∇. However, it is shown in [12,28] that the Lorentz-like equation of
motion used in [21–27] stems from a faulty approximation applied to the
geodesic equation of motion which is very common in the literature. In
particular, it is not consistent to retain �v × �Bg while eliminating other terms
involving h00 and hij. Also, for non-relativistic gravitational sources, it is not valid
to use �Eg � −∇ϕg − zt �Ag which is required for the Lagrangian used by [21–27] to
lead to the Lorentz-like equation of motion.
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vj � ~gjkpk

γm
− c~gjkg0k and γ � 1

mc

													
m2c2 + ~gjkpjpk

~gjkg0jg0k − g00

√√
(19)

Expressions equivalent to Eq. 19 can also be found in [11, 14,
15]. Inserting Eq. 19 into Eq. 17, and making use of Eq. 13 with
q = −e, makes the Hamiltonian become

H � c ~gjkg0jg0k − g00( )1/2
× m2c2 + ~gjk Pj − eg0jA

0 − egjlA
l( ) Pk − eg0kA

0 − egkmA
m( )[ ]1/2

−c~gjkg0k Pj − eg0jA
0 − egjlA

l( ) − ec g00A
0 + g0jA

j( )
(20)

This can be considered a “space + time” Hamiltonian for a
relativistic spinless charged particle in an electromagnetic field in
curved space-time5. The result is exact in the metric perturbation
and particle velocity. To compare with DeWitt’s result in Eq. 1,
we can use Eq. 14 to write the Hamiltonian as

H � c ~gjkg0jg0k − g00( )1/2 m2c2 + ~gjk Pj − eAj( ) Pk − eAk( )[ ]1/2
−c~gjkg0k Pj − eAj( ) − ecA0

(21)
This matches DeWitt’s result in Eq. 1 except that DeWitt

uses gjk instead of ~gjk. The same issue also appears in [30]
where a Legendre transformation is applied to the same
Lagrangian used in Eq. 11. The Hamiltonian in Eq. 1 is
also quoted and utilized in [31]. However, it is shown in
Supplementary Appendix SA that ~gjk ≈ gjk is only true to
first order in the metric perturbation. This issue is properly
recognized in [11].

In the literature, the “space + time” Hamiltonian appears in
several other forms. To compare with Eq. 20, the followingmetric
relationships developed in Supplementary Appendix SA can be
used:

~gjkg0k � −g
0j

g00 and ~gjkg0jg0k − g00 � − 1

g00 (22)

Using Eq. 22 in Eq. 20 leads to a form that matches Cognola,
Vanzo, and Zerbini [11].

HCVZ � c
m2c2 + ~gjkpjpk

−g00
[ ]1/2

+ c
g0j

g00pj − ecA0 (23)

It is stated in [11] thatEq. 23 andDeWitt’s result inEq. 1 are not
equivalent when there is a nonvanishing g0i. However, it is
demonstrated here that Eq. 20, which is the corrected form of
DeWitt’s approach, is indeed equivalent toEq. 23 via the use ofEq.
22. Also, substituting Eq. 18 into Eq. 23 leads to a result that
matches Bertschinger [9], except [9] does not include
electromagnetic fields.

HB � c
g0j

g00pj + c
m2c2 + gjkpjpk

−g00
+ g0jpj

g00
( )2[ ]1/2

(24)

With some algebraic manipulation, this Hamiltonian also
matches the result derived by Piyakis, Papini, and
Rystephanick [32].

HPPR � c

g00
g0jpj( )2 − g00 m2c2 + gjkpjpk( )[ ]1/2 + g0jpj{ }

(25)
Therefore, the discrepancies between all of the authors stated

above are resolved.

2.1 The Weak-Field, Low-Velocity Limit of
the Hamiltonian
The lowest order expansion of Eq. 20 is now considered. As
discussed below Eq. 7, the canonical four-momentum is found to
be Pμ = pμ + eAμ. Using the metric perturbation leads to

Pi � ηij pj + eAj( ) + hij pj + eAj( ) + h0i p0 + eA0( ) (26)

This shows that to lowest order, Pi ~ ηij(pj + eAj). It can also
be assumed that pi ~ eAi since the vector potential drives the
supercurrent. Then for approximation purposes, Pi can be treated
the same as pi.

Following the procedure of Supplementary Appendix SB, but
remaining to first order in the perturbation and second order in
momentum, leads to

H � mc2 + 1
2m

Pi − eηijA
j( )2 − 1

2
h00mc2 + ecA0 − ech00A

0 − ech0iA
i

−ch0i Pi − eηijA
j( ) − e

m
hijA

j + h0iA
0( ) Pi − eηikA

k( )
−h00
4m

Pi − eηijA
j( )2 − hij

2m
Pi − eηikA

k( ) Pj − eηjlA
l( )

(27)
To compare with DeWitt’s result in Eq. 2, the indices of the

electromagnetic potentials can be lowered using Eq. 14.
Remaining to first order in the perturbation leads to

H � mc2 + 1
2m

Pi − eAi( )2 − ch0i Pi − eAi( ) − 1
2
h00mc2 − ecA0

−h00
4m

Pi − eAi( )2 − hij
2m

Pi − eAi( ) Pj − eAj( ) − h0i
2m

eA0 Pi − eAi( )

(28)

5The result in Eq. 20 can be related to the standard result in flat space-time shown
in Chaper 12 of Jackson [7]. First, the action in (12.29) of Jackson must be
reparametrized using S � ∫ ~Ldτ � ∫Ldt so that the Lagrangian is again Eq. 11. In
the absence of gravity, the canonical momentum is Pi � zL

zvi � ηij(γmvj − qAj) and
the Hamiltonian is H � c[m2c2 + (Pi − eηijA

j)2]1/2 + ecA0. This result matches
Eq. 20 when gμ] = ημ], which leads to the Hamiltonian of a relativistic spinless
charged particle in the presence of electromagnetic fields in flat space-time. This
also matches (16.8) of Landau and Lifshitz [29].
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Although Eq. 28 has the benefit of being more compact than
Eq. 27, it can be misleading due to the fact that Ai and A0 contain
metric perturbation terms as demonstrated by Eq. 14. In fact,
terms that are second order in (Pi − eAi) could be falsely
interpreted as containing the metric perturbation to second
order which is inconsistent with the first order expansion used
to obtain the Hamiltonian. Therefore, it can be argued that Eq. 27
is preferred since all metric perturbations are explicitly shown to
first order

The following are comparisons between DeWitt’s result in Eq.
2 and the result obtained in Eq. 28.

• The Hamiltonian in Eq. 28 contains the scalar, vector, and
tensor parts of the metric perturbation which are,
respectively, h00, h0i, and hij. The tensor part of the
perturbation is still first order in the perturbation6 but is
missing in Eq. 2. In fact, all the terms after ecA0 in Eq. 28 are
missing fromEq.2. It is showninSupplementaryAppendixSB
that the terms involving h00P2

i and hijPiPj are generally many
orders of magnitude larger than ch0iPi which is kept in Eq. 2.
Therefore, it is inconsistent to drop h00P2

i and hijPiPj but keep
ch0iPi.

• The expression appearing as ( �P − e �A −m �h)2 in Eq. 2
leads to couplings of the form h0iPi and h0iAi. The first is
a coupling between gravity and the test particles which is
common to Eq. 28. The second is a coupling between
gravity and electromagnetism, and is common to Eq. 28
as well. However, returning to Eq. 27, it is evident that
the coupling of the form h0iA

i cancels7 when combining
the terms appearing as ech0iA

i and ch0i(Pi − eηikA
k).

Although there is no coupling of the form h0iA
i, there

are still several other couplings between gravity and
electromagnetism that appear in Eq. 27, such as
h0iA

0Ai, hijA
iAj, and h00A

2.
• The expression appearing as ( �P − e �A −m �h)2 in Eq. 2 also
leads to a coupling of the form mh20i. This coupling is
absent in Eq. 28 since mh20i is second order in the
perturbation and therefore does not belong in a first
order expansion. It is shown in Supplementary
Appendix SB that a second order expansion does lead
to a term of the form mh20i. However, it is shown that
there are 24 other terms that are many orders of

magnitude larger than mh20i and therefore must also
be kept to justify keeping mh20i in the Hamiltonian.8

• The Hamiltonian in Eq. 2 implies a minimal coupling rule
given by �P → �P − e �A −m �h, rather than the full minimal
coupling rule found in Eq. 16. In fact, errors in the
Hamiltonian and the coupling rule are related since starting
with aHamiltonian of the formH � 1

2mP
2 + V, and assuming

�P → �P − e �A −m �h, leads directly to the result
H � 1

2m( �P − e �A −m �h)2 + V. This Hamiltonian appears in a
multitudeofpapers, someofwhichare[14,15,19,25,26,30,32,
35], [40–50].

The Hamiltonian in Eq. 31 can also be written using the trace-
reversed metric perturbation, �hμ], where hμ] � �hμ] − 1

2ημ]
�h and

�h � ημ]�hμ]. It will be shown in the following section that using the
harmonic coordinate condition, z]�hμ] � 0, leads to �hij � 0 for
non-relativistic gravitational sources. Then the components of
the perturbation are

h00 � 1
2
�h00, h0i � �h0i, hij � 1

2
�h00δij (29)

A gravito-scalar potential and gravito-vector potential can also
be defined as, respectively,

φG ≡ − c2

4
�h00 and hi ≡

c

4
�h0i (30)

For brevity, a minimally coupled canonical momentum can be
defined as ~Pi ≡ Pi − eηijA

j, where ~P
2 � ~Pi ~Pi. Also using A

0 = φ/c
in Eq. 27 leads to

H � mc2 + eφ + ~P
2

2m
+mφG

⎛⎝ ⎞⎠ + 2eφφG

c2

+ 3φG
~P
2

2mc2
+ 2eφGA

i ~Pi

mc2
⎛⎝ ⎞⎠ − 4hiPi − 4eφhi ~Pi

mc2
(31)

Terms are listed from largest to smallest magnitude based
on the order-of-magnitude analysis found in Supplementary
Appendix SB. Terms within an order of magnitude are
grouped in parentheses. It is shown that using the
maximum momentum permitted for Cooper pairs (which
requires keeping the kinetic energy below the BCS energy
gap), and estimating the largest value for hi that can be
reasonably produced in a lab, then hiPi ~ 10–47 J while
eφhiPi/(mec2) ~ 10−50 J. Therefore the last term in Eq. 31
can be dropped and still maintain consistency. However, it is
also shown in Supplementary Appendix SB that an
expansion to second order in the perturbation, and fourth
order in the momentum, introduces seven more terms that

6The coupling term involving the tensor part of the perturbation, hijPiPj/(2m), is
also found in [14,16,30,33–35]. In [16,34], an interaction Lagrangian density,
Lint � 1

2hμ]T
μ] , leads to an interaction Hamiltonian density, Hint � 1

2hμ]T
μ] , with

an associated interaction Hamiltonian for a particle given as Hint � hijPiPj/(2m).
Since [36,37] show that the transverse-traceless part of hij, isolates the propagating
degrees of freedom for gravitational waves, then [12,38,39] investigate how this
interaction term describes the lowest order interaction of gravitational waves with a
superconductor. However, in the context of this paper, using Eq. 29 and Eq. 30
leads to hijPiPj becoming φG

~P
2
in Eq. 31.

7Yet another way of observing the cancellation is by returning to the Legendre
transformation, H = Piv

i − L. Using the canonical momentum Eq. 15 and velocity
Eq. 19 in Piv

i leads to a factor of h0iA
i. The Lagrangian Eq. 11 also contains a factor

of h0iA
i. Therefore, the two factors cancel by subtraction in the Legendre

transformation.

8The coupling terms in DeWitt’s Hamiltonian are discussed in detail in [40]. In
particular, it is stated that Aihi predicts an interaction between electromagnetic and
gravitational fields mediated by the quantum system, hiPi predicts an interaction of
the quantum system with gravity, and mh2 predicts a gravitational Landau-
diamagnetism interaction of the quantum system.
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are several orders of magnitude larger than hiPi. Therefore, a
consistent approximation leads to the following result for the
weak-field, low-velocity limit of the Hamiltonian.

H � mc2 + eφ + ~P
2

2m
+mφG

⎛⎝ ⎞⎠ + 2eφGφ

c2
+ 3φG

~P
2

2mc2
+ 2eφGA

i ~Pi

mc2
− mφ2

G

2c2
− ~P

4

8m3c2
⎛⎝ ⎞⎠

+ 11φ2
G
~P
2

4mc4
+ 2e2A2φ2

G

mc4
− eAiφG

~Pi
~P
2

m3c4
− 5φG

~P
4

8m3c4
+ 6eφ2

GA
i ~Pi

mc4
⎛⎝ ⎞⎠ − 4hiPi

(32)

where A2 = AiAi. Note that the terms involving φ2
G, ~P

3
and ~P

4

(which come from a second order expansion) are all larger than
hiPi (which comes from a first order expansion). We can attempt
to eliminate these terms to obtain a result similar to DeWitt’s
Eq. 2. However, it is shown in Supplementary Appendix SB that
keeping hiPi and eφ, while eliminating other terms that do not
appear in Eq. 2, is only possible if the electromagnetic potentials
are reduced to absurdly small (but non-zero) values: A ~
10–32 T·m and φ ≪ 10–44 V. Then the second order
Hamiltonian found in Supplementary Appendix SB is

H � mc2 +mφG − mφ2
G

2c2
+ eφ + Pi − eηijA

j( )2
2m

− 4hiPi + 8mh2

(33)
Again, terms are listed from largest to smallest magnitude.

Notice the term involving mφ2
G still remains since it is many

orders of magnitude larger than hiPi. This is due to the fact that
φG is produced by earth and hence is outside experimental
control. Note that the last three terms cannot be combined
into a single expression of the form 1

2m(Pi − eηijA
j − 4mhi)2

since 4ehiAi does not appear in the Hamiltonian. Therefore
Eq. 33 is arguably the closest to DeWitt’s Hamiltonian in
Eq. 2 that can be obtained.

2.2 Alternative Methods of Obtaining the
“Space + Time” Hamiltonian
The following is a discussion of the various covariant
Hamiltonians that describe the same particle dynamics, and
the differing ways that a “space + time” Hamiltonian has been
derived by various authors. It is emphasized that all of these
approaches found throughout the literature are shown here to be
equivalent. The issue of a vanishing covariant Hamiltonian, and
the issue of singular Lagrangians is also discussed.

It was stated after Eq. 7 that using a Lagrangian, ~L1, in the form
shown in Eq. 5, and applying a covariant Legendre
transformation, ~H1 � Pμuμ − ~L1, leads to a vanishing
Hamiltonian. This occurs due to the constraint uμuμ = −c2.
Therefore, ~H1 cannot have the interpretation of energy.9 The
problem is recognized in [11] where it is stated that instead of

dealing with the constrained system, the choice is made to give up
the general covariance of ~L1 and instead use the reparametrized
Lagrangian, L1 in Eq. 11which is claimed to be nonsingular. Then
[11] obtains the “space + time”Hamiltonian in Eq. 23 and claims
that it is a correction to DeWitt’s result in [3] .

However, it is demonstrated in [51] that even L1 is singular due
to the constraint uμuμ = −c2. It is also shown in this paper that the
Hamiltonians in Eq. 20 and Eq. 23 are equivalent. Therefore,
contrary to the statement in [11], it is demonstrated here that
both Eq. 20 and Eq. 23 are valid expressions of the “space + time”
Hamiltonian despite the fact that they are both derived from a
singular Lagrangian, L1.

Furthermore [9], shows that a covariant Lagrangian of the
form ~L2 � 1

2gμ]uμu] will lead to ~H2 � 1
2g

μ]PμP]. This
demonstrates that abandoning covariance is not necessary
to obtain a non-vanishing Hamiltonian. Also, both ~H1 and
~H2 lead to equivalent covariant Hamilton canonical
equations of motion. Therefore they are equivalent means
of describing the same particle dynamics. It will also be
shown below that ~H2 leads to the same “space + time”
Hamiltonian as ~H1.

As an extension to this approach, it was shown in [12] that
electromagnetic fields can also be included by writing
~L2 � m

2 gμ]uμu] + eAμuμ. Like the case of ~L1, this leads to a
covariant minimal coupling rule given by pμ → Pμ − eAμ.
However, unlike ~H1 which vanishes, it is found that ~H2 �
1
2mgμ](Pμ − eAμ)(P] − eA]) which further confirms the validity
of the covariant minimal coupling rule.

This topic is also discussed in [8] where two covariant
Hamiltonians are shown. One of them is ~H2 � − 1

2m(pμ − fμ)2
and the other can be described as ~H3 � −c[(pμ − fμ)2]1/2. They
both obey the constraint (pμ − fμ)2 � m2c2, where fμ is a
function of the external fields and velocities.10 Furthermore,
it is shown that ~H2 � −1

2mc2 and ~H3 � −mc2. Both
Hamiltonians lead to the same canonical equations of
motion but with the added feature of including fμ for
external fields.

Lastly, note that the method used in this paper to obtain the
“space + time” Hamiltonian in Eq. 20 is different from the
method used by [12] to obtain the “space + time” Hamiltonian
in Eq. 23. In this paper, ~L1 is used to obtain the canonical
momentum. The velocity is also solved in terms of the inverse
metric in Eq. 19. Then the velocity and canonical momentum
are both substituted into a Legendre transformation11 to
obtain Eq. 20. However [12], starts from ~L2 and
reparametrizes in terms of coordinate time to obtain L2 =
mvμpμ + eAμvμ. A Legendre transformation, H2 = Piv

i − L2, is
again used. However, rather than substituting for the velocity,
instead the Lagrangian and kinetic four-momentum, pμ = Pμ −
eAμ, are used to write the Hamiltonian as H2 = −cP0. Then
using gμ](Pμ − eAμ)(P] − eA]) � −m2c2, solving algebraically

9It is mentioned in [8] that an alternative approach is to use a symmetric tensor
Hμ] = pμu] − gμ]L, where the canonical equatons are zHμ]/zxμ = −p] and zHμ]/zpμ =
u]. Although this produces the correct equation of motion, Hμ] is clearly not a
scalar quantity which can be interpreted as an energy.

10In the context of this paper, fμ = eAμ. Also note [8] uses the notation M and M′
which are relatated to the notation used here by H2 = −cM and H3 = −cM′.
11This same method involving a Legendre transformation applied to ~L1 is used by
[3,14,30] to arrive at Eq. 1. This is also the method used by [11] to arrive at Eq. 23.
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for P0, and substituting back into H2 leads to Eq. 23. The key
feature of this approach is that the constraint pμpμ = −m2c2 is
utilized explicitly due to ~H2 � −1

2mc2, versus the case of ~H1 which
vanishes.12 All of these examples demonstrate that there are
numerous ways of obtaining the same “space + time”
Hamiltonian appearing in Eq. 20 and equivalently Eq. 23-Eq. 25.

2.3 Quantization of the Canonical
Momentum and Hamiltonian
Concerning the quantization of a classical Hamiltonian, it is
common to simply promote canonical quantities to quantum
operators. Then xi and Pj are replaced with x̂

i and P̂j which satisfy
the canonical quantization condition [x̂i, P̂j] � iZδi j. However,
the canonical quantization rule developed by Dirac [52–54]
involves a formal procedure to go from Poisson brackets to
commutators, xi, Pj{ } → 1

iZ [x̂i, P̂j].
In [8], it is shown that the general theory of canonical

transformations and Poisson brackets in Hamilton-Jacobi
theory can be put in covariant form for a single particle.
However, it is noted that a relativistic theory of multiple
interacting particles introduces the complication that we
cannot assume a common proper time for all particles.

In the case of Eq. 32, the issue of proper time is avoided by
using a “space + time” approach, as well as the Lorentz factor
obtained in Eq. 19. The Lorentz factor essentially removes proper
time in favor of coordinate time and the metric. Therefore, Eq. 32
can be generalized to a collection of particles which are assumed
to be embedded in the same space-time metric, with velocities
measured by an observer in terms of a single coordinate time.
This is particularly relevant to the fact that DeWitt states in [3],
“For the Hamiltonian of the ensemble of free electrons inside a
superconductor, Eq. 2 is replaced by

HDW � ∑ 1
2m

�Pn − e �A �xn( ) −m �h0 �xn( )( )[ ]2{ } + Vint (34)

where �xn and �Pn are the canonical variables of the nth electron and
Vint includes the electron-phonon interaction and the phonon energy.”

In [8], it is also pointed out that using H3 � [(pμ − fμ)2]1/2
versus H2 � 1

2mc(pμ − fμ)2 in a quantum theory leads to the
additional complication of taking the square root of operators, as
in the case of Dirac theory (involving anti-commuting matrices).
This would seem to favor H2 for the purposes of describing a
quantum system. However, using a “space + time” approach, both
H2 and H3 lead to Eq. 20 and Eq. 23, which still involve square
roots. Therefore, dealing with the issue of square roots (without
resorting to anti-commuting matrices) is generally achieved by
expanding the Hamiltonian in powers of hμ] and Pi, as is done to
obtain Eq. 28. It is assumed in the remainder of this paper that Pi
and H can be promoted to the usual quantum mechanical

operators, P̂i � −iZzi and Ĥ � iZzt, respectively. However, for
a formal treatment of quantizing manifestly Lorentz-invariant
Lagrangians, see [55, 56].

Lastly, a modified Schrödinger equation can be obtained from
Eq. 33. Dropping the rest mass energy and acting the
Hamiltonian on a wave function, ψ(x, t), leads to
iZztψ x, t( ) � 1

2m
−Zzi − eηijA

j( )2 + 4iZhizi + 8mh2 +mφG − mφ2
G

2c2
+ eφ[ ]ψ x, t( )

(35)

In the absence of gravity, this reduces to the usual Schrödinger
equation in the presence of an electromagnetic field. In that case, the
solution could be written as ψ(x, t) � eiϕψ0(x, t), where ψ0(x, t) is
the solution to the field-free Schrödinger equation, and the phase is
ϕ � e

Z∫Aidxi. If the presence of gravity introduced a modification
to the Hamiltonian given by (P̂i − eηijA

j)2 →
(P̂i − eηijA

j − 4mηijh
j)2, then the phase would become

ϕ � 1
Z
∫ ηij eAj + 4mhj( )dxi (36)

similar to what is shown in [14, 15, 30, 35, 40, 42, 44, 47].
However, this is not how the presence of gravity appears in Eq.
35. Rather, gravity enters as a multiplicative factor to a first
derivative term, hizi, not an additive factor inside the second
derivative term. In fact, attempting to use ψ = eiϕψ0, with a phase
given by Eq. 36, leads to (−iZzi − eηijA

j)2ψ0 �
(−iZzi + 4mηijh

j)2ψ0 and
iZhiziψ0 � (iZhizi − eηijh

iAj − 4mh2)ψ0. Substituting these into
Eq. 35 does not lead to the field-free Schrödinger equation.

This topic can be understood in the context of a covariant
Ginzburg-Landau model [50, 57–63]. The transformations of a
complex scalar field and the four-potential can be written,
respectively, as ψ → e

iqχ
Z ψ and Aμ → Aμ + zμχ, where χ is an

arbitrary scalar function. In flat space-time, the gauge covariant
derivative isDμ � zμ − iq

ZAμ which also transforms asDμ → e
iqχ
Z Dμ.

Therefore, the gauge freedom of ψ and Aμ can be unified in a fully
covariant approach. Notice that the gauge freedom of Aμ leads
effectively to a phase factor eiqχ in Dμ. This is analogous to the
presence of Ai in Eq. 35 leading to a phase factor eiϕ in ψ(x, t).

In curved space-time, the gauge covariant derivative becomes
Dμ � ∇μ − iq

ZAμ, where ∇μ is the covariant derivative involving
Christoffel symbols [10, 11, 47, 58, 59, 62], [64–66]. However, the
gauge covariant derivative still transforms asDμ → e

iqχ
Z Dμ even in

curved space-time. This means that the phase factor eiqχ is
unaffected by the presence of gravity. This is because in
General Relativity (or any metric theory of gravity), the
gravitational “field” is not an additional field on the same
footing as electromagnetism, rather it introduces curvature to
the otherwise flat space-time that all other fields live in.13 This is
represented by the fact that zμ→∇μ. Furthermore, the spatial part
of the gauge covariant derivative is Di � ∇i − iq

ZAi, where ∇i is
intended to denote a derivative involving Christoffel symbols, not

12This method used in [12] was an adaptation of the treatment in [9] but with the
inclusion of electromagnetic fields.A similar approach is shown in [32], however, it
is stated that Hamilton’s equations are used to identify H2 = −cP0. The result is
equivalent to Eq. 23 but without A0 and Ai appearing.

13For a discussion of the contrast between gravity described by a geometrical
perturbation tensor (gμ] � ημ] + hμ]) versus gravity described by a quantum tensor
field (fμ] � ημ] + ψμ]), see [67] which expounds on Feynman’s work in [68,69,70].
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just a gradient. Notice that the covariant derivative is not Di �
zi − i

Z (qAi +mhi) as stated in [25], [71–75].
In fact, since the gauge covariant derivative transforms as

Dμ → e
iqχ
Z Dμ, and the wave function transforms as ψ → e

iqχ
Z ψ,

then incorrectly assuming the solution to Eq. 35 is ψ = eiϕψ0,
where the phase is Eq. 36, gives the false impression that (e �A +
4m �h) transforms as (e �A + 4m �h) → (e �A + 4m �h) + ∇χ. However,
�A and �h do not have identical transformation properties. To
linear order, the gauge (coordinate) freedom of the perturbation
is hμ]→ hμ] + zμξ] + z]ξμ, where ξ

μ is associated with a coordinate
transformation such as xμ → xμ + ξμ. This is contrary to what is
shown in [40] where the gauge freedom of �h is written as
�h → �h + ∇μ, where μ is an arbitrary scalar function.14

A possible cause for confusion is the fact that quantizing the
canonical momentum Eq. 16 leads to

−iZzi → − iZzi − γm ch0i + hijv
j( ) + q ηijA

j + h0iA
0 + hijA

j( )
(37)

This seems to imply that Di � zi − i
Z (qηijAj +mch0i) +/ is

the gauge covariant derivative to be used in the Schrödinger
equation, Ĥψ � Z2

2mD
2
i ψ + Vψ. However, Eq. 35 demonstrates

that this is not the case.
In fact, since Eq. 35 involves a second order spatial derivative,

then this issue can be further understood by starting from a
second order covariant derivative acting on a scalar wave function
in the absence of electromagnetic fields: gμ]∇μ∇]ψ. Since ψ is a
scalar, then the first covariant derivative of ψ is just a partial
derivative: ∇]ψ = z]ψ. However, since z]ψ is a vector, then acting
the second covariant derivative brings in the Christoffel symbol:
gμ]∇μ∇]ψ � gμ]zμz]ψ + gμ]Γσμ](zσψ). Using gμ] = ημ] + hμ],
choosing harmonic coordinates, gμ]Γσμ] � 0, and remaining to
first order in the perturbation leads to

gμ]∇μ∇]ψ � − 1
c2

1 − h00( )€ψ − 2
c
h0izi �ψ + z2i + hijzizj( )ψ (38)

Similar to Eq. 35, it is found that h0imultiplies a first derivative
term, rather than appearing as an additive factor inside the
second derivative term. Furthermore, Eq. 38 can be used to
write the Klein-Gordon equation in curved space-time as
(gμ]∇μ∇] − k2c )ψ � 0, where kc = mc/- is the Compton wave
number [15, 65, 66, 76]. Since the Klein-Gordon equation is
gμ]P̂μP̂] � −m2c4, with P̂

μ � (Ê/c, P̂i), then the Schrödinger
equation can be obtained by taking the non-relativistic limit.
Using gμ] = ημ] + hμ] and P̂i � giμP̂

μ
leads to

Ê � 1 + 1
2
h00( )mc2 + P̂

2

i

2m
+ 2ch0iP̂i + h00P̂

2

i

4m
+ 3hijP̂iP̂j

2m
(39)

Again, notice that h0i is multiplying P̂i which is consistent with
Eq. 35 and Eq. 38.

In summary, the distinction between the way gravity and
electromagnetism couple to a quantum field is fundamentally the
reason for the difference in the way they appear in the modified
Schrödinger equation Eq. 35, and the reason why it is not the case
that ψ = eiϕψ0, where ψ0 is the solution to the field-free
Schrödinger equation if the phase is assumed to be Eq. 36.
However, it will be shown in Sections 6, 7 that the canonical
momentum Eq. 13 can be used to obtain a quantum phase with
terms that include those appearing in Eq. 36.

2.4 Alternative Hamiltonians andMethods of
Coupling Gravity to a Superconductor
On a more fundamental level, ~H1 and ~H2 are derived respectively
from Lagrangians, ~L1 and ~L2, which are both associated with the
geodesic equation of motion Eq. 7. However, the geodesic equation
of motion is subject to the Equivalence Principle which makes it
possible to transform into a frame of reference where all gravitational
effects vanish. Stated another way, there is no unique absolute
motion of a test particle since the observed motion of a particle
depends on the frame of reference of the observer.

However, the relative motion between a particle and an
observer is uniquely described by the geodesic deviation
equation. Therefore, it is argued in [77, 78] that a
Hamiltonian based on the geodesic deviation equation is
preferred (which involves the Riemann curvature tensor)
versus a Hamiltonian based on the geodesic equation (which
involves the Christoffel symbols). A similar approach was used by
Weber15 in the context of gravitational wave detection [79].

In fact, it is shown in [78] that for the case of gravitational waves
(in the weak field, low velocity limit), the Lagrangian leading to the
geodesic deviation equation is L � 1

2m(v2 − _hijvixj), where xi is the
coordinate distance of the test particle from the observer. The
associated interaction Hamiltonian is Hint � _hijpixj/2. This result
clearly differs from Eq. 31 which predicts the interaction
Hamiltonian is Hint � hijpipj/(2m). This discrepancy in
Hamiltonians is directly parallel to the fact that the geodesic
equation of motion (for the same conditions) is d2xi

dt2 � − _hijvj,
while the geodesic deviation equation is d2xi

dt2 � €hijxj/2. Note that
the latter is what is physically observed by a gravitational wave
detector such as LIGO [36]. The former gives the false impression
that a detector must be in motion to interact with the gravitational
wave. This further highlights the importance of carefully considering
the approach to formulating a Hamiltonian that correctly describes
the physically observed effects of gravity on a quantum system.16

Another approach is the use of Fermi normal coordinates17

which also expresses the Hamiltonian in terms of the Riemann

14Note that if �h′ � �h + ∇μ, then taking the curl would lead to �BG′ � �BG, where
�BG ≡ ∇× �h. This implies that �BG is gauge (coordinate) invariant. However, using
h′μ] = hμ] + zμξ] + z]ξμ and hi ≡ c

4h0i means the actual transformation is given by
h′i � hi + 1

4
_ξ
i − c

4z
iξ0, and the corresponding transformation for �BG is �BG′ � �BG +

1
4∇×

�ξ
·
as shown in Eq. 92.

15It is stated in [77] that the Hamiltonian developed byWeber [79] differs from that
of [77], despite the fact that both are derived based on the geodesic deviation
equation. It is also stated that the difference is due to the fact that Weber first
linearizes the equation of motion, and that Weber’s Hamiltonian is not valid if the
test particle is charged.
16Detailed treatments of the Lagrangian and Hamiltonian formulation of geodesic
deviation can be found in [80,81,82].
17It is argued in [83] that Fermi normal coordinates are appropriate for a problem
involving energy levels, in contrast to Riemann normal coordinates.
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curvature tensor (which is coordinate invariant) rather than
Christoffel symbols (which are coordinate dependent) [16, 34],
[83–86]. There are also other approaches that depart entirely
from the use of a Lagrangian associated with either the geodesic
equation of motion or the geodesic deviation equation. For
example [87], uses a Ginzburg-Landau free energy density that
includes a coupling to gravity via a term involving the Ricci scalar.

On the other hand [88], uses a Hamiltonian derived from an
effective field theory describing a system of quantum oscillators
coupled to a stochastic gravitational radiation background, where
the coupling to gravity occurs via a parameter associated with an
Ohmic bath spectral density. Although [88] does not consider a
superconductor, it is possible that a similar treatment could be
used to describe the coupling of the stochastic gravitational wave
background to a superconductor. Fundamentally, the coupling of
the quantum system to gravity is obtained via the action for a
scalar field stress tensor coupled to the curved space-time
background [89].

On a related note, it should be emphasized that the action in
Eq. 8 only describes the particle dynamics but treats
electromagnetism and gravity as fixed background fields with no
dynamics. This means that any fields produced by the motion of
test particles (which are Cooper pairs leading to a supercurrent) are
neglected. However, in Section 4 it is evident that the supercurrent
does indeed produce fields which can lead to a Meissner effect.
Therefore, a complete action should also include the dynamics of
the fields by including terms for electromagnetism and gravity
which are, respectively, SEM � − 1

4μ0
∫Fμ]Fμ]

			−g√
d4x and

SG � 1
2κ∫R

			−g√
d4x, where R is the Ricci scalar, and g is the

determinant of the metric [50, 74, 75]. In fact, the action associated
with particle dynamics could be replaced by an action describing
the current density, SC � ∫ JμAμ

			−g√
d4x.

It is also shown in [10] that a Ginzburg-Landau Lagrangian
density in curved space-time can be used to obtain a quantum
current density and quantum stress tensor. The action has the
form SGL � −1

2∫[gμ](Dμϕ)*(D]ϕ) − μ2|ϕ|2 + λ
2|ϕ|4]

			−g√
d4x,

where ϕ is a complex scalar field, and μ and λ are coupling
parameters. This action is effectively “phi-fourth” field theory
due to the quartic self-interaction term [60, 61]. Other
treatments for embedding phi-fourth (covaraint Ginzburg-
Landau) theory in curved space-time are found in [62, 64],
[90–93]. All of the treatments described above demonstrate
there is a great diversity in the approaches that can be taken to
couple gravity to superconductors and quantum systems in
general. However, the remainder of this paper will focus on
the coupling described by quantizing the canonical momentum
in Eq. 13.

3 MODIFIED LONDON EQUATIONS AND
GAUGE CONDITION

In this section, gravito-electromagnetic field equations are
introduced, and constitutive equations are developed from the
canonical momentum and combined with the field equations to
obtain a modified form of the London equations [94–96]. Using
harmonic coordinates, z]�hμ] � 0, makes the linearized Einstein

equation, Gμ] = κTμ], become □�hμ] � −2κTμ], where κ = 8πG/c4.
For a non-relativistic ideal fluid, the components of the stress
tensor are

T00 ≈ ρMc
2, T0i ≈ ρMcV

i, Tij ≈ 0 (40)
where ρM is mass density, and Vi is the velocity, of the
gravitational sources. Note that in the presence of
electromagnetic fields, the full stress tensor should also
include

Tμ]
EM( ) �

1
μ0

gαβF
μαF]β − 1

4
gμ]gαρgβσF

ρσFαβ( ) (41)
where the components of the electromagnetic strength tensor are

F0i � 1
c
Ei, Fij � εijkBk, Fμ] � −F]μ, Fμμ � 0 (42)

To lowest order, using E = cB, the components of Eq. 41 are

T00
EM( ) ≈ B2/μ0, T0i

EM( ) ≈ εijkBjBk/μ0, Tij
EM( ) ≈ ηijB2 − 2BjBi( )/μ0 (43)

Comparing Eq. 43 to Eq. 40, it is evident that the
contribution of electromagnetic fields to the total stress
tensor can be neglected provided B2/μ0 ≪ ρMcV. For a
superconductor such as niobium, we can use ρM ~ 104 kg/
m3. It is also shown in Supplementary Appendix SB that a
maximum of v ~ 104 m/s will preserve the superconducting
state18. This leads to B ≪ 105 T which is certainly satisfied in a
laboratory setting.

Since Tij ≈ 0, then �h
ij ≈ 0 in this approximation. A time-

independent gravito-electric field (the Newtonian gravitational
field) and a gravito-magnetic (Lense-Thirring) field can also be
defined respectively as19

�EG ≡ − ∇φG and �BG ≡ ∇× �h (44)

Defining the mass current density as JiM � T0i/c � ρMVi, leads
to non-homogeneous field equations given by

∇ · �EG � −ρM
εG

and ∇× �BG � −μG �JM + 1
c2
zt �EG (45)

where εG ≡ 1/(4πG) and μG ≡ 4πG/c2. The field equations in Eq.
45 can be described as a gravito-Gauss law (Newton’s law of
gravitation), and a gravito-Ampere law, respectively.

18This value assumes the maximum kinetic energy must be below the BCS energy
gap since the supercurrent effectively consists of Cooper pairs in a BCS condensate.
Using the BCS energy gap leads to a non-relativistic supercurrent velocity.
However, if an observer were to be moving at a relativistic speed with respect
to the superconductor, then the Cooper pairs would be observed as relativistic. This
concept is considered in [19]. For further discussion of the possibility of relativistic
superconductivity, see [63,97,98].
19Note that the harmonic coordinate condition, z]�h

μ] � 0, leads to
z0�h

i0 + zj�h
ij � 0. Since non-relativistic sources led to �h

ij � 0, then zt�h
i0 � 0

which means that �h is time-independent in this approximation. Therefore, we
cannot use �EG ≡ − ∇φG − zt �h. For a discussion of this topic, see [12] or [28].
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To develop constitutive equations for a superconductor, we
begin by promoting the canonical momentum in Eq. 13 to a
quantum mechanical operator, P̂i � −iZzi, and act on the
Ginzburg-Landau complex order parameter,
Ψ(r) � ψ(r)ei �p· �r, where ψ2 = ns is the number density of
Cooper pairs. This gives

P̂iΨ � γm cg0i + gijv̂
j( ) − q g0iÂ

0 + gijÂ
j( )[ ]Ψ (46)

This can be considered a semiclassical approach where the
gravitational field, hμ], is still a classical field while P̂, v̂, and Â
are quantum operators that act on the Cooper pair state, Ψ.
Since the bulk of the superconductor is in the zero-momentum
eigenstate, then P̂iΨ � p0Ψ � 0. Then taking the expectation
value gives

0 � γm cg0i + gij〈v̂j〉( ) − q g0i〈Â
0〉 + gij〈Â

j〉( ) (47)

Applying Ehrenfest’s theorem allows this equation to return
to a classical equation of motion once again. To first order in
the metric perturbation, and first order in test mass velocity,
Eq. 12 becomes γ ≈ 1 + h00/2 + h0jv

j/c. Then using Eq. 29 and
Eq. 30 in Eq. 47, remaining to first order in the metric
perturbation, and using q = −e and m = me for electrons,
leads to

�v � − 1 + φG

c2
( ) e

me

�A − 4 1 + eφ

mec2
( ) �h (48)

A similar expression appears in [19] but the scalar potentials, φ
and φG, are absent. The charge and mass supercurrent densities
are, respectively20

�Jc � −nsq �v and �Jm � nsm �v (49)
where ns is the number density of Cooper pairs. Inserting Eq. 48
into Eq. 49

�Jc � −ΛL α �A + β �h( ) (50)
and

�Jm � −nse α �A + β �h( ) (51)
where ΛL ≡ nse

2/me can be defined as the London constant, and

α ≡ 1 + φG

c2
, β ≡

4 mec2 + eφ( )
ec2

(52)

The expressions in Eq. 50 and Eq. 51 are the London
constitutive equations for a non-relativistic supercurrent in
the presence of electromagnetism and gravity (from non-
relativistic gravitational sources in harmonic coordinates).
Similar expressions can be found in [22–24], [26], however,
with α = 1 and β =me/e which is a special case where φG = 0 and
φ = 0. Notice that if �h � 0, then Eq. 50 becomes the standard
London constitutive equation, �Jc � −ΛL

�A. Also notice that

setting the charge to zero in Eq. 51 gives �Jm � −4nsme
�h

which is the constitutive equation for a neutral superfluid in
the presence of a gravito-vector potential. Taking a time
derivative of Eq. 50 and Eq. 51, and using the fact that ∇φ =
0 inside a superconductor21 and zt �h � 0 in this approximation,
leads to

zt �Jc � ΛL α �E − 1
c2
_φG

�A − 4
c2

_φ �h( ) (53)
and

zt �Jm � ens α �E − 1
c2
_φG

�A − 4
c2

_φ �h( ) (54)

Equations similar to Eq. 53 and Eq. 54 are also obtained in [17,
21, 22, 24, 71, 72], but with the absence of the gravitational and
electric scalar potentials which means α = 1, _φG � 0, and _φ � 0.
Also, these authors include a term involving �EG � −zt �h which is
not valid since it was shown that zt �h ≈ 0 for non-relativistic
gravitational sources. Notice that Eq. 53 is the usual electric
London equation, zt �Jc � ΛL

�E, but with correction terms due to
gravity. Also, Eq. 54 is a redundant equation since �Jc � �Jm(e/me),
however, for a neutral superfluid, only Eq. 54 would be relevant.

Taking the curl of Eq. 50 and Eq. 51, and using Eq. 44, leads
to, respectively,

∇× �Jc � −ΛL α �B + β �BG − 1
c2

�EG × �A( ) (55)
and

∇× �Jm � −nse α �B + β �BG − 1
c2

�EG × �A( ) (56)

Similar expressions can be found in [17, 20, 71, 72], however,
with α = 1 and β = me/e. Notice that Eq. 55 is the usual magnetic
London equation, ∇× �Jc � −ΛL

�B, but with correction terms due
to gravity. For the case of a neutral superfluid, setting the charge
to zero makes Eq. 56 become

∇× �Jm � −4nsme
�BG (57)

The same result is obtained in [26, 27, 62, 73, 100]. A result
similar to Eq. 57 is also obtained in [74, 75], however, it will be
shown later that there is a critical sign difference which impacts
whether a gravito-magnetic Meissner effect is predicted to occur
in the absence of a magnetic field.

Concerning the gauge condition, note that the usual London
gauge, ∇ · �A � 0, follows from the London constitutive equation,
�Jc � −ΛL

�A, with the requirement ∇ · �Jc � 0. By the continuity
equation, this means ztρc = 0 which is consistent with a static

20Note that a negative is used in �Jc � −nsq �v so that when q = −e is used, then �Jc
becomes positive and hence represents the conventional current.

21In standard London theory, the requirement that ∇φ = 0 inside a superconductor
follows from inserting �E � −∇φ − zt �A into the electric London equation, zt �Jc �
ΛL

�E which gives zt( �Jc + ΛL
�A) � −ΛL∇φ. Since �Js � −ΛL

�A is the London
constitutive equation, then it follows that ∇φ = 0. However, this assumption is
not taken for granted and is widely discussed in the literature, as summarized in
[99]. In the treatment used here, we can also insert �E � −∇φ − zt �A into Eq. 53 to
obtain zt[ �Jc + ΛL(α �A − β �h)] � −ΛLα∇φ. Then using Eq. 50 requires the bracket to
be zero and therefore ∇φ = 0.
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Cooper pair density (ρc � 2nse) in the interior of the
superconductor. Applying the same condition, ∇ · �Jc � 0, to
the modified London constitutive equation in Eq. 50 leads to
a new gauge condition given by ∇ · (α �A + β �h) � 0. Using Eq. 52
and ∇φ = 0 yields

α∇ · �A − 1
c2

�EG · �A( ) + β∇ · �h � 0 (58)

This is the modified gauge condition associated with the
London equations developed above. It is similar to the gauge
condition shown in [74, 75] as ( �Ae + m

e
�Ag) � 0, except Eq. 58 has

an additional term involving �EG · �A is absent. On the other hand
[19, 20, 23], set ∇ · �A � 0 and ∇ · �Ag � 0 as independent gauge
conditions. Note that due to the use of harmonic coordinates,
z]�h

μ] � 0, the last term in Eq. 58 can also be expressed using
∇ · �h � − _φG/c

2. This means that for a static gravitational scalar
potential, the last term in Eq. 58 vanishes from the gauge
condition.

Lastly, taking the curl of Eq. 55, using
∇× (∇× �Jc) � ∇(∇ · �Jc) − ∇2 �Jc, where ∇ · �Jc � 0, and making
use of Eq. 52 and Eq. 45, as well as ∇φ = 0 and �Jc �
�Jm(e/me) leads to

∇2 �Jc − αμ0ΛL − βμGnse( ) �Jc + ΛL

c2
EG × �B + ∇× �EG × �A( )[ ] � 0

(59)
It will be shown in the following section that αμ0ΛL ≫ βμGnse

and α ≈ 1. Also, using αμ0J≫ �EGB/c2 makes Eq. 59 reduce to a
Yukawa-like equation,

∇2 �Jc − λ−2L �Jc ≈ 0 (60)
where the London penetration depth is

λ2L � μ0ΛL( )−1 � me

μ0nse
2

(61)

Notice that Eq. 59 contains a quantity which can be defined as

k2 ≡ αμ0ΛL − βμGnse (62)
As explained in the following section, this quantity can be

understood as leading to a modified London penetration depth,
λL′ ≡ 1/k.

4 MEISSNER EFFECTS AND PENETRATION
DEPTHS FOR MAGNETIC AND GRAVITO-
MAGNETIC FIELDS
The Maxwell equation (with sources) in curved space-time is

∇]F
μ] � μ0J

μ
c (63)

where Jμc is the charge four-current [4]. The covariant derivative
of the strength tensor is

∇]F
μ] � z]F

μ] + Γ]]σFσμ + Γμ]σF]σ (64)

Since Γμ]σ is symmetric in ]σ, and F]σ is anti-symmetric in ]σ,
then the last term above is zero. The linearized Christoffel
symbols are

Γμ]γ �
1
2
ημρ zγhρ] + z]hγρ − zρh]γ( ) (65)

Then Eq. 63 becomes

z]F
μ] + 1

2
η]ρ zσhρ] + z]hσρ − zρh]σ( )Fσμ � μ0J

μ
c (66)

Setting μ = i, and using Eq. 30, Eq. 44, and Eq. 42 leads to

∇× �B � μ0
�Jc + 1

c2
zt �E + 2

c2
_φG

c2
�E + �EG × �B( ) (67)

This is the usual Ampere law but with added corrections due to
the presence of gravity.

Assume a steady-state supercurrent so that zt �E � 0, and a
static gravitational scalar potential so that _φG � 0. Taking the
curl of Eq. 67, using the identity ∇× (∇× �B) � ∇(∇ · �B) − ∇2 �B,
where ∇ · �B � 0, and using Eq. 55 leads to

∇2 �B � μ0ΛL α �B + β �BG − 1
c2

�EG × �A( )
+ 2
c2

�B ∇ · �EG( ) − �B · ∇( ) �EG + �EG · ∇( ) �B[ ] (68)

Since �EG is primarily due to earth, then the spatial variation
of �EG over the dimensions of the superconductor is negligible.
Therefore ( �B · ∇) �EG ≈ 0. Also, if �EG � EGẑ, and the magnetic
field is arranged in the x- or y-direction, then ( �EG · ∇) �B � 0.
Lastly using ∇ · �EG � −ρM/εG leads to

∇2 �B � μ0ΛL α′ �B + β �BG − 1
c2

�EG × �A( ) (69)
where

α′ ≡ 1 + φG

c2
− 2ρM
μ0ΛLc2εG

(70)

Notice that α′ differs from α in Eq. 52 by an additional
factor given by 2ρM/(μ0ΛLc2εG) ~ 10−40, assuming the mass
density of earth and the superconducting sample are ~ 104 kg/
m3, and μ0ΛL � λ−2L ~ 1018 m-2, where λL ~ 10−9 m is the
London penetration depth of a superconductor such as
niobium. Note that at the surface of earth,
φG/c

2 ≈ GME/(c2RE) ~ 10−9, where ME and RE are the mass
and radius of earth, respectively. Since the last term in Eq. 70 is
31 orders of magnitude smaller than the second term, then α′
≈ α.

A similar treatment can be applied to the gravito-Ampere law
in Eq. 45 which is ∇× �BG � −μG �Jm for the case of a steady-state
supercurrent. Taking the curl, using
∇× (∇× �BG) � ∇(∇ · �BG) − ∇2 �BG, where ∇ · �BG � 0, and using
Eq. 56 leads to

∇2 �BG � −μGnse α �B + β �BG − 1
c2

�EG × �A( ) (71)
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Coupled differential equations similar to Eq. 69 and Eq. 71
can also be found in [18–22]. In the absence of gravity, α = 1
and �BG � 0. Then Eq. 69 becomes a Yukawa-like equation22,
∇2 �B − λ−2L �B � 0, where the London penetration depth is given
in Eq. 61. The general solution for the magnetic field is

�B � �c1e
−λ−1L z + �c2e

λ−1L z + �c3 (72)
where �c1, �c2, �c3 are constant vectors.

For a superconducting slab occupying the region z > 0, where z
is the distance from the surface to the interior of the
superconductor, then the boundary conditions for the
magnetic field are

�B 0( ) � �B0 and lim
z→∞

�B z( ) → 0 (73)

where �B0 is the magnetic field at the surface of the
superconductor. These conditions require �c2′, �c3′ � 0, and
�c1′ � �B0. Then Eq. 72 reduces to �B � �B0e−z/λL . This is the
standard Meissner effect which predicts that the magnetic field
vanishes within the superconductor at depths beyond the London
penetration depth.

Three other cases are now considered which involve gravity:

1. The presence of only �BG

2. The effect of �BG on the penetration depth of �B
3. The effect of �B on the penetration depth of �BG

4.1 The Presence of Only �BG
If �BG is the only field present (or equivalently, a neutral
superfluid is used), then Eq. 71 becomes ∇2 �BG �
−4μGnsme

�BG which is a Helmholtz-like differential equation
(rather than a Yukawa-like differential equation), and
therefore only allows sinusoidal solutions, not exponential
solutions. Since there is no exponential decay of the field
then there is no penetration depth and no associated
Meissner effect. The reason can be traced back to the
difference in the sign appearing in the magnetic field
equation, ∇× �B � μ0

�Jc, and the gravito-magnetic field
equation, ∇× �BG � −μG �Jm. The negative sign in the gravito-
Ampere law eliminates a gravitational Meissner effect for a
neutral superfluid. Physically speaking, this implies a
paramagnetic effect instead of a diamagnetic (Meissner) effect.

In fact, for a maximum gravito-magnetic field at the surface
of the superconductor (z � 0), the solution to the gravito-
Ampere field equation would have the form
�BG � �BG,0 cos(2πz/~λ), where �BG,0 is the gravito-magnetic
field at the surface of the superconductor, and the spatial
periodicity in the field is

λ periodicity of �BG( ) ≡
2π							

4μGnsme

√ (74)

Note that Eq. 74 can also be written in the following
alternative forms using μG = 4πG/c2 and Eq. 61.

λ periodicity of �BG( ) �
							
πc2

4Gnsme

√
� πe

me

			
μ0
μG

√
λL (75)

To obtain a numerical estimate for this quantity, consider
a superconductor such as niobium which has a London
penetration depth of λL ~ 10−9 m. Then Eq. 75 gives
approximately 1022λL ~ 1013 m which is clearly not observable
on a terrestrial scale.

The absence of a gravito-magnetic Meissner effect (when
�B � 0) is in agreement with [20, 49, 71, 72], but in
disagreement with [19, 26, 27, 62], [73–75], [100]. In most of
the papers that predict a gravito-magnetic Meissner effect (with
�B � 0), it is due to a minus sign error somewhere in the
calculation. In some cases, finding the error requires careful
analysis, but in others it is straight forward. For example, in
[100], the minus sign error occurred while using the vector
identity ∇× (∇× �BG) � ∇(∇ · �BG) − ∇2 �BG.

However, in the case of [19], the issue is more subtle. The
gravito-vector potential is defined as A i

g ≡ 1
4h

0i. Notice the
metric perturbation has upper indices compared to the lower
indices in Eq. 30. This leads to a sign difference ( �Ag � − �h) and
therefore the mass current density is written in [19] as �jm �
8me

�Ag +/ rather than �Jm � −4nsme
�h as obtained from Eq. 51.

The use of a different convention is not problematic, however,
the error occurs in the use of the Einstein equation, Gμ] = κTμ].
Using the convention of [19] should lead to a gravito-Ampere law
with a positive sign on the source term contrary to Eq. 45.
However [19], has a negative sign. The net result is a Yukawa-
like differential equation is incorrectly obtained for �Bg, rather
than a Helmholtz-like differential equation. Also, an expression
similar to Eq. 74 is obtained, with a value on the order of 1013 m,
but is interpreted as a penetration depth rather than a spatial
periodicity.

In the case of [74, 75], the gravito-vector potential is defined as
A i
g ≡ 1

4
�h0i similar to Eq. 30. The same approach as [71–73] is

used with a “generalized vector potential” defined as
�A ≡ �Ae + m

e
�Ag, and an associated covariant derivative,

~∇ � ∇ − i~g �A, where ~g � e2. This leads to a current density
given by �j � − ~g

m ( �Ae + m
e
�Ag)ns +/ which matches Eq. 51.

Furthermore, it is shown that setting �B � 0 leads to �Bg �
−μ0λ2e∇× �jg which appears to match Eq. 57. However, the
authors defined the mass current density as �jg � ρg

�v, where ρg
≡ − T00. This introduces an additional minus sign which leads to
�Bg � μ0λ

2
eT00∇× �v. This is is in disagreement with Eq. 57 which

can be written as 4 �BG � −∇× �v. This difference in sign is the
reason why [74, 75] obtain a Yukawa-like differential equation
rather than a Helmholtz-like differential equation for �Bg. Then
the gravito-magnetic penetration depth is given as λG ≈ 1021λL.
This is similar to the result obtained from Eq. 75 but it is
interpreted in [74, 75] as a penetration depth rather than a
spatial periodicity.

22More formally, the field equation should be written ∇2 �B � λ−2L �B (external) , where �B
is the magnetic field produced by the superconductor while �B (external) is produced
by some source external to the superconductor. However, the common approach in
London theory is to view �B as taking into account all the fields, including those
produced by the material of the superconductor as well as those introduced
externally.
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In the case of [26, 27], the presence of a gravito-magnetic
Meissner effect is argued on the basis of spontaneous symmetry
breaking. A Lagrangian is written in the form
L � 1

2(∇Ψ)*∇Ψ − 1
4 β(|Ψ|2 − α

β)2 − 1
2
�B
2

g, where |Ψ|2 � −α/β and
β > 0. The associated field equation is found to be
∇2 �Bg − 16m2

Z2
α
β
�Bg � 0, with λ2 � Z

4m (αβ). It is stated that α < 0
and α > 0 correspond to the presence and absence of spontaneous
symmetry breaking, respectively. Therefore, the sign of α
determines the sign of |Ψ|2 which determines the sign in the
field equation for �Bg. This distinguishes whether the equation is a
Yukawa-like or a Helmholtz-like differential equation. However,
it is shown in 4.1 of Tinkham [94] that if α < 0, then |Ψ|2 � 0,
which means there is no superconducting state. Also, the
minimum energy is |Ψ|2 � −α/β only when α < 0. This means
that |Ψ|2 is always positive, which corresponds to the fact that in
Ginzburg-Landau theory, |Ψ|2 � ns, the number density of
Cooper pairs which can only be positive. Lastly, notice that if
α < 0, then the field equation for �Bg is actually a Helmholtz-like
differential equation, and the expression for λ2 is negative which
therefore cannot be interpreted as a penetration depth.

In the case of [73], there is discussion about whether the
“covariant derivative” is �∇ � ∇ + ig �Ag or �∇ � ∇ − ig �Ag, where g
is a coupling constant. Using �∇ � ∇ + ig �Ag leads to a Yukawa-
like differential equation for �Bg, and an associated Meissner
effect. Using �∇ � ∇ − ig �Ag leads to a Helmholtz-like
differential equation for �Bg, and the absence of a Meissner
effect. However, there is no statement concerning which is the
correct approach. The reason may be because the canonical
momentum Eq. 13, which determines the sign, is not formally
derived in [73]. Instead, the discussion is based on the concept of
spontaneous symmetry breaking. As previously explained, the
Ginzburg-Landau theory of superconductivity does not permit
|Ψ|2 to be negative which is associated with �∇ � ∇ + ig �Ag. Acting
the canonical momentum Eq. 13 on Ψ leads to �∇ � ∇ − ig �Ag

which [73] describes as the “classical” covariant derivative since it
is associated with the absence of spontaneous symmetry breaking.

4.2 The Effect of �BG on the Penetration
Depth of �B
For a charged supercurrent in the presence of both magnetic and
gravito-magnetic fields, the differential equations Eq. 69 and Eq.
71 need to be decoupled to obtain solutions. For simplicity,
consider a system arranged such that �EG × �A � 0. Then
solving Eq. 69 for �BG, substituting the result into Eq. 71, and
canceling common terms gives23

∇4 �B − k2∇2 �B � 0 (76)
where k matches Eq. 62 which is

k2 ≡ αμ0ΛL − βμGnse (77)

The modified London penetration depth can be defined as
λL′ ≡ 1/k. Using λ−2L � μ0ΛL gives

λ′−2L � αλ−2L − βμGnse (78)
Notice that the first term in Eq. 78 encodes a correction due to

the gravitational scalar potential, while the second term encodes a
correction due to the electric scalar potential. An order of
magnitude can be calculated for each term in Eq. 78 using Eq.
52. The first term on the right side of Eq. 78 implies a correction
to the London penetration depth given by λL′ � (1 + φG/c

2)−1/2λL.
At the surface of earth, φG/c

2 ≈ GME/(c2RE) ~ 10−9, where ME

and RE are the mass and radius of earth, respectively. Then
λL′ ≈ (1 − 10−9)λL. For a superconductor such as niobium, the
London penetration depth is λL ~ 10−9 m. This means the
correction due to the scalar potential of earth is ~ 10−18 m
which would not be observable.

For the second term in Eq. 78, note that ifmec
2 ≫ eφ, then β ≈

4me/e ~ 10−11 kg/C. Also using ns ~ 1026 m−3 means the second
term in Eq. 78 is ~ 10−30 m−2. Since the first term is αλ−2L ~ 1018

m−2, then the second term is completely negligible. Hence we find
that the presence of a Newtonian and/or gravito-magnetic field
will not likely have a measurable effect on the penetration depth
of the magnetic field.

Since αλ′−2L > βμGnse, then λ′−2L is positive and therefore the
general solution to Eq. 76 is

�B � �c1e
−λ′ −1L z + �c2e

λ′ −1L z + �c3z + �c4 (79)
Using the boundary conditions in Eq. 73 leads to �c2, �c3, �c4 � 0,

and �c1 � �B0. Therefore, the solution is reduced to

�B � �B0e
−z/λL′ (80)

This is the standard Meissner effect but with a modified
London penetration depth given by Eq. 78. Notice that the
first term in Eq. 78 encodes a correction due to the
gravitational scalar potential since α = 1 + φG/c

2. The second
term in Eq. 78 encodes a correction due to the gravito-magnetic
field since it can be traced back to the terms involving β �BG in Eq.
69 and Eq. 71.

4.3 The Effect of �B on the Penetration Depth
of �BG
Again, for simplicity, consider a system arranged such that
�EG × �A � 0. Solving Eq. 71 for �B, substituting the result into
Eq. 69, and canceling common terms gives24

∇4 �BG − k2∇2 �BG � 0 (81)
where k is given by Eq. 77. For a neutral superfluid (or in the
absence of a magnetic field), Eq. 77 reduces to k2 = −4μGnsme and
therefore Eq. 81 leads to a paramagnetic effect, as stated before.

23Note that if the system is not arranged so as tomake �EG × �A � 0 in Eq. 69 and Eq.
71, then Eq. 76 would have the more complicated form ∇4 �B − k2∇2 �B +
μ0ΛL

c2 ∇2( �EG × �A) � 0.

24Note that if the system is not arranged so as tomake �EG × �A � 0 in Eq. 69 and Eq.
71, then Eq. 81 would have the more complicated form ∇4 �BG + k2∇2 �BG −
μGnse
c2 ∇2( �EG × �A) � 0.
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However, for a charged supercurrent in the presence of both �B and �BG,
both terms in Eq. 77must be considered. Since μ0ΛL � λ−2L , then the
first term in Eq. 77 can be expressed in terms of the London
penetration depth which gives αλ−2L ~ 1018 m−2. An order of
magnitude can be calculated for the second term in Eq. 77 using β
≈ 4me/e~10

−11 kg/C andns~10
26m−3which gives ~ 10−30 m−2. Since

αμ0ΛL≫ μGnseβ, then k
2 is positive and the general solution toEq. 81 is

�BG � �c1′e−kz + �c2′ekz + �c3′z + �c4′ (82)
The general form of the solutions in Eq. 79 and Eq. 82 are also

found in [20]. Using the boundary conditions in Eq. 73 leads to
�c2′ , �c3′ , �c4′ � 0, and �c1′ � �BG,0. Therefore, the solution reduces to

�BG � �BG,0e
−kz (83)

This result predicts a diamagnetic (Meissner) effect for the
gravito-magnetic field when a magnetic field is also present. In
fact, the gravito-magnetic field is expelled with approximately the
same penetration depth as the magnetic field. Defining the
gravitational penetration depth as λG ≡ 1/k, and using Eq. 77 gives

λ−2penetration depth of �BG( ) � αλ2L − βμGnse ≈ λ−2L (84)
Therefore, it is found that �BG is expelled from the

superconductor with a penetration depth on the order of the
London penetration depth, provided a magnetic field is also
present. This observation is being taken into account for
guiding experimental work [101].

This effect can be understood by comparing how the
physics contained in Eq. 77 applies to the magnetic field
versus the gravito-magnetic field. As it applies to the
magnetic field, Eq. 77 predicts a diamagnetic (Meissner)
effect with only a miniscule modification due to the
presence of the gravito-magnetic field. However, as it
applies to the gravito-magnetic field, Eq. 77 predicts a
paramagnetic effect which is drastically altered by the
presence of the magnetic field. In fact, the alteration is so
substantial that it switches a paramagnetic effect into a
diamagnetic (Meissner) effect for the gravito-magnetic field.

This can be further understood by returning to Eq. 71 and
noticing that when α �B + β �BG < 0, or equivalently, α �B< − β �BG,
then the differential equation switches from a Helmholtz-like
equation, to a Yukawa-like equation. Physically speaking, this
mechanism can be understood by the following example.
Consider a case where the superconductor is in the presence
of a gravito-magnetic field but no magnetic field. According to
Eq. 55, there will be a small supercurrent given by
∇× �Jc � −ΛLβ �BG. Now introduce an opposing magnetic field,
α �B< − β �BG, which will cause an opposing supercurrent given
by ∇× �Jc � −ΛLα �B. Since the supercurrent will switch direction,
then the gravito-Ampere law, ∇× �BG � −μG �Jm, predicts that a
gravito-magnetic field will be produced inside the
superconductor which opposes the incident gravito-magnetic
field and therefore cancels it. This is effectively a gravito-
magnetic Meissner effect. The key feature of this concept is
that the magnetic field and gravito-magnetic field must be

generated by independent sources so that their strength and
direction can be independently adjusted. This key feature may
be missing from formulations such as [71, 72, 74, 75] which work
in terms of a single field defined as �B � �Be + m

e
�Bg or �B � �Bg + q

m
�Be.

This description also demonstrates that there is a threshold
value for the minimum magnetic field necessary to produce a
Meissner effect for the gravito-magnetic field. It is given by
α| �B|> β| �BG|. For a numerical estimate describing this
condition, again use φG/c

2 ~ 10–9 so that α = 1 + φG/c
2 ≈ 1,

and assume mec
2 ≫ eφ so that β ≈ 4me/e ~ 10−11 kg/C. Then

| �B|> | �BG|(10−11 kg/C). Therefore, it takes an extremely small
magnetic field (relative to the gravito-magnetic field) to
produce a gravito-magnetic Meissner effect.

Hence the findings above are summarized as follows:

• A supercurrent in the presence of only �B: magnetic Meissner
effect.

• A supercurrent in the presence of only �BG: no gravito-
magnetic Meissner effect.

• A supercurrent in the presence of both �BG and
�B< − �BG(β/α): both magnetic and gravito-magnetic
Meissner effects.

• A neutral superfluid in the presence of �BG: no gravito-
magnetic Meissner effect25

These results demonstrate an important interaction between
electromagnetism, gravitation, and a quantum mechanical system
that only occurs when all three are present. The superconductor
provides the quantum mechanical system which is necessary to have
any kind of Meissner effect. The gravito-magnetic field is required to
create a novel gravitational effect. Lastly, the magnetic field is
necessary to mediate the interaction. In the absence of a magnetic
field, the novel gravito-magneticMeissner effect would not take place.

Note that the conclusion that both �B and �BG penetrate
together to the same depth given by Eq. 84 was also found in
[18–22, 71, 72, 74, 75]. In the case of [19], the exponential decay
solutions in Eq. 80 and Eq. 83 are also obtained, but with the
assumption �BG,0 � (me/e) �B0. In the case of [19, 20], the Meissner
effect is shown for the combined field, e �B + 4me

�BG. Similarly [21,
22], show a Meissner effect for �B + m

e
�BG. In [20], screening

currents are taken into account by introducing the following
boundary conditions in addition to those shown in Eq. 73.

B0 − B � μ0∫ z

0
Jcdz and BG,0 − BG � −μG∫ z

0
Jmdz (85)

Using Eq. 60 and Jc � Jm(e/me) leads to a solution for both Jc
and Jm of the form J ≈ J0e−z/λL , where J0 is the current density at
the surface. Therefore, Eq. 85 becomes

B0 − B ≈ − μ0σc,0 e−z/λL − 1( ) and

BG,0 − BG ≈ μGσm,0 e−z/λL − 1( ) (86)

25The presence of �B would be irrelevant to a neutral superfluid since there is no net
charge to couple to the magnetic field.
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where σc,0 ≡ λLJc,0 and σm,0 ≡ λLJm,0 are charge and mass surface
current densities, respectively. Similarly, the solutions for �B and
�BG in [21, 22] contain σc,0 and σm,0. The combined “screening”
current also decays exponentially so that μ0σe − me

e μGσm ≈ 0 for
z ≫ λL.

The use of Eq. 86 leads to solutions for �B and �BG in [20–22]
that contain an exponential decay term plus a constant term. Due
to the constant term, [22] states that a “constant residual
magnetic and gravito-magnetic fields will exist within a pure
superconductor.” When z ≫ λ, the residual fields are

�BG ≈ �BG,0 +
μgme

μe
�B0 and

�B ≈ − m2
eμg
e2μ

�B0 − me

e
�BG,0 for z≫ λL

(87)

The following observations can be made about Eq. 87.

• It is noted in [20–22] that �B + me
e
�BG ≈ 0 is still satisfied even

for the residual fields. This means the Meissner effect for the
combined field still occurs despite the existence of these
residual fields.

• It is also noted in [20] that the absence of an external
magnetic field, �B0 � 0, makes Eq. 87 become

�BG ≈ �BG,0 and �B ≈ − me

e
�BG,0 (88)

The first expression is consistent with the absence of a gravito-
magnetic Meissner effect when there is no magnetic field. The
second expression means that a gravito-magnetic field will
generate a very small magnetic field in the interior of the
superconductor.

• It is noted in [21] that the absence of an external gravito-
magnetic field, �BG,0 � 0, makes Eq. 87 become

�BG ≈
μgme

μe
�B0 and �B ≈ − m2

eμg
e2μ

�B0 (89)

The first expression can be understood as a result of the
magnetic field generating screening currents which produce a
gravito-magnetic field. Therefore, �B0 produces �BG in the
superconductor. This leads to an interpretation of the second
expression as a second order effect where �BG produces an
additional screening current with then produces an additional
�B in the superconductor. The net result is that the magnetic field
exists slightly deeper in the superconductor than it would
otherwise be expected to. A similar explanation is given in
[20] .

• The expressions in Eq. 89 both involve μg/μ. Based on this, it
is stated in [22] that the material properties of the
superconductor will determine the residual fields which
could lead to experimentally observable gravitational effects.

• Lastly, the residual fields in Eq. 87 can be interpreted as
expressions associated with �c4 and �c4′ in Eq. 79 and Eq.
82. Recall that the boundary conditions in Eq. 73 assume

that the fields vanish for z → ∞. This leads to setting �c4
and �c4′ to zero in Eq. 79 and Eq. 82, respectively. This is
similar to setting �c3 � 0 in Eq. 72 to obtain the usual
Meissner effect. However [20–22], uses the less
restrictive requirement that the fields are finite (but
not necessarily zero) for z → ∞. Combining this with
the use of the screening currents in Eq. 86 ultimately
leads to the residual fields in Eq. 87. However, consider
if this same approach is used with the usual Meissner
effect. If �c3 is not assumed to be zero, and the first
condition in Eq. 86 is used, the solution is found to be

B � μ0σc,0e
−z/λL − μ0σc,0 + B0 (90)

Notice there are residual terms remaining when z ≫ λL.
However, setting B0 = μ0σc,0 leads to the usual solution,
B � B0e−z/λL . This corresponds to setting �c3 � 0 in Eq. 72.
Therefore, it can be argued that the residual fields in Eq. 87
are an artifact of using boundary conditions that are not
consistent with the standard Meissner effect.

In the case of [71, 72], a “generalized field” is defined as
�B � q

m
�Be + �Bg. The associated field equation is found to be

∇2 �B − 1

λ2e
− 1

λ2g
⎛⎝ ⎞⎠ �B � 0 (91)

where λe is the London penetration depth, and λg is essentially the
expression found in Eq. 75. It is recognized that Eq. 91 becomes a
Yukawa-like equation when λg > λe which leads to a “generalized
Meissner effect.” Since λg ~ 1013 m and λe ~ 10−8 m, then the
condition for a “generalized Meissner effect” is clearly satisfied. In
fact, since λg ≫ λe, then and the “generalized penetration depth”
from Eq. 91 becomes λ � (λ−2e − λ−2g )−1 ≈ λe. This demonstrates
that the penetration depth of the gravito-magnetic field becomes
the same as the London penetration depth as indicated by Eq. 84.

In [74, 75], the same approach is used except the combined
field is defined as �B � �Be + m

e
�Bg. As previously explained, using

�jg � ρg
�v, where ρg ≡ − T00, leads to �Bg � μ0λ

2
eT00∇× �v. This result

for the gravito-magnetic case has the same sign as �B � μ0λ
2
e∇×

�v
for the magnetic case. As a result, the “generalized penetration
depth” becomes λ � (λ−2e + λ−2g )−1 which has a plus rather than
the minus seen in Eq. 91. Since λg ≫ λe, then the result is still λ ≈
λe for the generalized field. However, in the absence of a magnetic
field, this difference in sign is the reason why [74, 75] still find a
gravito-magnetic Meissner effect, while [71] does not.

A final important consideration is the issue of coordinate-
freedom in linearized General Relativity. The gravito-magnetic
field, �BG � ∇× �h, is a coordinate-dependent quantity which can
be made to vanish by a linear coordinate transformation, x′μ =
xμ − ξμ. Since the linearized metric perturbation transforms as
hμ]′ � hμ] + zμξ] + z]ξμ, then �BG and �EG transform, respectively,
as [12]

�BG′ � �BG + 1
4
∇× �ξ

·
and �EG′ � �EG − �ξ

··
(92)

Therefore, the effects associated with �BG and �EG can be made
to vanish by a coordinate transformation. Alternatively, a
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coordinate-invariant approach can be used which also applies to
gravitational waves. This is discussed in [12, 38, 39].

5 ELECTRIC FIELD PENETRATION DEPTH,
ANDABSENCEOFMEISSNER EFFECT FOR
THE GRAVITO-ELECTRIC FIELD
Using �B � ∇× �A in ∇× �B � μ0

�Jc, and using �BG � ∇× �h in
∇× �BG � −μG �Jm, leads to, respectively,

∇×∇× �A � μ0
�Jc and ∇×∇× �h � −μG �Jm (93)

On the left side of both equations, we can use the identity
∇×∇× �V � ∇(∇ · �V) − ∇2 �V. On the right sides, we can use Eq.
50 and Eq. 51 in each equation respectively. This gives

∇2 �A � μ0ΛL α �A + β �h( ) + ∇ ∇ · �A( ) (94)
and

∇2 �h � −μGnse α �A + β �h( ) + ∇ ∇ · �h( ) (95)
Since zt �h � 0 in this approximation, then taking a time derivative

of Eq. 95 will have a vanishing result and therefore eliminates a
Meissner effect for the time-independent gravito-electric field (which
is the Newtonian field). This is expected since it is known that the
Newtonian field generally cannot be shielded. This conclusion is in
agreement with [20, 24], but in disagreement with [71–73].

In the case of [20, 24], the gravitational sources are non-
relativistic (Tij ≈ 0) and harmonic coordinates are used
(z]�hμ] � 0). However, it is not recognized that this leads to
zt �h � 0. Then [20] sets ∇φG = 0 (by assuming the Newtonian
gravitational field of the superconductor is negligible) which leads
to a “transverse gravito-electric field” written as �Eg � −ztAg. As a
result of this error, coupled differential equations for �E and �Eg are
obtained which have a similar form to Eq. 69 and Eq. 71. Also,
solutions for �Eg and �E have the same form as Eq. 79 and Eq. 82.
Once again, the requirement that the fields are finite (but not
necessarily zero) for z → ∞ leads to solutions which contain an
exponential decay term plus a constant term. Then it is stated that
when z≫ λ, the residual fields are given in a form identical to Eq.
87 but with �B → �E and �BG → �EG. It follows that the entire
discussion concerning Eq. 87 would apply, including the claim
that �E + me

e
�EG ≈ 0 is satisfied for the residual fields. This would

imply a Meissner effect for the combined field. However, since
�Eg � −ztAg � 0 for non-relativistic gravitational sources, then
the entire discussion becomes moot.

In the case of [71–73], the exact same problem is at the root of
the analysis. Again the gravitational sources are non-relativistic
(Tij ≈ 0). The use of harmonic coordinates is not explicitly
stated, but it is clearly implied based on the Maxwell-like field
equations appearing, and the references cited in the paper. Again
it is overlooked that zt �h � 0 in this approximation. As discussed
in [12, 28], this eliminates the gravito-Faraday law since
zt∇× �h � zt �BG � 0. However [71–73], include the gravito-
Faraday law and use it (in differing notation) to obtain
�EG � −zt �h. Then the usual approach of taking the time
derivative of Eq. 60 and using Eq. 53 leads to a Yukawa-like

equation. In the case of [73], only gravity is considered, so the
result is ∇2 �EG − λ−2g �EG � 0, where λg is the gravitational
penetration depth. In the case of [71–73], a generalized field is
defined as �E � �EG + q

m
�E, and a field equation identical to Eq. 91 is

obtained. Again, it follows that a “generalized penetration depth”
becomes λ � (λ−2e − λ−2g )−1 ≈ λe. However, since �EG � −zt �h � 0
for non-relativistic gravitational sources, then once again then the
entire discussion becomes moot.

Returning to Eq. 94, an expression for the electric field can be
obtained by taking a time derivative and using ∇(∇ ·
�E) � ∇ρc/ε0 � 0 for a uniform charge density.26

∇2 �E � μ0ΛL α �E − 1
c2
_φG

�A − 4
c2

_φ �h( ) (96)

In the absence of gravity, Eq. 96 becomes ∇2 �E � λ−2L �E. For a
superconducting slab occupying z ≥ 0, the solution is �E � �E0e−z/λL
which predicts the electric field vanishes within the
superconductor at depths beyond the London penetration
depth. However, if gravity is present, then the associated
penetration depth must be modified. If φG and φ are static,
then the solution to Eq. 96 is �E � �E0e−z/λL′ where

λL′ � α−1/2λL ≈ 1 − φG

2c2
( )λL (97)

However, if φG and φ are time-dependent, then Eq. 96 requires
obtaining solutions for �A and �h found in the coupled equations
Eq. 94 and Eq. 95. We can use the gauge condition Eq. 58 in Eq.
94 to eliminate ∇ · �A in favor of ∇ · �h which gives

∇2 �A � μ0ΛL α �A + β �h( ) − β

α
∇ ∇ · �h( ) + 1

αc2
∇ �EG · �A( ) (98)

Multiplying Eq. 95 by β/α, adding the result to Eq. 98, and
using a field defined as �D ≡ α �A + β �h gives

∇2 �D − k2 �D − 1

c2
∇ �EG · �A( ) � 0 (99)

where k is given by Eq. 77. Consider a system where
∇( �EG · �A)/c2 � 0. Since ∇φ = 0, and φG due to earth has
miniscule variation over the length scale of a superconductor,
then the solution to Eq. 99 is �D � �D0e−z/λL′ , where λL′ is given by
Eq. 78. This solution can be written as

α �A + β �h � α �A0 + β �h0( )e−z/λL′ (100)

Taking a time derivative gives

α �E − 1

c2
_φG

�A − 4

c2
_φ �h � α �E0 − 1

c2
_φG

�A0 − 4

c2
_φ �h0( )e−z/λL′ (101)

Inserting Eq. 101 into Eq. 96 gives

26In 9.4 of Griffiths [102], it is shown that any free charge density in the interior of a
normal conductor dissipates on time scales such as 10−19 s for copper. Therefore, it
is also reasonable to assume ∇ρc = 0 for the interior of a superconductor.
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∇2 �E − μ0ΛL
�He−z/λL′ � 0 (102)

where �H ≡ α �E0 − 1
c2 ( _φG

�A0 − 4 _φ �h0). The general solution is

�E � μ0ΛL
�Hλ′2L e

−z/λL′ + �C1z + �C2 (103)

where �C1, �C2 are constant vectors. Using the same boundary
conditions as Eq. 73 requires C1, �C2 � 0. Therefore, the
solution reduces to �E � μ0ΛL

�Hλ′ 2L e
−z/λL′ . An explicit function

for �H will depend on the particular time-dependence of _φ and
_φG, however, the penetration depth for �E will still be λL′ .

6 FLUXQUANTUM (FLUXOID) IN THE BODY
OF A SUPERCONDUCTOR

In Ginzburg-Landau theory, the minimal coupling rule,
P̂i → P̂i − qÂi, makes the supercurrent become

�J � e

2m
Ψp −iZ∇( )Ψ − Ψ −iZ∇( )Ψp − 2e �A Ψ| |2[ ] (104)

where Ψ(r) is the complex order parameter [94, 103]. Using Eq. 29
and Eq. 30 in Eq. 16, and promoting the canonical momentum to a
quantum mechanical operator makes the minimal coupling rule
become

P̂i → P̂i − γm 4hi − 2
c2
φGvi( ) + q ηijA

j + 4
c2
φhi − 2

c2
φGAi( )
(105)

Staying to first order in the metric perturbation, and
first order in test mass velocity, requires using γ ≈ 1 in Eq.
105. For convenience, the entire coupling vector can be
defined as

�C ≡ −m 4 �h − 2
c2
φG

�v( ) + q �A + 4
c2
φ �h − 2

c2
φG

�A( ) (106)

Then the corresponding supercurrent becomes

�J � e

2m
Ψp −iZ∇( )Ψ − Ψ −iZ∇( )Ψp + �C Ψ| |2[ ] (107)

which reduces to Eq. 104 in the absence of gravity. Using
Ψ(r) � 		

ns
√

eiϕ(r), where ϕ is the phase, leads to

�J � ens
2m

2Z∇ϕ + �C( ) (108)

An expression similar to Eq. 108 is found in [18, 19, 21, 23, 24,
26, 49], [71–75], [104, 105], however, the terms involving φ and
φG in Eq. 106 are missing. In the previous section, it was shown
that inside the body of the superconductor (much deeper than the
London penetration depth), all the fields in Eq. 48 vanish and
therefore the supercurrent velocity is zero. Therefore, using Ji = 0
in Eq. 108 and vi = 0 in Eq. 106 makes Eq. 108 become

Z∇ϕ � 4m �h − q �A − 4q
c2

φ �h + 2q
c2
φG

�A (109)

Integrating around a closed loop gives

∮
C

4m �h − q �A − 4q
c2

φ �h + 2q
c2
φG

�A( ) · d �l � Z∮
C

∇ϕ( ) · d �l (110)

Since the order parameter is single-valued, then it must return
to the same value when the line integral returns to the same point.
Therefore, the right side must be 2πn, where n is an integer.27

Applying Stokes’ theorem on the left side gives

∫
S

∇× 4m �h − q �A − 4q
c2

φ �h + 2q
c2
φG

�A( ) · d �S � Z2πn (111)

where S is the surface bounded by the curve C. Using ∇φ = 0
within the body of the superconductor, and q = −2e and m = 2me

for Cooper pairs, gives

e 1 − 2φG

c2
( )ΦB + 4me 1 + eφ

mec2
( )ΦBG +

2e
c2

∫
S

�EG × �A( ) · d �S

� n
h

2
(112)

where ΦB and ΦBG are the flux of �B and �BG, respectively. Since
φG ≪ c2 and eφ ≪ mec

2, then the result can be approximated to

eΦB + 4meΦBG +
2e

c2
∫
S

�EG × �A( ) · d �S � n
h

2 (113)

In the absence of electromagnetism, the gravito-magnetic
flux condition can be written as ΦBG � nΦBG,0, where
ΦBG,0 ≡ h/(8me) is a gravito-magnetic flux quantum
(fluxoid). This result is also found in [27, 50, 73]. The
total flux quantum in Eq. 113 is found in [17, 19, 62], and
is consistent with DeWitt’s statement in [3] that “the total
flux of �G linking a superconducting circuit must be quantized
in units of 1

2 h,” where
�G � e∇× �A +m∇× �h. However, none of

these authors have the additional term in Eq. 113 involving
the flux of �EG × �A. This may be due to applying the
approximation φG ≪ c2 before taking the curl in Eq. 111.

In the absence of gravity, Eq. 113 gives the usual magnetic flux
condition, ΦB = nΦB,0, where ΦB,0 ≡ h/(2e). This has been
experimentally verified, even for the n = 1 state [107, 108].
Using ΦB � ∫ �A · d �l around a closed loop surrounding the
fluxoid, implies that the n = 1 state leads to

A � h

4πer
(114)

where r = r0 is the radius of a fluxoid. Then Eq. 113 in the n = 1
state can be written as

eΦB + 4meΦBG +
2e
c2

∫
S0

�EG × �A( ) · d �S � h

2
(115)

27This can also be identified as an extended application of the Byers-Yang theorem
[106] which ordinarily applies only to a wave function in the presence of a magnetic
vector potential.
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where S0 is the area of a single fluxoid. Since the dominant source
of �EG is due to earth, consider a system arranged so that �A is
parallel to the surface of earth. Since �EG is approximately uniform
over the area of a fluxoid, then using Eq. 114 in Eq. 115, and
integrating, leads to

eΦB + 4meΦBG +
hEGr0
c2

� h

2
(116)

Since ΦB,0 � ∫ �A0 · d �l0 � A02πr0, then r0 � ΦB,0/(A02π)
which means Eq. 116 can also be expressed as

1 + hEG

2πc2eA0
( )ΦB + 4me

e
ΦBG �

h

2e
(117)

The two terms involving gravity are small corrections.
Therefore, solving for ΦB and keeping only lowest order terms
involving EG and BG leads to

ΦB � h

2e
− 4me

e
ΦBG −

h2EG

4πc2e2A0
(118)

This result can be interpreted as a modified magnetic fluxoid
in the presence of gravity. Since [107] used r0 ~ 10−5 m, then Eq.
114 gives A0 ~ 10−30 T·m. Therefore, the last term in Eq. 118
becomes ~ 10−54 Wb which is hopelessly too small to be observed.

For the term involving ΦBG to be comparable to ΦB, we need
me
e ΦBG,0≳ h

2e ~ 10−15 Wb. It is shown in Supplementary Appendix
SB that the gravito-vector potential of a large flywheel can be
| �h| ~ 10−21 m/s. Using ΦBG � ∫ �h · d �l0 � h2πr0 and r0 ~ 10−5 m
gives me

e ΦBG ~ 10−36 Wb. Again, this is hopelessly too small. A
more promising approach might be to use a low Earth orbit
(LEO) satellite. It is found in Supplementary Appendix SB that
the gravito-vector potential due to earth as observed by the
satellite would be | �h|LEO ~ 10−3 m/s. This leads to
me
e ΦBG ~ 10−18 Wb which implies that an experiment would
still need extreme sensitivity that can measure ΦB,0 −
me
e ΦBG,0 ~

h
2e (1 − 10−18) to demonstrate the presence of a

gravito-magnetic fluxoid.

7 SUPERCURRENT IN A CLOSED LOOP

Promoting the canonical momentum in Eq. 13 to a quantum
mechanical operator and acting on the complex order parameter
gives

P̂iΨ � γm cg0i + gijv̂
j( ) − q g0iÂ

0 + gijÂ
j( )Ψ (119)

Again use Ψ = ψeiϕ, but now let ψ � 		
ns

√
be a uniform number

density around a ring. Therefore, P̂iΨ � ZΨziϕ. Then using Eq.
119 and taking the expectation value gives

Z〈ziϕ〉 � γm cg0i + gij〈v̂j〉( ) − q g0i〈Â
0〉 + gij〈Â

j〉( ) (120)

Applying Ehrenfest’s theorem allows this equation to return to
a classical equation. Staying to first order in the metric
perturbation and test mass velocity, and using Eq. 29 and Eq.
30 leads to

Z∇ϕ � 1 − 3φG

c2
( )m �v − 1 − 2φG

c2
( )q �A + 4 1 − qφ

mc2
( )m �h (121)

This expression can be written in terms of the supercurrent
density, Ji = −qnsv

i. Then integrating around a closed loop gives

∮
C

− m

qns
1 − 3φG

c2
( ) �J − 1 − 2φG

c2
( )q �A + 4 1 − qφ

mc2
( )m �h[ ] · d �l � Z∮

C

∇ϕ( ) · d �l
(122)

Since the order parameter is single-valued, then it must return
to the same value when the line integral returns to the same point.
Therefore, the right side must be 2πn, where n is an integer.
Applying Stokes’ theorem on the left side, and using q = −2e and
m = 2me for Cooper pairs, gives

me

2ens
∮
C

1 − 3φG

c2
( ) �J · d �l + e 1 − 2φG

c2
( )ΦB + 4me 1 + eφ

mec
2( )ΦBG

+ 2e

c2
∫
S

�EG × �A − 2 �E × �h( ) · d �S � n
h

2
(123)

Since φG ≪ c2 and eφ ≪ mec
2, then the expression can be

approximated to

me

2ens
∮
C

�J · d �l + eΦB + 4meΦBG +
2e
c2

∫
S

�EG × �A − 2 �E × �h( ) · d �S

� n
h

2
(124)

This result is similar to Eq. 113 which applies to the bulk of the
superconductor. However, Eq. 124 contains additional terms

FIGURE 1 |A rotatingmassive cylinder carries amass current, �Jm, which
creates a gravito-vector potential, �h, and a corresponding gravito-magnetic
field, �BG. Note that �h points in the opposite direction of �Jm as a result of the
negative sign in ∇× (∇× �h) � −μG �Jm. A superconducting ring is coaxial
to the cylinder so that a gravito-magnetic flux exists through the ring. As the
flux of �BG increases with time, a supercurrent is induced in the
superconducting ring.
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involving �J and �E which can be non-zero on the surface of the
ring (shallower than the penetration). An expression similar to
Eq. 124 also appears in [17] [35, 109, 110], except the terms
involving �EG × �A and �E × �h are absent.

7.1 Supercurrent Quantization for a
Superconducting Ring Coaxial With a
Rotating Massive Cylinder
As a practical example, consider a superconducting ring in the
presence of a rotating massive cylinder of length ℓ and radius R.
The cylinder rotates at a constant non-relativistic angular velocity
and hence has a stationary mass current (See Figure 1).

This is effectively the same system that was considered by
DeWitt [3]. He states, “Now consider an experiment in which the
superconductor is a uniform circular ring surrounding a
concentric, axially symmetric, quasirigid mass. Suppose the
mass, initially at rest, is set in motion until a constant final
angular velocity is reached. This produces a Lense-Thirring field
which, in a coordinate system for which the metric is time-
independent, takes the form

�∇ × �h0 � 16πκ∇−2 �∇ × ρ �V( ) (125)
where κ is the gravitation constant, and ρ and �V are, respectively,
the mass density and velocity field of the rotating mass.” For a
steady-state current, the gravito-Ampere equation in Eq. 45 can
indeed be written as ∇2 �h � (4πG/c2)ρm �V. This matches Eq. 125
up to a factor of 4 (which is due to DeWitt’s �h0 being related to �h
used in this paper by �h0 � 4 �h.) Also note that DeWitt sets c = 1.

Neglecting terms that are O(c−2) in Eq. 124, and using
DeWitt’s notation, �G � e �H +m∇× �h0, where �H � ∇× �A, gives

me

2ens
∮
C

�J · d �l + ∫
S

e �H +m∇× �h0( ) · d �S � n
h

2
(126)

DeWitt states, “If �H is initially zero then so is �G. Because of the
flux quantization condition, the flux of �G through the
superconducting ring must remain zero. But since �∇ × �h0 is
nonvanishing in the final state, a magnetic field must be
induced.” This implies that DeWitt is considering a system
where every term in Eq. 126 is zero in the initial state. Then
in the final state, he requires that �J and n are still zero, but the flux
of ∇× �h0 is non-zero. Therefore, he concludes that the flux of �H
must become non-zero as well.

A similar statement is found in Papini’s paper [111] which is a
follow up to DeWitt’s paper [3]. Papini states, “The main result of
this [DeWitt’s] work is that whenever a Lense-Thirring field is
present, it is not the magnetic field which vanishes inside a
superconductor, but a combination of magnetic and
gravitational fields. Similarly, the flux which is quantized is the
total flux of magnetic and gravitational fields... It is important that
initially the total flux linking the loop be zero. The total flux is in
fact quantized in units of π and if it vanishes in the initial state, it
also vanishes in the final state. It then follows that the magnetic
flux equals in absolute value the flux of the gravitational field.”
Using Eq. 124, this condition can be written as

ΦB � −4me

e
ΦBG (127)

DeWitt states, “Suppose the rotating mass is kept
electromagnetically neutral... Then the magnetic field must arise
from a current induced in the ring. The magnitude of this current
will be

I � −4me

eL
∫
S

�∇ × �h0( ) · d �S � −16πκme

eL
∮ ∇−2ρ �V( ) · d �r (128)

where S is the area spanned by the ring, L is its self-inductance, and
the final integral is taken around the ring.” Since a static flux does
not generate a current, and the presence of inductance in Eq. 128
implies a changing current, then Faraday’s law and Eq. 127 must
have been used to obtain

dI

dt
� −1

L

dΦB

dt
� 4me

eL

dΦBG

dt
(129)

Integrating with respect to time gives ΔI � 4me
eL ΔΦBG. Then

letting the current and flux be initially zero, and using Eq. 125
leads to Eq. 128. Applying Stokes’ theorem to Eq. 128, integrating
around the perimeter of the ring with a diameter of d = 2R, and
using M � ρm(πR2

ℓ), where ℓ and M are the length and mass of
the cylinder, respectively, gives

I � −64πGme

ec2
M∇−2 �V

Lℓd
(130)

Evidently DeWitt assumes 64π
Lℓ ∇

−2 ~ 1 to obtain a result of28

IDW ~
Gme

ec2
MV

d
(131)

except he sets c = 1. However, a more accurate estimate for Eq.
128 can be obtained using the gravito-magnetic flux evaluated in
Supplementary Appendix SB as

ΦBG �
μGMR2ω

2ℓ
(132)

where 4ΦBG � ∫( �∇ × �h0) · d �S since �h0 � 4 �h. For the case of a large
flywheel (as described in Supplementary Appendix SB), we can
useM ~ 4 × 103 kg, R ~ ℓ ~ 1 m, and ω ~ 6 × 102 rad/s. For a 1 m
length of 0.25 mm diameter superconducting wire well below its
transition temperature, the inductance is on the order of L ~
10−10 H [112]. Then the order of magnitude predicted by Eq. 128
is29

IDW � 32πGme

ec2
MR2ω

ℓL
~ 10−23 A (133)

28Dimensionally, 64π
Lℓ ∇

−2 has units of A2 ·s2
kg·m, therefore Eq. 131 is not in units of

electrical current.
29An expression similar to Eq. 133 is obtained in [111] using the gravito-magnetic
field of the earth. The electric current is given by I � 8π

5
MG
c2R

ma2ω
eL , whereM, R and ω

are, respectively the mass, radius and angular velocity of the earth, and L and a are,
respectively, the self-inductance and radius of the loop.
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The following objections can be raised concerning DeWitt’s
treatment summarized above.

• The expression in Eq. 127 was obtained using an initial state
with every term in Eq. 126 set to zero, then letting �h0 be non-
zero in the final state, but requiring that �J and n still remain
zero in the final state. However, recall that Eq. 126 was
fundamentally derived from the canonical momentum in
Eq. 119 which shows that the presence of fields drives
supercurrents. In fact, this same canonical momentum led
to the London constitutive equations Eq. 50 and Eq. 51
which show explicitly the linear relationship between the
fields and the supercurrent. Therefore, making �h0 become
non-zero will have the effect of introducing a supercurrent.

• When �h0 is made non-zero, and a current is generated, the
combined expression on the left side of Eq. 126 will remain
quantized in units of h/2. However, this does not require the
system to remain in the n = 0 state. Other states are also
permitted. For example, in the body of a superconductor
where �J � 0 (and gravity is neglected), Eq. 126 reduces to
just ΦB � nh/(2e). States other than n = 0 are certainly
observed [107, 108]. The only difference with Eq. 126 is that
the presence of a supercurrent extends the quantization
condition to include the sum total of fluxes,
eΦB + 4meΦBG, as well as the current, ∮ �J · d �l.

• Since a static flux does not generate a current, then Eq. 129
must be used to obtain an induced current. However, it was
also stated that Eq. 125 was obtained “in a coordinate system
for which the metric is time-independent.” Since the right side
of Eq. 129 is zero for a time-independent metric, then no
electric current would be predicted.

With these considerations in mind, it is suggested that a correct
interpretation of Eq. 126 would be described as follows. Introducing
a non-zero BG can generate a mass current in the ring via a gravito-
Faraday flux rule. Because the mass current consists of Cooper pairs,
then there will be an associated electric current, Jc � Jm(me/e). The
electric current will produce an associatedmagnetic field and thereby
a magnetic flux in the ring. The sum total of fluxes, eΦB + 4meΦBG,
and current, ∮ �J · d �l, will be quantized according to Eq. 126. If the
total on the left side of Eq. 126 is kept smaller than h/2, then the
system will remain in the n = 0 state.

In this sense, Eq. 126 plays the role of a constraint equation
describing the quantization of the current, rather than a field
equation that can generate a flux. To elaborate on this, we can
return to the more general expression Eq. 124 and write it as

me

2ens
∮
C

�J · d �l + F � n
h

2
(134)

where the total flux through the ring is

F ≡ eΦB + 4meΦBG +
2e
c2

∫
S

�EG × �A − 2 �E × �h( ) · d �S (135)

If the current density is assumed to be uniform and only
occupies the skin of the superconducting ring (no deeper than the
penetration depth), then J � I/(πλ2L). Therefore, using Eq. 61 and

Eq. 134 leads to a quantization condition on the electric current
given by

I + 2
μ0e

F

d
� I0n (136)

where

I0 ≡
h

μ0ed
(137)

is an “electric current quantum” analogous to the magnetic flux
quantum, Φ0 � h/(2e). Similar to DeWitt, the fluxes in Eq. 135
can be expressed in terms of the properties of the massive cylinder
(such as mass density, rotation speed, etc). However, rather than
applying ∇−2 to both sides of the gravito-Ampere law as DeWitt
did in Eq. 125, we can use the expressions derived in
Supplementary Appendix SC for the potentials, fields, and
associated fluxes. This makes Eq. 135 become30

F � −1
2
πeμR4ωρc + 2πmeμGR

4ωρm − πR6eρmρcω

2εGε0c
4

2 − εrμr
4εr

+ ln
d

2R
( )[ ]

(138)
Here the relative electric permittivity and magnetic

permeability of the massive cylinder are, respectively, εr = ε/ε0
and μr = μ/μ0. Also d is the diameter of the ring. Notice from Eq.
138 that F is a continuous function of ω, however, the entire left
side of Eq. 136 is discretized and can only increase by increments
of I0. This means that even though F can change gradually, the
smallest change in F that can change the state of the system is ΔF =
μ0eI0d/2, and each change by ΔF will move the system between n
states. (If F changes by an amount smaller than μ0eI0d/2, the
quantum “rigidity” of the Cooper pair wave function will
preserve the state of the system.) However, since h/(μ0e) ~ 10−9
m·A, then macroscopic values for d will make I0 extremely small
relative to the other terms in Eq. 136. Thus for macroscopic
experiments, Eq. 136 becomes I + 2

μ0e
F
d ≈ 0 which does not

involve Planck’s constant, in accordance with the
Correspondence Principle.

For simplicity, consider if the diameter of the ring is similar to
the diameter of the solenoid (d ≈ 2R), and the solenoid is
electrically neutral (ρc � 0). This corresponds to setting the
flux of �EG × �A and �E × �h to zero in Eq. 135. Consider if ΦBG

increases with time due to either enlarging the ring with time, or
spinning up themassive cylinder from rest. The changing gravito-
magnetic flux will induce a current in the ring which points in the
direction shown in Figure 1. This is in agreement with DeWitt [3]
who states, “The current I arises from an induced motion of
electrons on the surface of the superconductor. This motion is in the
same direction as the motion of the rotating mass.” This current
will produce a magnetic field that points downward in Figure 1.
Therefore, ΦB will be subtracted from ΦBG in Eq. 135. For

30The result for F is obtained by evaluating the following expression.
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simplicity, we can approximate Bring ≈ μ0I/(2πR) over the entire
area of the ring31 Then using Eq. 132 makes Eq. 135 become

F � −eμ0IR
2

+ 8πGmeMR2ω

c2ℓ
(139)

and Eq. 136 becomes

I + 16πGme

μ0ec
2

MRω

ℓ
� 2I0n (140)

This is the quantization condition for the superconducting
ring in the configuration of Figure 1. Again, it is emphasized that
we cannot set n = 0 and claim that

I ~
16πGme

μ0ec
2

MRω

ℓ
(141)

is generated in the ring. Rather, Eq. 141 should be interpreted as
simply the smallest non-zero current that can exist in the ring.
However, next we proceed to calculate the current that will be
generated.

7.2 Induced Supercurrent in the Ring Due to
a Motional Gravitational emf
The current generated in the superconducting ring can be
evaluated by developing a gravitational version of the Faraday
flux rule. In Supplementary Appendix SD it is shown that the
Lorentz four-force in curved space-time Eq. 7 can be evaluated
to first order in the perturbation and test mass velocity to
obtain

�F � �FEM + �FG + �Fcoupled (142)
where the electromagnetic force is

�FEM � q �E + �v × �B( ) (143)
the gravitational force is

�FG � m �EG + 4 �v × �BG + 3 �v _φG/c2( ) (144)

and the electromagnetic force coupled to gravity is

�Fcoupled � q
φG

c2
�E − 3 �v × �B( ) + 4

c2
�E · �h( ) �v − 4 �h × �B[ ] (145)

The electromagnetic emf is given by

εEM ≡
1
q
∮ �FEM · d �l (146)

which leads to the usual Faraday flux rule,

εEM � −dΦB

dt
� ∮ �E + �vb × �B( ) · d �l (147)

where �vb is the velocity of the moving boundary. In
Supplementary Appendix SD, a “gravitational emf” is also
defined as

εG ≡
1
m
∮ �FG · d �l (148)

which leads to an associated “gravitational Faraday flux rule”
given by

εG � −4 dΦBG

dt
( )
constantBG

+3∮ ∇× zt �BG( ) · d �l + 3
c2

∮ _φG
�vb · d �l (149)

where the notation “constant BG” indicates that the term in
parentheses involves a time-varying boundary, not a time-
varying BG (which is accounted for in the next term). The emf
generated by a time-varying boundary can be referred to as a
motional gravitational emf, while the emf generated by a time-
varying BG can be referred to as a transformer gravitational emf.
Lastly, a “coupled emf” associated with Eq. 145 can be defined as

εcoupled ≡
1
q
∮ �Fcoupled · d �l (150)

which becomes

εcoupled � ∮ φG

c2
�E − 3 �vb × �B( ) + 4

c2
�E · �h( ) �vb − 4 �h × �B[ ] · d �l

(151)
The total emf associated with the total force Eq. 142 is

ε � ∮ 1
q
�FEM + 1

m
�FG + 1

q
�Fcoupled( ) · d �l (152)

For the system in Figure 1, there is no electric field. Also, the
gravito-scalar potential is primarily due to earth, therefore
_φG � 0. Lastly, �h × �B points radially inward while d �l circulates
around the ring, so ( �h × �B) · d �l � 0. It was also previously
explained that ΦB must be subtracted from ΦBG. With all of
these considerations, the total emf becomes

ε � −dΦB

dt
1 − 3φG

c2
( ) + 4me

e

dΦBG

dt
( )
constantBG

(153)

Since φG is primarily due to earth, then 1 − 3φG/c
2 ≈ 1 − 10−9 ~

1. For simplicity, again we can approximate Bring ≈ μ0I/(2πR)
over the entire interior area of the ring. Applying the definition of
inductance, L � − ε

dI/dt, and using Eqs 132, 153 gives

d

dt

μ0I

2πR
− 8Gme

ec2
Mω

ℓ
( )πr2[ ] � −L dI

dt
(154)

where r is the time-varying radius of the ring. Consider if the ring
is expanding at a constant rate, r = vbt, and define

31Note that Bring � μ0I/(2πR) is the magnetic field only at the center of the ring
(r � 0). At any other location in the plane of the ring, the magnetic field is

where K(k) and E(k) are the complete elliptic integral functions of the first and
second kind, respectively, with k ≡

			
4a

1+a2
√

and a ≡ r/R.
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a ≡
μ0v

2
b

LR
and b ≡

16πGmev2b
ec2

Mω

Lℓ
(155)

where a characterizes electromagnetic effects, and b characterizes
gravitational effects. Then Eq. 154 becomes

1 + 2at2( ) dI
dt

+ aIt � bt (156)

In the absence of gravity (b � 0), the equation describes the
induced changes in the current of a superconducting ring if the
ring already has a current and the size of the ring changes at a
constant rate. Therefore gravity introduces an additional driving
term, bt, to the system. If the rotating cylinder is a large flywheel
(as described in Supplementary Appendix SB), we can use M ~
4 × 103 kg, R ~ ℓ ~ 1 m, and ω ~ 6 × 102 rad/s. This leads to a
characteristic value for the current given by

I0 � b

2a
� 32πGmeε0

e

MRω

ℓ
~ 10−24 A (157)

which is indicative of the fact that gravity has a miniscule effect on
the induced changes in the current. In superconductors, L ~
10−10 H at most [112]. Also, if vb ~ 1 m/s, then a ~ 104 s−2.
Therefore, 1 + 2at2 ≈ 1 for t≪ (2a)−1/2 ~ 10−2 s. In that case, if I =
0 at t = 0, the solution to Eq. 156 is

I ≈ I0 1 − e−at
2( ) for t≪ 2a( )−1/2 (158)

Note that the values of L and vb are not relevant until t≪ 10−2 s
is no longer satisfied.

7.3 Induced Supercurrent in the Ring Due to
a Transformer Gravitational emf
As previously stated, Eq. 129 implies DeWitt was considering a
situation associated with a transformer emf (not a motional
emf) since he states, “Suppose the mass, initially at rest, is set in
motion until a constant final angular velocity is reached.” It has
been emphasized throughout this paper that the use of non-
relativistic gravitational sources and harmonic coordinates
leads to zt �h � 0, as shown in Section 3. This implies the
absence of a gravito-Faraday law and a gravitational
transformer emf.

However, to treat the system DeWitt was considering, we can
relax this requirement and permit zt �h ≠ 0. This has the effect of
turning ∇2 �h � μG

�Jm into □ �h � μG
�Jm. There are other

modifications to the gravito-electromagnetic field equations
which are discussed in [28], however, for our purposes here,
the only relevant change is the presence of a gravito-Faraday law,
∇× �EG � −d �BG/dt. Therefore, the emf induced in the ring now
involves the second term on the right side of Eq. 149. Using
Stokes’ theorem on this term and including the electromagnetic
flux leads to a total flux given by

ε � −dΦB

dt
1 − 3φG

c2
( ) + 3me

e

dΦBG

dt
( )

constant boundary

(159)

where the notation “constant boundary” indicates that the term
in parentheses involves a time-varying BG, not a time-varying
boundary. Again, 1 − 3φG/c

2 ~ 1. This leads to a result similar to
Eq. 154 but this time r = R (which is constant) but ω varies with
time. Therefore we have

μ0A

2πR
dI

dt
− 6Gme

ec2
MA

ℓ
α t( ) � −L dI

dt
(160)

where α(t) � dω/dt. Defining

a′ ≡ μ0R

2L
and b′ ≡ 6πGme

eLc2
MR2

ℓ
(161)

leads to

dI

dt
− b′
1 + a′ α t( ) � 0 (162)

Again a′ characterizes electromagnetic effects, and b′
characterizes gravitational effects. Letting I = 0 at t = 0, and
t = T when the mass cylinder reaches ωmax, leads to the following
solution to Eq. 162.

I t( ) � b′
1 + a′∫ T

0
α t( ) (163)

If α is constant, thenωmax = αT. For the case of a large flywheel,
again we can use M ~ 4 × 103 kg, R ~ ℓ ~ 1 m, and ωmax ~ 6 ×
102 rad/s. Since L ~ 10–10 H at most in superconductors [112],
then 1 + a′ ≈ a′ ~ 104 and Eq. 163 becomes

I ≈
b′ωmax

a′ � 12πGmeε0
e

MRωmax

ℓ
~ 10−25 A (164)

Note that the electric current produced by a motional
gravitational emf Eq. 157 and transformer gravitational emf Eq.
164 are not unique to a superconductor since the London equations
were not utilized anywhere in the analysis. The only feature in the
calculation unique to superconductors is the value of the inductance,
however, the inductance cancels in both calculations.

Alternatively, a treatment involving the London equations
could begin with Eq. 53. When we permit zt �h ≠ 0 and use �EG �
−zt �h for the non-conservative gravito-electric field, then Eq. 53
becomes

zt �Jc � ΛL 1 + φG

c2
( ) �E + 4me

e
�EG[ ] (165)

where we set _φG � 0 and φ = 0. An expression for �EG can be
obtained by using the gravito-Faraday law in integral form

∫ �EG · d �l � −dΦBG

dt
(166)

Applying this to the ring and using Eq. 132 leads to a
magnitude given by

EG � GMRα t( )
c2ℓ

(167)

where α(t) � dω/dt. Likewise, an expression for �E can be
obtained using Faraday’s law in integral form and
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approximating Bring ≈ μ0I/(2πR) over the entire interior area of
the ring. This leads to a magnitude given by

E � μ0
4π

dI

dt
(168)

As previously stated, the effect of Eqs 167, 168 are in opposite
directions. Therefore, using Eq. 165 as well as J � I/(πλ2L) and
Eq. 61, and approximating 1 + φG/c

2 ≈ 1 leads to

dI

dt
� 16πGmeε0

5e
MRα t( )

ℓ
(169)

This has the same form as Eq. 162 and therefore has a solution
similar to Eq. 163.

I t( ) � 16πGmeε0
5e

MR

ℓ
∫ T

0
α t( ) (170)

Assuming α is constant, and using the same parameters for a
large flywheel again leads to

I � 16πGmeε0
5e

MRωmax

ℓ
~ 10−26 A (171)

Again, the result is not dependent on the inductance, and the
value is comparable to Eq. 164. It is arguable that the result
obtained in Eq. 171 is more reliable since it is calculated using the
London equation which is derived from the canonical
momentum. Therefore, it stems from a quantum mechanical
approach (since the canonical momentum operator acting on the
Ginzburg-Landau order parameter leads to the London

equations). In contrast, Eq. 171 is derived from a purely
classical equation of motion (the geodesic equation of motion
with a Lorentz four-force).32

7.4 Gravitational Hall Effect in the Ring
Due to the current in the ring and the presence of magnetic and
gravito-magnetic fields, there will be a corresponding Hall effect
as shown in Figure 2.

Following the usual derivation of the Hall effect, we begin with
the total force on the charge carriers. As previously stated, _φG � 0
for the gravito-scalar potential of earth. However, now we let
�E ≠ 0 since charge carriers will accumulate on opposite sides of a
cross-section of the ring, as shown in Figure 3. Therefore Eq. 142
becomes

�F � q �Ep + �vs × �B( ) +m �EG + 4 �vs × �BG( )
+ q

φG

c2
�Ep − 3 �v × �B( ) + 4

c2
�Ep · �h( ) �v − 4 �h × �B[ ] (172)

where vs is the velocity of the supercurrent around the ring, and
�Ep is the electric field produced due to the polarization across the
cross-section of the ring. The current on one side of the ring will
generate a magnetic field that points downward on the other side
of the ring. This will generate a magnetic force that points radially
inward on Cooper pairs which are negative charge carriers
(q � −2e). Meanwhile, the gravito-magnetic field will produce
a force that also points radially inward on Cooper pairs which are
mass carriers (m � 2me). For simplicity, assume �B points directly
down through the ring, and �BG points directly up so that
| �vs × �B| � vsB and | �vs × �BG| � vsBG.

The net effect of the magnetic and gravito-magnetic forces
is to cause Cooper pairs to accumulate on the inner perimeter
of the ring. As a result, there will be an electric field pointing
radially inward. There will not be any �EG in the radial direction
since �EG due to earth points downward, and �EG due to dΦBG/dt
is azimuthal. Also note that �Ep · �h � 0 since �h is azimuthal but
�Ep is radial. However, �h × �B points in the radially inward
direction. Therefore, the radial component of Eq. 172 becomes

Fr � 2eEp 1 + φG

c2
( ) − 2evsB 1 − 3φG

c2
( ) − 8mevsBG − 8e �h

∣∣∣∣∣ ∣∣∣∣∣B
(173)

Following the usual derivation of the Hall effect, the total
radial force on the charge carriers will be zero for a steady-state
current. Also using �J � nse �vs and J � I/(πλ2L), as well as Eq. 61,
leads to

I � πmevs
μ0e

(174)

Then approximating 1 − 3φG/c
2 ~ 1 makes Eq. 173 become

FIGURE 2 | A polarization electric field, �Ep, occurs as a result of the
supercurrent I in the presence of �BG. The width of the cross-section of the ring
is w, and a corresponding Hall potential, VH = wEp, would exist between the
inner and outer surface of the ring.

32This is analogous to the fact that in the absence of gravity, the correct London
equation cannot be derived using the total Lorentz force on Cooper pairs.
Specifically, using mezt �v � e( �E + �v × �B) and �J � nse �v would imply zt �J � ΛL( �E +
�v × �B) which is incorrect. The correct London equation is obtained from the
Lorentz force only when �v × �B is neglected which demonstrates that a classical
approach using a force equation is questionable.

Frontiers in Physics | www.frontiersin.org November 2022 | Volume 10 | Article 82359224

Inan Superconductor Meissner Effects for Gravito-Electromagnetic Fields

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Ep � μ0I

π

e

me
B + 4BG( ) + 4 �h

∣∣∣∣∣ ∣∣∣∣∣B (175)

We can approximate Bring ≈
μ0I
2πR and use BG � μGMω

2πℓ and | �h| �
μGMRω
4πℓ from Supplementary Appendix SB. Also writing the hall

potential asVH = wEp, where w is the width of the cross-section of
the ring, leads to

VH � μ20e

2π2me

I2

wR
+ 10Gμ0

πc2
MωI

ℓw
(176)

The first term is purely electromagnetic and quadratic in the
current, while the second term involves gravitational effects and is
linear in the current. In fact, for the case of a large flywheel (M ~
4 × 103 kg, R ~ ℓ ~ 1 m, ω ~ 6 × 102 rad/s), the two terms become
comparable when

I � 20πε0Gme

e

MωR

ℓ
~ 10−23 A (177)

This is similar to the result obtained in Eq. 157. Using Eq. 177
and ω ~ 10−4 m in Eq. 176 gives

VH � 20Gμ0
πc2

MωI

ℓw
~ 10−23 V (178)

A gravitational Hall effect for a superfluid is also considered in
[27], however, no Hall potential value is obtained.

7.5 Induced Force on the Ring
Lastly, consider if the ring is raised some distance above the
massive cylinder so that �BG at the ring is not completely in the
vertical direction, as shown in Figure 3.

A vertical force on the ring will exist due to the current in the
ring and the gravito-magnetic field of the mass cylinder. This
effect is analogous to the “jumping ring” experiment where a
magnetic force is evaluated using �F � I ∫d �l × �B and is found to

be F = 2πRIB sin θ, where B is an externalmagnetic field, and θ is
the angle shown in Figure 3. However, to deal with the
gravitational case, we can start with the total force in Eq. 142
and set �E � 0 and _φG � 0. Neglecting the weight of the ring gives

�F � q �v × �B +m �EG,ind + 4 �v × �BG( ) − 3qφG

c2
�v × �B − 4q �h × �B

(179)
where �EG,ind is the gravito-electric field induced by the time-
varying gravito-magnetic flux. Since �EG,ind is azimuthal, it only
serves to drive the supercurrent and does not contribute to any
vertical force on the ring. Likewise, �h × �B and �vs × �B also do not
contribute to a vertical force since �B points downward, but vs and
�h are azimuthal.
Recall that the differential magnetic force in a current segment,

d �F � Id �l × �B, is obtained from �F � q �v × �B by using qv → Idl.
Similarly, for the gravitational force, we can usemv→ Imdl, where
Im is the mass current which is related to the electric current by
I � Im(me/e). Since d �l is azimuthal and BG has no azimuthal
component, then |d �l × �BG| � BGdl. However, the component of
dF in the vertical direction is dF sin θ, as can be seen from
Figure 3. Therefore, the differential force in the vertical
direction for each differential segment is

dF � 4me

e
IBG sin θdl (180)

In Supplementary Appendix SB, the gravito-magnetic field
along the axis of the mass cylinder is found as BG � μGMω/(2πℓ).
Since the field near the end of a solenoid is approximately half of
that at the center. Then the total force around the ring can be
approximated as

F � 8πGme

c2e

MRIω

ℓ
sin θ (181)

Approximatingθ≈300,using thecaseofa largeflywheel (M~4×
103 kg,R~ℓ~1 m,ω~6×102 rad/s), and I~10−26Aobtained inEq.
171 leads to F ~ 10−57 N which is completely negligible. To get a
more substantial effect, an electric current can be driven in the ring
prior to introducing BG from the massive cylinder. It is shown in
Supplementary Appendix SB that the maximum supercurrent
velocity that preserves the superconducting state is v ~ 104 m/s.
Then using Eq. 174 leads to

I � πmevs
μ0e

~ 10−1 A (182)

This is a factor of 1025 larger than the current induced by BG.
Furthermore, it was previously mentioned that in a low Earth
orbit (LEO) satellite, the gravito-vector potential due to earth
(as observed by the satellite) is hLEO ~ 10−3 m/s. Compared to
the large flywheel (h ~ 10−21 m/s) this leads to another factor of
1018 increase for BG. As a result, the force on a ring could be F ~
10−14 N.

On a related note, the factor of 1018 increase in �h would also
increase the electric current produced by a motional emf Eq. 157
and by a transformer emf Eq. 171 so that they become I ~ 10−6 A

FIGURE 3 | A superconducting ring placed above a rotating mass
cyldiner. At the location of the ring, �BG makes an angle θ with respect to the
vertical line. The differential force in the vertical direction is d �F sin θ.
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and I ~ 10−8 A, respectively. Also, using hLEO ~ 10−3 m/s makes
Eq. 177 become I ~ 10−5 A and the Hall potential in Eq. 178
becomes VH ~ 10−1 V.

Since the gravito-vector potential of the earth cannot be
controlled (unlike that of a spinning flywheel), an option for
controlling the exposure of the system to �hwould be to place the
system in an enclosure surrounded by superconducting
material. The gravitational Meissner effect described in
Section 4 could be used to shield the system from �h by
controlling the temperature of the enclosure material such
that it can transition above and below the critical
temperature for the superconducting state.

8 CONCLUSION

The following are key results demonstrated uniquely in this paper.

• The canonical momentum for a relativistic spinless charged
particle in curved space-time is obtained in Eq. 13 as

Pi � γm cg0i + gijv
j( ) − q g0iA

0 + gijA
j( ) (183)

where the Lorentz factor in curved space-time is γ � 								−gμ]vμv]
√

.
This result is valid to all orders in the metric and particle velocity.
It can also be written as simply pi = Pi − eAi which is consistent
with the covariant minimal coupling rule, Pμ → Pμ − eAμ.

• A corrected version of DeWitt’s Hamiltonian Eq. 1 is given
by the “space + time” Hamiltonian shown in Eq. 20 as

H � c ~gjkg0jg0k − g00( )1/2 m2c2 + ~gjk Pj − eg0jA
0 − egjlA

l( ) Pk − eg0kA
0 − egkmA

m( )[ ]1/2
−c~gjkg0k Pj − eg0jA

0 − egjlA
l( ) − ec g00A

0 + g0jA
j( ) (184)

where ~gjk ≡ gjk − g0jg0k/g00. This is shown to be equivalent to
the “space + time”Hamiltonian derived by multiple other authors
in Eq. 23, Eq. 24, and Eq. 25.

• The Hamiltonian that is first order in the metric
perturbation and second order in momentum is found in
Eq. 28 to be

H � mc2 + 1
2m

Pi − eAi( )2 − ch0i Pi − eAi( ) − 1
2
h00mc2 − ecA0

−h00
4m

Pi − eAi( )2 − hij
2m

Pi − eAi( ) Pj − eAj( ) − h0i
2m

eA0 Pi − eAi( )
(185)

The last three terms in Eq. 185 are missing from DeWitt’s
result in Eq. 2 which is

HDW � 1
2m

�P − e �A −m �h0( )2 − eA0 − 1
2
mh00 (186)

It is also shown that contrary to Eq. 186, a coupling of the
form h0iA

i is absent in Eq. 185, and a coupling of the form mh20i
is second order in the perturbation and therefore absent. It is

pointed out that Eq. 186 is quoted by a multitude of authors, or
obtained by authors by starting from H � 1

2mP
2 + V and using

�P → �P − e �A −m �h instead of the full canonical momentum in
Eq. 183.

• A consistent approach to obtaining the weak-field, low-
velocity Hamiltonian requires an expansion to second
order in the perturbation and fourth order in the
momentum. For non-relativistic gravitational sources
in harmonic coordinates, the Hamiltonian is found in
Eq. 32 to be

H � mc2 + eφ + ~P
2

2m
+mφG

⎛⎝ ⎞⎠ + 2eφGφ

c2
+ 3φG

~P
2

2mc2
+ 2eφGA

i ~Pi

mc2
− mφ2

G

2c2
− ~P

4

8m3c2
⎛⎝ ⎞⎠

+ 11φ2
G
~P
2

4mc4
+ 2e2A2φ2

G

mc4
− eAiφG

~Pi
~P
2

m3c4
− 5φG

~P
4

8m3c4
+ 6eφ2

GA
i ~Pi

mc4
⎛⎝ ⎞⎠ − 4hiPi .

(187)

where ~Pi ≡ Pi − ηijA
j, ~P

2
i � ~Pi ~Pi andA2

i � AiAi. It is shown
that the closest form to a Hamiltonian similar to DeWitt’s in
Eq. 2 is obtained only if the electromagnetic potentials are
reduced to absurdly small (but non-zero) values: A ~ 10−32 T·m
and φ≪ 10−44 V. Then the result is found in Eq. 31 to be

H � mc2 +mφG − mφ2
G

2c2
+ eφ + Pi − eηijA

j( )2
2m

− 4hiPi + 8mh2

(188)

• Quantizing the Hamiltonian in Eq. 188 leads to a modified
Schrödinger equation:

iZztψ x, t( ) � 1
2m

−Zzi − eηijA
j( )2 + 4iZhizi + 8mh2 +mφG − mφ2

G

2c2
+ eφ[ ]ψ x, t( )

(189)

It is shown that using a solution of the form
ψ(x, t) � eiϕψ0(x, t), where ψ0(x, t) is the solution to the
field-free Schrödinger equation, does not lead to a phase given
by ϕ � 1

Z∫ ηij(eAj + 4mhj)dxi, as commonly found in the
literature.

• The canonical momentum Eq. 183 is used to develop
modified London equations Eq. 53–Eq. 56, and a
modified gauge condition Eq. 58 .

• The gravito-magnetic field, �BG, is expelled from a
superconductor in a Meissner effect only if there is
also a magnetic field satisfying �B< − �BG(me/e). This
observation is being taken into account for guiding
experimental work [101]. The associated penetration
depth is found in Eq. 84 to be on the order of the
London penetration depth:

λ′−2L � αλ2L − βμGnse ≈ λ−2L (190)
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where α ≡ 1 + φG/c
2 and β ≡ 4(mec2 + eφ)/(ec2). Also, the

presence of gravity leads to a slightly modified penetration
depth for �B which is also given by Eq. 190.

• In the absence of �B, there is no Meissner effect for �BG.
Instead, the field has an oscillatory solution with spatial
periodicity found in Eq. 74 to be

λ periodicity of �BG( ) ≡
2π							

4μGnsme

√ (191)

• For non-relativistic gravitational sources (in harmonic
coordinates), the gravito-electric field, �EG, is time-
independent (which is just the Newtonian field) and is not
expelled from a superconductor. However, the presence of �EG

leads to a small correction to the penetration depth of �E which
becomes Eq. 190. The general solution is

�E � μ0ΛL
�Hλ′2L e

−z/λL′ (192)
where �H ≡ α �E0 − 1

c2 ( _φG
�A0 − 4 _φ �h0), and �E0, �A0, �h0 are the fields

at the surface of the superconductor (z � 0).

• The flux quantum (fluxoid) in the body of a superconductor
is found in Eq. 113 to be

eΦB + 4meΦBG +
2e
c2

∫
S

�EG × �A( ) · d �S � n
h

2
(193)

The first two terms involving eΦB and meΦBG are common in
the literature, but the flux of �EG × �A is not. In the absence of
electromagnetism, the gravito-magnetic flux condition can be
written as ΦBG � nΦBG,0, where ΦBG,0 ≡ h/(8me) is a gravito-
magnetic flux quantum (fluxoid). For a low Earth orbit (LEO)
satellite, | �h|LEO ~ 10−3 m/s which implies that demonstrating the
presence of a gravito-magnetic fluxoid would require an
experiment with sensitivity that can measure
ΦB,0 − me

e ΦBG,0 ~
h
2e (1 − 10−18), where h is Planck’s constant.

• Similarly, the quantized supercurrent in a superconducting
ring is found in Eq. 124 to be

me

2ens
∮
C

�J · d �l + eΦB + 4meΦBG +
2e
c2

∫
S

�EG × �A − 2 �E × �h( ) · d �S

� n
h

2
(194)

Again, the terms involving eΦB andmeΦBG are common in the
literature, but the flux of �EG × �A and �E × �h are not. This can also
be written as a quantization condition on the electric current
given by Eq. 136 as

I + 2
μ0e

F

d
� I0n (195)

where d is the diameter of the ring, F is the total flux of fields
through the ring as shown in Eq. 194, and

I0 ≡
h

μ0ed
(196)

is an “electric current quantum” analogous to the magnetic flux
quantum, Φ0 � h/(2e).

• For the case of a superconducting ring coaxial with a rotating
massive cylinder (flywheel), the induced supercurrent
predicted by DeWitt is found using Eq. 195. Using a large
flywheel (M ~ 4 × 103 kg, R ~ ℓ ~ 1 m, ω ~ 6 × 102 rad/s), and
assuming the diameter of the ring is d ≈ 2R, leads to

IDW � 32πGme

ec2
MR2ω

ℓL
~ 10−23 A (197)

This result depends on L ~ 10−10 H for the inductance of the
superconductor. In comparison, using a motional gravitational
emf (a time-varying boundary of the ring) leads to an electric
current in the ring given by Eq. 157 as

I � 32πGmeε0
e

MRω

ℓ
~ 10−24 A (198)

For a transformer gravitational emf (a time-varying �BG), using
an inductance approach leads to Eq. 164 which gives

I � 12πGmeε0
e

MRωmax

ℓ
~ 10−25 A (199)

This result does not depend on inductance because it cancels out
in the analysis. Alternatively, using a gravito-Faraday law and
London equation approach leads to Eq. 171 which gives

I � 16πGmeε0
5e

MRωmax

ℓ
~ 10−26 A (200)

It is argued that Eq. 197 is not a valid result since it is based
on setting n = 0 and I = 0 in Eq. 195 which contradicts I ≠ 0 in
Eq. 197. It is also argued that for a transformer gravitational
emf, the result in Eq. 200 is likely more valid than Eq. 199
because Eq. 199 is based on a purely classical analysis (not
unique to a superconductor) while Eq. 200 employs the
London equation which is fundamentally quantum
mechanical.

• A gravitational Hall effect is found to occur between the
inner radius and outer radius of the superconducting ring
with a Hall potential given by

VH � 20Gμ0
πc2

MωI

ℓw
~ 10−23 V (201)

• If the ring is positioned above themass cylinder, a vertical force
is induced in the ring which is found in Eq. 181 to be

F � 8πGme

c2e

MRIω

ℓ
sin θ (202)

where θ is the angle of �BG relative to the vertical line
through the plane of the ring. Using the current induced by
the large flywheel mentioned above leads to F ~ 10−57 N.
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Alternatively, using the maximum supercurrent that preserves
the superconducting state (I ~ 10−1 A), and using | �h|LEO ~ 10−3
m/s for a low Earth orbit (LEO) satellite, leads to F ~ 10−14 N.

• Since | �h|LEO ~ 10−3 m/s is a factor of 1018 larger
than | �h| ~ 10−21 m/s produced by the large
flywheel, then the electric current produced by a
motional gravitational emf Eq. 157 and a transformer
gravitational emf Eq. 164 become I ~ 10−6 A and I ~
10−8 A, respectively. Also, the Hall potential in Eq. 201
becomes VH ~ 10−1 V.
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