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Piezoelectric effect has proved itself to be a promising energy conversion mechanism that
can convert mechanical energy into electricity. Here, we propose an indirect thermoelectric
conversion mechanism based on a combination of the thermophoresis and piezoelectric
effects. We first analyze this thermally driven mechanism using a simplified theoretical
model and then numerically analyze a molecular dynamics (MD) simulation of a hybrid
system constructed of a single-layer MoS2 nanoribbon and a concentric carbon nanotube.
We show that the thermophoresis-induced piezoelectric output voltage can reach 3.5 V,
and this value can be tuned using a temperature difference. The output voltage obtained
using this mechanism is significantly higher than that obtained by heating piezoelectric
materials directly. Given the generality of the thermophoresis effect in Van der Waals
structures, this mechanism has potential applications in the conversion of thermal energy
into electrical energy at the nanoscale level.
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INTRODUCTION

The thermoelectric and piezoelectric effects, which, respectively, convert heat and mechanical energy
into electricity, have attracted tremendous attention in the past few decades. Significant efforts have
been devoted to improving thermoelectric conversion efficiency by suppressing lattice thermal
conductivity [1–8] or engineering electronic band structures [9–17] to enhance the power factor.
However, thermoelectric conversion efficiency is still limited by the complex coupling relations
between phonons and electrons [18–20]. The piezoelectric effect converts mechanical energy into
electricity directly and has been applied in nanowires [21–23], thin films [24], and organic–inorganic
perovskites [25]. However, the piezoelectric effect generally converts artificial or ambient mechanical
energy rather than heat energy into electrical power. Although piezoelectric materials can also realize
thermoelectric conversion via the pyroelectric effect, this relies on a constantly changing temperature
[26]. There is still a challenge when it comes to converting heat energy into electrical energy through
the piezoelectric effect when the system is at a constant temperature difference. Encouragingly, the
experimental observation of the piezoelectric effect in 2D materials suggests an opportunity for
thermoelectric conversion based on piezoelectric materials [27].

Recently, thermally driven piezoelectric conversion has attracted extensive attention in energy
conversion [28]. Our previous study has demonstrated that output voltages as large as 0.34 V can be
obtained by thermally induced deflection of GaN nanowires [29]. A similar conversion mechanism
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has also been observed in 2Dmaterials such as h-BN nanoribbons
[30]. This conversion mechanism depends on direct heating to
trigger the deflection of piezoelectric materials. Another
promising mechanism called the thermophoresis effect, which
converts thermal energy into mechanical energy, has also been
confirmed by theory [31, 32] and experiment [33] and has shown
great potential for application in energy conversion [34].
According to the motion style, thermophoretic motion can be
classified into two major categories. One is linear motion, in
which the mover undergoes translational motion relative to the
stator. The other one is known as rotation, in which the rotor
rotates along the axis of the stator. The thermophoresis effect has
been identified in many different materials that are connected by
Van der Waals (vdW) interactions, such as bilayer graphene [35],
h-BN/graphene vdW heterostructures [36], and concentric
double-walled carbon nanotubes (CNTs) [37–40].

Here, we theoretically propose a thermoelectric conversion
mechanism based on a combination of interface thermophoresis
and piezoelectric effects. This allows for energy conversion from
heat to mechanical to electrical energy, by combining the
thermophoresis and piezoelectric effects into one system. The
key point here is the generation of a considerable low-frequency
periodic strain in the piezoelectric material via a thermophoresis
oscillator (mover CNT). Generally, large vibrational amplitude
can be effectively induced through a resonance effect, with the
frequency of an external excitation (such as the temperature
gradient and/or external force) being equal to or close to the
natural (eigen) frequency of the material [41]. However, the
vibrations are composed of many different high-frequency
lattice waves when a temperature difference is directly applied
to piezoelectric materials [42]. Such high-frequency vibrations
are hardly harvested by piezoelectric materials.

Since the mover and stator of the thermophoretic system are
bonded by vdW interactions, the dynamical properties of the
thermophoretic mover are dependent not only on the thermal
properties of the stator but also on the strength of the vdW
interactions between the stator and mover. Recently, theoretical
studies have shown that the vibration induced by the
thermophoresis effect can be periodic and tuned by a
temperature difference [38, 40, 43]. Therefore, the
thermophoresis effect is a promising way to realize thermally
induced piezoelectric conversion. Based on the thermophoresis
effect, we have designed a composite structure made of a
concentric CNT network and a suspended MoS2 nanoribbon
with two fixed leads, as depicted in Figure 1. The mover CNT
(outer tube) will be pushed to move when a temperature
difference is established between both ends of the stator CNT
(inner tube). The mover CNT then serves as the strain source for
the 2D piezoelectric material to realize the thermally driven
piezoelectric conversion.

RESULTS AND DISCUSSION

The entire piezoelectric vibration system can be simplified into an
oscillator model with an external driving force. We first present
an atomic chain model with two fixed leads to illustrate the
dynamical properties of the system, shown in Figure 2A.
Considering the mover CNT mainly acts on the central region
of the nanoribbon, a similar periodic driving force is applied to
the central area of the atomic chain to serve as the non-
equilibrium phonon-transport-induced thermal driving force.
Considering the wave nature of the lattice vibrations, the
assumption of a periodic thermal driving force is reasonable.
We also provide a phonon wave-packet simulation [44] for the
phonon-transport-induced thermal driving force to illustrate our
assumption (see Supplementary Material). Here, we consider
only the nearest neighbor atomic interactions and the internal
damping force acting on the oscillator. Then, the equation of
motion of the oscillators can be written as follows:

m€r + λ _r + kr −∑
i

Fi cosωit � 0,

where k is the spring constant of the harmonic oscillator, r is the
position of the atoms,m is the atomic mass, and λ is the damping
factor (λ = 0.1). The external driving forces are a linear
combination of forces with different frequencies (ωi) and
amplitudes (Fi).

As we can see in Figure 2B, in the case of forced vibration,
the amplitude of the system in all directions is very small until
the driving force is applied. Subsequently, the out-of-plane
vibration fluctuates significantly but soon converges to a
stable state (with an amplitude of around 0.4 nm), and the
in-plane vibrations (in the x and y directions) are still very
small. In contrast, the amplitude of the elastic vibration is
around one magnitude less than that of the forced vibration,
and the frequency of the elastic vibration is much higher than
that of the forced vibration. We further analyze the vibrational
properties in the frequency domain with and without the

FIGURE 1 | Sketch of the thermoelectric conversion process driven by
thermophoresis and piezoelectric effects. The concentric carbon nanotube is
made of an [4, 4] inner tube and [8, 8] outer tube with the length of 36.9 and
3.3 nm, respectively. An armchair edge MoS2 nanoribbon with the
length of 21.9 nm is adopted, and the different widths of the nanoribbon (1.58,
2.21, and 2.84 nm) are investigated for comparison.
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external driving force. As we can see in Figure 2C, the natural
vibration of the oscillator (without the driving force) displays
multi-frequency peaks (blue solid line). By contrast, the
vibrational frequency of the oscillator is significantly
reduced in the presence of an external driving force (red
solid line). There are only two obvious vibration
frequencies that can be observed. We further change the
driving force frequency to calculate the amplitude of the
oscillator (from 0.008 THz to 0.12 THz). As shown in
Figure 2D, when the driving force frequency approaches
the natural frequency of the oscillator, the amplitude of the
oscillator is significantly enhanced. These results suggest that
the vibrational amplitude and frequency of the oscillator can
be effectively controlled as long as we can tune the
driving force.

The toy model gives positive results for the realization of
thermally driven deflection. However, the actual system is far
more complex than this toy model. One may wonder whether the
thermophoretic driving force is sufficient to induce a considerable
low-frequency vibration on the actual piezoelectric material. For
this purpose, we further adopt a molecular dynamics (MD)
simulation to investigate the thermally driven vibration of the
MoS2 nanoribbon in two cases (1): the temperature difference is

directly applied at both ends of the suspended MoS2 nanoribbon
to trigger the lattice vibrations (2); the temperature difference is
applied to both ends of the stator CNT (the inner tube in
Figure 1) to induce the thermophoretic motion of the mover
CNT (the outer layer CNT in Figure 1), thereby triggering the
deflection of the nanoribbon. In both cases, the entire system is
first relaxed at the NPT ensemble for 0.2 ns. Next, Nose–Hoover
thermostats are applied at both ends of the CNT. The time step is
set to 0.1 fs. The vibrational trajectory of the MoS2 nanoribbon
is collected every 2 ps to characterize the vibration state. The
original and modified AIREBO potentials are adopted for the
MoS2 and CNT, respectively [45, 46]. The vdW interactions
between the MoS2 and CNT are described by the Lenard–Jones
potential with parameters σC-Mo = 3.075, εC-Mo = 3.32 meV,
σC-S = 3.513, and εC-S = 7.35 meV [47]. All of the MD
simulations were performed using the LAMMPS code.

We first discuss the vibrational properties of the MoS2
nanoribbon in the case of direct heating. As shown in
Figure 3A, a temperature difference ΔT = 210 K (around
9.6 K/nm) is established at both ends of the suspended
nanoribbon to induce lattice vibration. The vibrational
trajectory of the MoS2 nanoribbon is shown in Figure 3B, and
we can see that the average amplitude is around 0.1 nm in the out-

FIGURE 2 | (A) Model of the atomic chain and MoS2 nanoribbon with a periodic thermal driving force. Here, atom number N = 21. (B) Vibration trajectory of the
center atom in the range of 0–4 ns and 10–12 ns (inset), where the driving force amplitude Fi = 1, 0.5, 0.25 eV/Å and the corresponding frequency ωi = 0.008, 0.08, and
0.8 THz, respectively. (C) Vibration frequency distribution of forced vibration and elastic vibration (without external driving force and damping force). (D) Vibration
amplitude of atomic chain versus the driving force frequency when the driving force amplitude F1 = 0.2, 0.4, 0.6, 0.8, and 1.0 eV/Å, respectively.
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of-plane direction and around 0.2 nm in the in-plane direction. In
addition, as shown in Figure 3C, the frequency domain clearly
shows three obvious vibration states at 0.049, 0.065, and
0.122 THz. This is in qualitative agreement with the results of
the elastic vibration model in theoretical analysis. It is worth
noting that the in-plane deflection of the nanoribbon can reach
0.2 nm. This seems to suggest that the direct heating method is a
promising way to trigger piezoelectric effects. However, a
theoretical study has pointed out that high-frequency vibration
reduces the conversion efficiency of piezoelectric materials [48].

As a comparison, we establish the same temperature difference
at both ends of the stator CNT (a temperature gradient of around
5.8 K/nm), as shown in Figure 3D. It should be mentioned that
this temperature gradient is reasonable. Both theoretical [31, 38]
and experimental [33, 49] studies suggest that a maximum
thermal gradient of around 10 K/nm can be imposed on the
CNT. The vibrational trajectory of the MoS2 is shown in
Figure 3E. We can see that the amplitude of the out-of-plane
vibration is around 0.5 nm, while the amplitude of the in-plane
vibration is almost negligible. The out-of-plane vibrational
amplitude is significantly enhanced, and the in-plane
vibrational amplitude is suppressed in comparison with direct
heating of the nanoribbon. More importantly, the vibration of the
nanoribbon also exhibits good periodicity. This is equivalent to
applying a periodic strain in the out-of-plane direction of the
nanoribbon. This result is consistent with the simplified model
and satisfactorily proves the feasibility of our core idea.

To be prudent, the presence of damping forces in this
system should be further verified to exclude false periodicity

caused by elastic vibration. As shown on the right side of
Figure 3E, we remove the temperature difference after 3 ns,
and thus, the whole system is at room temperature (300 K).
The vibration of the MoS2 nanoribbon is damped without
external energy input. This proves the reliability of the
thermally induced periodic vibration. On another hand, it
also suggests that the switching state of the system can be
flexibly controlled by applying/removing the temperature
difference. More importantly, as shown in Figure 3F, the
frequency domain shows a major vibration peak at about
0.01 THz. The vibrational frequency of out-of-plane modes
is suppressed by up to 5 times compared to the direct heating
method, and the amplitude is increased by up to 2 times. For
piezoelectric materials, a lower vibrational frequency usually
means a higher energy conversion efficiency [48]. This
means that the hybrid system driven by the
thermophoresis effect will obtain a higher conversion
efficiency and output voltage.

Another question is whether the thermophoretic driving
force can be effectively regulated in such a system. Recent
studies have shown that the natural frequency of materials will
be shifted when the ambient temperature is changed [50–53].
This suggests that the frequency of the thermophoretic force
can be tuned by changing the temperature difference between
the left and right leads. For this reason, we further investigate
the temperature-dependent average amplitude of the MoS2
nanoribbon. As shown in Figure 4A, the average amplitude of
the MoS2 nanoribbon is increased with increasing temperature
difference when ΔT < 270 K. There is a maximum amplitude at

FIGURE 3 | (A) Heated bath at both ends of the MoS2 nanoribbon: (B) the vibration trajectory and (C) the vibration frequency distribution when observed from the
center area of the MoS2 nanoribbon. (D)Heated bath on both ends of the inner CNT. (E) Vibration trajectory of the MoS2 nanoribbon. The left/right side of the red dashed
line corresponded to the situation of with and without the heated bath, respectively. (F) Vibration frequency distribution of the MoS2 nanoribbon when the inner CNT is
heated.
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ΔT = 270 K, which is qualitatively consistent with the
amplitude increase as predicted by the theoretical analysis.
This effect illustrates that the temperature difference can
effectively regulate the driving force frequency and then
tune the thermally induced vibrational amplitude.

To confirm the piezoelectric performance, the size-dependent
piezoelectric constant of the MoS2 is calculated using a density
functional theory (DFT) calculation, as shown in Table 1. The
piezoelectric potential distribution under a periodic strain is
calculated with the help of the finite element method. The
parameters of the MoS2 used for the simulation are as follows:
Poisson ratio 0.32 [54], Young’s modulus 330 GPa [55], mass
density 4,800 kg/m3, and relative permittivity 3.5 [56]. Here, the
piezoelectric constant and elastic constant of the MoS2 with
different widths are obtained from a DFT calculation as
implemented in the ATK package. The generalized gradient
approximation (GGA) using the Perdew–Burke–Ernzerhof
(PBE) functional and the revised PBE functional with double-
zeta polarization (DZP) orbital basis sets was used. The cut-off
energy is set to 250 Ry. The tolerance of the stress error, force, and
energy for structural optimization are 0.1 GPa, 10−2 eV/Å, and
10−5 eV, respectively. A density of k-mesh points of 1 × 1×7 was
used for the electronic self-consistent calculation of the
nanoribbon. The piezoelectric constant of the MoS2 is
calculated assuming homogeneous strains (the step of the
strain is 0.01). The model sizes were limited to one lattice
constant along the polar axis of the nanoribbon with periodic

boundary conditions applied. The vacuum layer in the lateral and
out-of-plane direction of the nanoribbon is set to 20 Å to ensure
non-interaction between two mirror atomic layers.

The experimental observation gives 0.5 C/m2 and 52 GPa
for the piezoelectric [57] and elastic constants [58] of the bulk
MoS2, which is consistent with our DFT calculation (shown in
Table 1). In addition, the piezoelectric constant of the
nanoribbon is almost one magnitude larger than that of
bulk MoS2, and the piezoelectric constant tends to decay
exponentially with the nanoribbon width. Such size-
dependent piezoelectricity has also been reported in GaN
and ZnO nanowires [59]. This suggests that the output
piezoelectric potential can be further improved by reducing
the size of the materials. For this purpose, we calculated the
width-dependent output voltage using the finite element
simulation. As shown in Figure 4B, the peak output voltage
of 3.5 V can be obtained when the deflection of the nanoribbon
is 0.5 nm. In addition, the output voltage can still reach around
0.5 V, even when the piezoelectric constants approach the bulk
value when the width of the nanoribbon is increased. It is still
superior to the maximum output voltage that can be obtained
in nanowires via the direct heating method.

From the perspective of the experiment, this result is
comparable with the previous experimental observation
(0.19 V voltage and 28 pA currents with 0.64% strain) for a
single-layer MoS2 nanoribbon with a length of 10 μm and a
width of 5 μm. As mentioned before, the DFT calculation
suggests that the piezoelectric constant of a small-size
nanoribbon has a giant size effect. Therefore, an almost one
order of magnitude enhancement in the output voltage has
been achieved in this work. Correspondingly, a larger current
can be obtained when the MoS2 nanoribbon is connected to the
load. This demonstrates the great potential of nanoscale
piezoelectric materials in harvesting thermal energy. In
addition, it has been experimentally demonstrated that the
Curie temperature of MoS2 can be effectively boosted by up to
395 K via a phase-transition strategy [60]. This proves the

FIGURE 4 | (A) Average amplitude and (B) open-circuit voltage of the MoS2 nanoribbon with different widths as a function of temperature difference.

TABLE 1 | Piezoelectric and elastic constant of MoS2 when normalized by a layer
thickness of 0.7 nm.

Width (nm) Piezoelectric constant (C/m2) Elastic constant (GPa)

1.58 6.67 24.94
2.21 3.94 29.28
2.84 1.91 32.31
Bulk 0.56 57.58
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feasibility of the hybrid system above room temperature. Other
2D piezoelectric materials with high Curie temperatures can
also serve as choices for the piezoelectric sensor of this system
[61]. For structural fabrication, the concentric cross-shaped
CNT network seems very complex, but similar structures have
been experimentally synthesized [62, 63]. The major difficulty
is that the hybrid system is not easy to fabricate. However, the
state-of-the-art practice of cutting, folding, bending, and
twisting objects into versatile shapes, called nano-kirigami,
has recently been identified as a feasible method for
manufacturing 3D nanostructures [64]. For this reason, we
believe that the hybrid structure proposed in this work will not
be difficult to realize in the future.

CONCLUSION

In conclusion, we have proposed a promising mechanism for
converting heat energy into electrical energy by connecting the
thermophoresis effect with the piezoelectric effect. We show
that the thermophoretic motion of the CNT can effectively
trigger the periodic vibration of 2D piezoelectric materials, and
the vibrational amplitude can be quantitatively controlled by
the temperature difference. Moreover, the thermophoresis-
effect-induced vibration of piezoelectric materials has a
lower vibrational frequency than thermally induced lattice
vibrations, and the size-dependent piezoelectric constant
provides another way to further improve the energy
conversion efficiency for this mechanism. All these features
ensure a relatively high-energy conversion. This may open up a

new approach for developing thermally induced nanodevices
for actuation and energy conversion.
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