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Controlling the trapping process is one of the important themes in the study of random
walk in real complex systems. We studied two types of random walks that are different
from the traditional random walk on a directed weighted network. The first type of random
walk is the weighted random walk controlled by the weight θ, and the other is the delayed-
weighted random walk affected by both delay probability p and weight θ. Furthermore, we
derived analytically the average trapping time (ATT) measuring the efficiency of the two
types of trapping processes; the result shows that the ATT grows sub-linearly, linearly, and
super-linearly with the network order when the weight satisfies θ < 3

2, θ � 3
2, and θ > 3

2 ,
respectively. The weight θ of the directed network can be adjusted by direction, the delay
parameter p only changes the pre-factor of the ATT, and the weight θ modifies both the
pre-factor and scaling of the ATT.
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1 INTRODUCTION

In addition to the topological structure and characteristic of complex networks, the dynamic process in
the network is also worth exploring because of its wide range of applications. Random walk, as a
fundamental tool to describe the dynamic process of network, has been widely used to evaluate dynamical
properties of different complex networks, involving practical problems such as page searching [1],
epidemic spreading [2], target searching [3, 4], and energy transporting [5, 6]. As a main sub-topic in the
research of random walks, the trapping problem refers to a special random walk in which a trap is placed
at a given trap. A related basic quantity is the mean first passage time (MFPT), which represents the
expected time required for the walker to reach the trap from the node i for the first time. The average
trapping time (ATT) is the average ofMFPTs over all starting nodes except the trap; the ATT is used as an
index to measure the trapping efficiency of the trapping process [7, 8].

In order to improve the trapping efficiency, it is highly desirable to seek an effective method to adjust
the trapping process in complex systems, such as treelike fractals [9] and one-dimensional systems.
Researchers have studied the dynamic process of several types of networks without weight and direction,
such as the Sierpinski network [10, 11], Koch network [12], and fractal lattice [13]. In view of the fact that
many research studies on random walks mainly focus on undirected and unweighted networks, Zhang
et al. [14] discussed two types of randomwalks for a class of weighted and undirected networks. Dai et al.
[15–18] introduced several weighted random walks on the complex network. In fact, many real networks
contain the relationships between individuals with different weights in different directions. For example,
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the degree of understanding between individuals in social
networks, the traffic flow between two places on the
transportation network, and the number of vaccines put in
the epidemic prevention process are all related to the direction
and weight of real networks [19, 20].

There are delays existing in some complex systems; this is the
result of transportation or chemical reactions that require action
time. The random walks that reveal the effects of delay have been
proposed and studied through a mathematical framework [21].
On the other hand, a large amount of work on the trap problem of
undirected networks cannot fully describe the real complex
networks. The difference between the out-degree and in-degree
of the node is considered in a directed network, and the weight of
network is combined; we have explored the ATT of a class of
directed weighted networks, and the random walk in the directed
weighted network can be made more efficient by adjusting the
weight factor and delay parameter, thus achieving the purpose of
adjusting the random walk process.

The main contents of this study are divided into the following
sections. First, we introduced some basic concepts related to
random walks. In section 3, we designed a class of directed
weighted edge-iteration networks, in which each pair of nodes is
connected by two edges in opposite directions, and the weight of
edge is controlled by the weight parameter θ; the delay
phenomenon is measured by the delay parameter p. In section
4, we derived the exact analytical expression of the ATT for a
given target node and found that the ATT of this network grows
sub-linearly, linearly, and super-linearly, the three ways when
parameter θ goes from 0 to infinity. Also, the delay parameter p
not only changes the pre-factor of the ATT but also the weight θ
can modify the pre-factor and scaling of the ATT.

2 PRELIMINARIES

We focused on two types of biased randomwalks with a given target
node. The directed weighted network constructed in this study is
abbreviated as �G(t). We labeled all its nodes, according to the
following rules: the two nodes generated at t = 0 in �G(0) are marked
as 1 and 2, and they are initial nodes. All newly added nodes at the
time step t are labeledNt−1 + 1,Nt−1 + 2, . . . ,Nt in order. We set the
target node on the node labeled 1. The key role in the random walk
process is the transition matrix Pt, whose entries pij(t) represent the
transition probability of walking from the node i to node j in each
time step; they satisfy pij(t) � wi→j

s+i (t) and make the equation∑Nt
i�1pij(t) � 1 true, where s+i (t) is the out-strength of node i.
The mean first passage time for a walker moving from node i

to the target node in the network �G(t) is denoted as T(t)
i , then

T t( )
i � ∑Nt

j�1
pij t( ) T t( )

j + 1( )
� pi1 · 1 +∑Nt

j�2
pij t( ) T t( )

j + 1( )
� ∑Nt

j�2
pij t( )T t( )

j + 1.

(1)

Furthermore, Eq. 1 can be transformed into the following
matrix form;

T̂t � P̂tT̂t + êt, (2)
where T̂t � (T(t)

2 , T(t)
3 , . . . , T(t)

Nt
)T is an (Nt − 1)-dimension

column vector, and êt is the (Nt − 1)-dimension column
vector whose entries are equal to 1; the transition probability
matrix P̂t � (pij)(Nt−1)×(Nt−1) is obtained from P̂t by deleting the
row and column corresponding to the trap node. After shifting
the terms of Eq. 2, we can obtain

T̂t � Ît − P̂t( )−1êt, (3)
Ît is the (Nt − 1) × (Nt − 1)-order matrix whose diagonal entries
are 1, and other entries are 0.

The ATT is defined as the mean of T(t)
i starting from all

sources of nodes over the whole network �G(t) to the trap,
abbreviated as 〈T〉t; we described the ATT by the following
equation:

〈T〉t � 1
Nt − 1

∑Nt

i�2
T t( )
i � 1

Nt − 1
∑Nt

i�2
∑Nt

j�2
τij, (4)

where τij is essentially the ij-th entry of matrix (I − P)−1

combining Eq.3.
The aforementioned equation shows that the calculation of the

ATT can be simplified as summing all the entries of the matrix
(I − P)−1. It is worth noting that the network order Nt increases
exponentially with t when t→ +∞; this calculation for a large t is
very time-consuming. However, we can use Eq. 4 to verify the
analytical solution of the ATT.

3 DESIGN OF A DWEI-NETWORK

Many problems can be abstracted as graphs for research [22–24].
In view of the differences between the out-degree and in-degree of
node in the real network, we proposed a network operator called
the directed weighted edge-iteration transformation (DWEI-
transformation) to construct our network by an iterative
method. We set wi→j as the weight of an edge from node i to
node j in our network; it satisfies

wi→j � > 0 , i and j are adjacent,
� 0 , otherwise.

{ (5)

Directed weighted edge-iteration transformation (DWEI-
transformation). For an edge e = AB with two end nodes A
and B, the two weights of this edge are wA→B and wB→A. A new
edge with end nodes C and D is added; then, two new edges are
connected between A and C, and B and D, respectively; the
weights of new edges are distributed according to the following
rules.

(a) wA→C = θwA→B and wC→A = wB→A;
(b) wC→D = θwC→A and wD→C = wA→C;
(c) wB→D = θwB→A and wD→B = wA→B.
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Figure 1 is a schematic diagram of the DWEI-transformation.
Let �G(t) be the DWEI-network after t time steps; we generated

a DWEI-network model, according to Algorithm 1. For the
initial time step, the network �G(0) is composed of an edge
connect two nodes are labeled 1 and 2; set w1→2 = w2→1 = 1.
When t ≥ 1, the DWEI-transformation is performed on every
edge that exists in �G(t − 1), and this process continues until the

network reaches the desired size. Figures 2, 3 show the DWEI-
network at four-time steps t = 0, 1, 2, 3.

Algorithm 1. DWEI-network construction algorithm.

The out-strength of node i at time step t is defined as the sum of all
weights of the edges starting from node i in −→G(t), denoted as s +
i (t) = PNt j=1 wi→j (t). Meanwhile, the in-strength of node i
represents the sum of the weights of all edges whose terminating
nodes are i, expressed as s− i (t) = PNt j=1wj→i(t). The growthpattern
determined by the node of network allows us to calculate the total
number of nodes in −→G(t) is Nt = 2 3 (4t + 2). Let ki(t) be the degree
of a node i in network −→G(t), the relationship between the degree
of node i is ki(t) = 2ki(t − 1) in two consecutive time steps t − 1 and t.
We can also get s + i (t) = (1 + Θ) t−ti+1 according to the definition
of s+i(t), ti represents the time step when node i joined the network.

4 ATT FOR WEIGHTED WALKS

Different from the method of calculating the ATT by eigenvalues
[25, 26], we derived a relationship governing the evolution for
T(t)
i at generation t, according to the construction process of

DWEI networks. Let Ωt denote the set of all nodes in �G(t); in
order to clearly describe all the nodes in the derivation of the
ATT, we divided the nodes in �G(t) into two categories; the nodes
that join the network at a time step t in �G(t) are called new nodes,
denoted by Ω̂t; the nodes that join the network at a time step t − 1
and before are called old nodes, denoted as Ωt−1.

Lemma 1. For the weighted walks of the DWEI network �G(t + 1),
let θ > 0 be its weight factor, and the mean first passage time of any
node i ∈ Ωt satisfies the recursive relation

T t+1( )
i � 1 + 2θ( )T t( )

i . (6)

Proof. : The mean first-passage time between any two nodes in
the DWEI network can be divided into the following three
categories, and their simplified representation is as follows. Let
X be the MFPT starting from the node i to any of its ki(t − 1) old
neighbors, which are directly connected to node i at the time step
t − 1. Y represents the MFPT from any of ki(t − 1) new neighbors
of node i to one of its ki(t − 1) old neighbors, and Z is the MFPT
for starting from others new neighbors other than the
aforementioned new nodes of node i to one of its ki(t − 1) old

FIGURE 1 | DWEI transformation of edge e = AB.

FIGURE 2 | DWEI network at t =0, 1, 2.

FIGURE 3 | DWEI network at t = 3.
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neighbors. Thus, considering two consecutive time steps, we
found that X, Y, Z satisfy the following equations:

X � 1
1 + θ

+ θ

1 + θ
1 + Y( ),

Y � 1
1 + θ

1 +X( ) + θ

1 + θ
1 + Z( ),

Z � 1
1 + θ

+ θ

1 + θ
1 + Y( ).

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(7)

We get a solution X = 1 + 2θ by solving the aforementioned
formula; it means that from the time step t to the next time t + 1,
the trapping time for an arbitrary node i increases 1 + 2θ times the
previous moment, that is, T(t+1)

i � (1 + 2θ)T(t)
i . Owing to the

network, �G(t + 1) is obtained by the network �G(t) iteratively, so
the relationship shown in Eq.6 is important in deriving the exact
solution of ATT. □

The sum of T(t)
i for all nodes in �G(t) is recorded as T(t)

t,tot. In
addition, we also proposed intermediary quantities for 1 ≤ τ ≤ t;
the sum of the MFPT of all nodes at time step τ is denoted as

T t( )
τ,tot � ∑

i∈Ωτ

T t( )
i , (8)

and the sum of the MFPT of all new nodes at a time step τ is
formulated as

T̂
t( )
τ,tot � ∑

i∈Ω̂τ

T t( )
i . (9)

Then, the average trapping time 〈T〉t of the DWEI network �G(t)
is given by the following formula:

〈T〉t � 1
Nt − 1

∑Nt

i�2
T t( )
i � 1

Nt − 1
T t( )
t,tot. (10)

Theorem 2. For the weighted random walks, Nt is the DWEI
network order, let θ > 0 be the weight factor and t be the time step,
then

(1) For θ � 3
2, the ATT of the DWEI network is

〈T〉t � 3
2 × 4t + 1

4t−1
5
3
t + 154

9
( ) + 11

18
× 16t[ ]. (11)

The dominating term of 〈T〉t is 〈T〉t ~ Nt for t → ∞.

(2) When θ ≠ 3
2, the ATT of the DWEI network is

〈T〉t � 3
2 × 4t + 1

1 + 2θ( )t−2
6θ 2θ − 3( ) 48 + 6 × 4t+1( )θ4[{

+ 16 − 4t+1( )θ3 + −20 + 34 × 4t( )θ2
+ −8 − 19 × 4t( )θ − 3 × 4t]},

(12)

the relationship between 〈T〉t and the network order Nt satisfy
〈T〉t ~ N

log4(1+2θ)
t for t → ∞.

Proof. It can be seen that the problem for evaluating 〈T〉t is
reduced to determining T(t)

t,tot from Eq.10. We considered the
MFPT of all nodes in the light of the classification of new nodes
and old nodes, which is written as the following formula:

T t( )
t,tot � T t( )

t−1,tot + T̂
t( )

t,tot

� 1 + 2θ( )T t−1( )
t−1,tot + T̂

t( )
t,tot.

(13)

Obviously, once we calculated the result of T̂
(t)
t,tot about the new

nodes, we can obtain a recursive equation for T(t)
t,tot.

Referring to the DWEI transformation of all edges in the
network, we found that each new node must have two neighbors
for the nodes in Ω̂t; one of the two neighbors is a new node
generated at the time step t, and the other is an old node added
before the time step t. There are two new nodes in the next time
step for each edge e = uv; we labeled them as x1 and x2,
respectively. If the MFPTs of the four nodes u, v, x1, x2 at a
certain moment are expressed as T(u), T(v), T (x1), T (x2), the
relationships between the MFPTs of new nodes x1, x2 and its
neighbors can be derived as

T x1( ) � 1
1 + θ

1 + T u( )( ) + θ

1 + θ
1 + T x2( )( ),

T x2( ) � 1
1 + θ

1 + T v( )( ) + θ

1 + θ
1 + T x1( )( ).

⎧⎪⎪⎨⎪⎪⎩ (14)

Combining the two formulas in Eq. 14, we can get

T x1( ) + T x2( ) � 2 1 + θ( ) + T u( ) + T v( ). (15)
For the DWEI network corresponding to the first few time

steps, since the number of nodes in the network is small, we can
directly calculate the value of T̂

(i)
i,tot and T(i)

i,tot for 0 ≤ i ≤ t. For
example, when t = 1, the way to obtain the value of T̂

(1)
1,tot and T

(1)
1,tot

is as follows: we first listed the relations between the four nodes in
�G(1). There are a total of four nodes in �G(1): node 1 is set as a
trap, so we have T(1)

1 � 0, and the out-degree of node 2 is 1 + θ.
The weights on its edges to node 1 and node 4 are 1 and 0,
respectively; then, the second equation in Eq.16 holds, the
equations related to node 3 and 4 can be obtained similarly.

T 1( )
1 � 0,

T 1( )
2 � 1

1 + θ
1 + T 1( )

1( ) + θ

1 + θ
1 + T 1( )

4( ),
T 1( )
3 � 1

1 + θ
1 + T 1( )

1( ) + θ

1 + θ
1 + T 1( )

4( ),
T 1( )
4 � 1

1 + θ
1 + T 1( )

2( ) + θ

1 + θ
1 + T 1( )

3( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(16)

Among the four nodes, the two nodes labeled 1 and 2 are called
old nodes, and 3 and 4 are called new nodes; thus, the sum of
MFPTs of all new nodes is equal to

T̂
1( )
1,tot � ∑

i∈Ω̂1

T t( )
i � T 1( )

3 + T 1( )
4

� 4θ + 3 � 2 1 + θ( ) + T̂
1( )
0,tot.

(17)

Therefore, the sum of MFPTs of all nodes in the network �G(1)
can be expressed as

T 1( )
1,tot � T 1( )

1 + T 1( )
2 + T 1( )

3 + T 1( )
4

� 6θ + 4.
(18)

Considering Eq. 15 and summing this equation over all new
nodes in Ω̂t, then we obtain
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T̂
t( )
t,tot � ∑

i∈Ω̂t

T t( )
i � 1 + θ( )|Ω̂t| + ∑

i∈Ωt−1
ki t − 1( ) × T t( )

i[ ]
� 2 1 + θ( ) × 4t−1 + 2T̂

t( )
t−1,tot + 22T̂

t( )
t−2,tot +/

+2t−1T̂ t( )
1,tot + 2tT̂

t( )
0,tot.

(19)

Similarly, the following equation about T̂
(t+1)
t+1,tot is also valid; refer

to Eq.19

T̂
t+1( )
t+1,tot � 2 1 + θ( ) × 4t + 2T̂

t+1( )
t,tot + 22T̂

t+1( )
t−1,tot +/

+2tT̂ t+1( )
1,tot + 2t+1T̂

t+1( )
0,tot .

(20)

Then, subtracting the product of Eq.19 multiplied by 2 (1 +
2θ) from Eq. 20, we have

T̂
t+1( )
t+1,tot − 2 1 + 2θ( )T̂ t( )

t,tot

� 2 1 + θ( ) × 4t − 4t 1 + θ( ) 1 + 2θ( )
+2 1 + 2θ( )T̂ t( )

t,tot.

(21)

After merging T̂
(t)
t,tot on both sides of Eq. 21, we get the

following recursive relation:

T̂
t+1( )

t+1,tot � 4 1 + 2θ( )�T t( )
t,tot + 4t 1 + θ( ) 1 − 2θ( ). (22)

Considering a value T̂
(1)
1,tot � 4θ + 3 that we have already solved

as an initial condition, a closed-form solution of Eq.22 can be
derived:

T̂
t( )

t,tot �
6θ2 + 5θ + 1

2θ
× 4 1 + 2θ( )[ ]t−1

− 1 + θ( ) 1 − 2θ( )
2θ

× 4t−1.
(23)

1) For θ � 3
2, we get T̂

(t)
t,tot � 22

3 × 16t−1 + 5
3 × 4t−1. Substituting

this equation and θ � 3
2 into Eq. 13, we get

T t( )
t,tot �

5
3
t − 22

3
( ) × 4t−1 + 88

9
16t−1 − 4t−1( ). (24)

We can get t � log4(32Nt − 2) from Nt � 2
3 (4t + 2).

Considering Eq. 10, we obtain the result shown in Eq.11:

〈T〉t � 3
2 × 4t + 1

4t−1
5
3
t + 154

9
( ) + 11

18
× 16t[ ]

~ Nt.
(25)

2) When θ ≠ 3
2, the sum of MFPT of all nodes satisfies the

following recurrence relation:

T t( )
t,tot � 1 + 2θ( )T t−1( )

t−1,tot + T̂
t( )
t,tot

� 1 + 2θ( )T t−1( )
t−1,tot + 4θ + 3( ) 4 1 + 2θ( )[ ]t−1

+4
t−1 1 + θ( ) 1 − 2θ( )

2θ
1 + 2θ( )t−1 − 1[ ].

(26)

With the help of a condition T(1)
1,tot � 6θ + 4 in Eq. 18, then Eq.26

is resolved to obtain a solution about T(t)
t,tot:

T t( )
t,tot �

1 + 2θ( )t−2
6θ 2θ − 3( ) 48 + 6 × 4t+1( )θ4 + 16 − 4t+1( )θ3[

+ 34 × 4t − 20( )θ2 − 8 + 19 × 4t( )θ
3 × 4t].

(27)

Furthermore, substituting Eq.27 into Eq. 10, we get the
average of all MFPTs in the network �G(t):

〈T〉t � 1
Nt − 1

T t( )
t,tot

� 3
2 × 4t + 1

1 + 2θ( )t−2
6θ 2θ − 3( ) 48 + 6 × 4t+1( )θ4[{

+ 16 − 4t+1( )θ3 + −20 + 34 × 4t( )θ2
+ −8 − 19 × 4t( )θ − 3 × 4t]}.

(28)

Actually, the DWEI network can be regarded as a binary
network for a special case θ = 1; based on this situation, the value
of 〈T〉t we obtained is consistent with the result in the literature
[27]. Next, we showed how to express 〈T〉t in terms of the
network order Nt; Substituting t � log4(32Nt − 2) into Eq. 28,
then we have

〈T〉t ≈
24θ4 − 4θ3 + 34θ2 − 19θ − 3

12θ2 − 18θ( ) 1 + 2θ( )2
3
2
Nt( )log4 1+2θ( )

~ Nt( )log4 1+2θ( ),
(29)

as t→∞. According to Eq. 29, we found that the weight θ can not
only modify the pre-factor of 〈T〉t but also the scaling log4 (1 +
2θ) of 〈T〉t. In addition, we can obtain the following
conclusions in weighted random walks by analyzing Eqs 25,
29, when θ � 3

2, 〈T〉t grows linearly with Nt; however, 〈T〉t
grows sub-linearly and super-linearly with the network order
Nt for θ < 3

2 and θ > 3
2, respectively; the results are shown in

Figure 4.

5 ATT FOR DELAYED WEIGHTED WALKS

In this section, a delay probability 0 ≤ p ≤ 1 is introduced to
explore its impact on the ATT of our network in the weighted
random walk with delay [28]. The delayed weighted random walk is
defined as follows; for delay probability 0 ≤ p ≤ 1, the walker in
network �G(t − 1) is allowed to move to any neighbor either in

FIGURE 4 | Solids indicate the numerical results, and the hollows
indicate the results of our analytical results.
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�G(t − 1) or in �G(t) with probability p and 1 − p, respectively, which
is the transition probability pij for the walker jumping from node i to
another node j and is formulated as

pij �

p ×
wi→j t( )
s+i t − 1( ) , i ∈ Ωt−1, j ∈ Ωt−1,

1 − p( ) × wi→j t( )
s+i t( ) , i ∈ Ωt−1, j ∈ Ω̂t,

wi→j t( )
s+j t( ) , if i ∈ Ω̂t, j ∈ Ωt.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(30)

The two special cases of delayed weighted random walks are as
follows:

1) When p = 0, delayed weighted random walks reduce to
regular weighted random walks discussed in the previous
section because the walker moves from node i to any
neighboring node j with transition probability pij(t) �
wi→j(t)
s+i (t) .

2) When p = 1, if node i is created before the time step t, then
the walker jumping from the current node i to any
neighboring node j in �G(t − 1) with the transition
probability pij(t) � wi→j(t)

s+i (t−1). Otherwise, the walker moves
from the current node i to any neighbor node j on �G(t)
with the transition probability pij(t) � wi→j(t)

s+i (t) .

Lemma 3. For the delayed weighted random walks of the DWEI
network �G(t + 1); let θ > 0 be a weight factor and 0 ≤ p ≤ 1
represents a delay probability, T(t)

i is the MFPT corresponding to the
regular weighted random walks; the relationship between MFPT
F(t+1)
i of delayed weighted random walks and T(t)

i for node i is

F t+1( )
i � 2 − 2p( )θ2 + p + 3( )θ + 1

θ − θp + 1
T t( )
i . (31)

Proof. : Let F(t)
i be the MFPT in the delayed weighted random

walks, similar to the study of weighted random walks, we
classified all the nodes according to the type of walks. The
definition of three quantities X, Y, and Z is the same as
section 4, and they satisfy the following three equations in the
delayed weighted random walks:

X � p + 1 − p( ) 1
1 + θ

+ θ

1 + θ
1 + Y( )[ ],

Y � 1
1 + θ

1 +X( ) + θ

1 + θ
1 + Z( ),

Z � 1
1 + θ

+ θ

1 + θ
1 + Y( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(32)

The solved X involves the delay probability p and the weight
factor θ; its expression is

X � 2 − 2p( )θ2 + p + 3( )θ + 1
θ − θp + 1

. (33)

Therefore, we have deduced the relationship between F(t+1)
i and

T(t)
i , as shown in Eq.31.

Theorem 4. For the delayed weighted random walks, let θ > 0 and
t ≥ 0 be the weight factor and time step, Nt is the DWEI-network
order; then, the exact dependence of ATT on the network order Nt

is as follows:

(1) For θ � 3
2,

〈F〉t ≈
110 − 33p
144 5 − 3p( ) + 110 − 33p

16 15 − 9p( )[ ]Nt

~ Nt.
(34)

2) When θ ≠ 3
2,

〈F〉t ~ Nlog4 1+2θ( )
t . (35)

for t → ∞.

Proof. : We defined 〈F〉t as the ATT for delayed weighted
random walks in the network �G(t); in order to obtain the
closed-form solution of 〈F〉t, two quantities F(t)

τ,tot � ∑i∈Ωτ
F(t)
i

and F̂
(t)
τ,tot � ∑i∈Ω̂τ

F(t)
i are proposed for the time step τ ≤ t.

Extending Eq.10 to the delayed weighted random walks, a
formula about 〈F〉t is as follows:

〈F〉t � 1
Nt − 1

F t( )
t,tot. (36)

The sum of MFPT of all nodes in the network is composed of
the sum of MFPT of old nodes and new nodes; it can be
formulated as

F t( )
t,tot � F t( )

t−1,tot + F̂
t( )
t,tot

� 2 − 2p( )θ2 + p + 3( )θ + 1
θ − θp + 1

T t−1( )
t−1,tot + F̂

t( )
t,tot.

(37)

Similar to the calculation of Eqs 13, 17, it shows that our
calculation focuses on solving F̂

(t)
t,tot; we specified the sum of

MFPT of all new nodes as

F̂
t( )
t,tot � 1 + θ( )|Ω̂t| + ∑

i∈Ω̂t−1

ki t − 1( )[

×
2 − 2p( )θ2 + p + 3( )θ + 1

θ − θp + 1
T t−1( )
i ]. (38)

We can directly get F̂
(t+1)
t+1,tot, according to the aforementioned

equation for time step t + 1:

F̂
t+1( )
t+1,tot � 1 + θ( )|Ω̂t+1| + ∑

i∈Ω̂t

ki t( )[

×
2 − 2p( )θ2 + p + 3( )θ + 1

θ − θp + 1
T t( )
i ]. (39)

Multiplying Eq.38 with 2 (1 + 2θ) and subtracting the result
from Eq. 39, we derived the recursive connection between F̂

(t+1)
t+1,tot

and F̂
(t)
t,tot from the results obtained:
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F̂
t+1( )

t+1,tot − 2 1 + 2θ( )F̂ t( )
t,tot

� 1 + θ( ) |Ω̂t+1| − 2 1 + 2θ( )|Ω̂t|[ ]
+2 ×

2 − 2p( )θ2 + p + 3( )θ + 1
θ − θp + 1

∑
i∈Ω̂t

T t( )
i ,

(40)

where ∑i∈Ω̂t
T(t)
i � T̂

(t)
t,tot is obvious, and the number of nodes

newly added to the network at the time step t is |Ω̂t| � 2 × 4t−1,
plugging Eq.23 into Eq. 40, and combining a condition

F̂
(1)
1,tot � 1

θp+θ+1 [4θ2 + (7 + p)θ + 3], then

F̂
t( )
t,tot � 2 + 4θ( )t−1 × 4θ2 + 7 + p( )θ + 3

θp + θ + 1
+ 1

θ2 − pθ2 + θ
× 4p − 4( )θ4 + 4p − 4( )θ3 + 3 − p( )θ2 + 2 − p( )θ[

−1] × 1
2θ − 1

2 + 4θ( )t−2 × 1 + 2θ( ) − 2 × 4t−2[ ]
+ 1

θ2 − θ2p + θ
12 − 12p( )θ4 + 28 − 4p( )θ3[

+ 3p + 23( )θ2 + p + 8( )θ + 1]
×

4 + 8θ( )t−1 − 2 + 4θ( )t−1
2 + 4θ

.

(41)

1) When the weight factor satisfies θ � 3
2, we obtain

F̂
t( )
t,tot �

3p + 45
3p + 5

× 8t−1 + 4 30p − 25( )
15 − 9p

× 2 × 8t−2 − 4t−2( )
+ 110 − 33p( ) 16t−1 − 8t−1( )

15 − 9p
.

(42)

In this case, we can calculate the sum of MFPT of all nodes by
combining Eqs 24, 37, 42:

F t( )
t,tot �

2 10 − 3p( )
5 − 3p

5
3
t − 9( ) × 4t−2 + 88 16t−2 − 4t−2( )

9
[ ]

+3p + 45
3p + 5

× 8t−1 + 120p − 100
15 − 9p

( ) 2 × 8t−2 − 4t−2( )
+ 110 − 33p( ) 16t−1 − 8t−1( )

15 − 9p
.

(43)

Substituting Eq.43 into Eq. 36, we can get the expression of
〈F〉t. Furthermore, we deduce that the trend of 〈F〉t increases
with Nt for a large network:

〈F〉t � 1
Nt − 1

F t( )
t,tot

≈
110 − 33p
144 5 − 3p( ) + 110 − 33p

16 15 − 9p( )[ ]Nt

~ Nt.

(44)

The aforementioned formula shows that 〈F〉t increases
linearly with Nt when θ � 3

2.
2) For θ ≠ 3

2, plugging Eq.41 into Eq. 37, we have obtained the
analytical formula of F(t)

t,tot. For simplicity, we replaced the three
coefficients with A, B, and C, respectively, which are all controlled
by the weight factor θ and have no dependencies on the time
step t.

F t( )
t,tot � A 1 + 2θ( )t−3 × 4t 6θ4 − θ3 + 17

2
θ2 − 19

4
θ − 3

4
( )[

+48θ4 + 16θ3 − 20θ2 − 8θ] + 2t−1 1 + 2θ( )t−1

×
4θ2 + 7 + p( )θ + 3

θp + θ + 1
+ B

2θ − 1
2t−2 1 + 2θ( )t−1[

−2 × 4t−1] + C ×
4t−1 − 2t−1( ) 1 + 2θ( )t

2 1 + 2θ( )2 .

(45)

Among them, three variables A, B, C equal to

A � 2 − 2p( )θ2 + p + 3( )θ + 1
6θ 2θ − 3( ) θ − θp + 1( ) ,

B � 1

θ2 − pθ2 + θ
4p − 1( )θ4 + 4p − 4( )θ3[

+ 3 − p( )θ2 + 2 − p( )θ − 1],
C � 1

θ2 − pθ2 + θ
12 − 12p( )θ4 + 28 − 4p( )θ3[

+ 3p + 23( )θ2 + p + 8( )θ + 1].

(46)

Next, we gave the average of MFPT for all nodes except the
trap node; substituting Eq.45 into Eq. 36, we obtain

〈F〉t � 1
Nt − 1

F t( )
t,tot

� 3
2 × 4t + 1

A 1 + 2θ( )t−3 × 4t 6θ4 − θ3 + 17
2
θ2([{

−19
4
θ − 3

4
) + 48θ4 + 16θ3 − 20θ2 − 8θ]

+2t−1 1 + 2θ( )t−1 × 4θ2 + 7 + p( )θ + 3
θp + θ + 1

+ B

2θ − 1
2t−2 1 + 2θ( )t−1 − 2 × 4t−1[ ]

+C ×
4t−1 − 2t−1( ) 1 + 2θ( )t

2 1 + 2θ( )2 }.

(47)

Considering t � log4(32Nt − 2), the expression of 〈F〉t in Eq.47
can be represented in terms of the network order Nt in the
following form:

〈F〉t � 1
Nt − 1

A

1 + 2θ( )3
3
2
Nt − 2( )log4 1+2θ( ){

×
3
2
Nt − 2( ) 6θ4 − θ3 + 17

2
θ2 − 19

4
θ − 3

4
([

+48θ4 + 16θ3 − 20θ2 − 8θ)] + 1
2 1 + 2θ( )

×
3
2
Nt − 2( )log4 1+2θ( )+1

2

×
4θ2 + 7 + p( )θ + 3

θp + θ + 1

+ B

2θ − 1
1

4 1 + 2θ( )
3
2
Nt − 2( )log4 1+2θ( )+1

2[

−1
2

3
2
Nt − 2( )] + C ×[1

4
3
2
Nt − 2( )1+log4 1+2θ( )

2 1 + 2θ( )2

−
1
2

3
2
Nt − 2( )1

2+log4 1+2θ( )

2 1 + 2θ( )2 ]⎫⎪⎪⎪⎬⎪⎪⎪⎭.

(48)
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For a large t, we have the following expression for the
dominating term of 〈F〉t:

〈F〉t ≈
A 6θ4 − θ3 + 17

2
θ2 − 19

4
θ − 3

4
( )

1 + 2θ( )3 + C

8 1 + 2θ( )2
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

3
2
Nt − 2( )log4 1+2θ( )

~ Nlog4 1+2θ( )
t .

(49)

Therefore, Eq.49 shows that 〈F〉t grows sub-linearly and
super-linearly with the network size, when θ < 3

2 and
θ > 3

2,respectively; when θ � 3
2, we know that 〈F〉t grows

linearly with the network size from Eq.44. The coefficient
1

(1+2θ)3 [A(6θ4 − θ3 + 17
2 θ

2 − 19
4 θ − 3

4)] + 1
8(1+2θ)2 × C in Eq.49 is

obviously affected by the delay probability p and the weight
factor θ. However, the exponent log4 (1 + 2θ) of Nt is only
controlled by the weight factor θ and has no dependencies on the
delay probability p. Also, we have known that the delay parameter
p can only change the coefficient of the ATT; it has less influence
on the trapping efficiency.

6 CONCLUSION

Based on the undirected unweighted network, we considered the
weight and the out-degree and in-degree of nodes in complex
systems. We proposed a network operator and a class of directed
weighted edge-iteration networks and derived the closed form
solution of the average trapping time of two different random
walks with a given trap node; one of the random walks is based on
the weight θ alone acting on the transition probability, and the
other is the weight factor θ and delay parameter p impacting on
the transition probability at the same time. The solution shows
that the directed weighted construction has a significant effect on
the trapping efficiency, and the leading scale of the ATT can be
sub-linearly, linearly, and super-linearly with the network size
when θ < 3

2, θ � 3
2, and θ > 3

2, respectively. In view of the

importance of weight to control the efficiency of random
walks, we can extend the undirected network to a directed
weighted network or adjust the weights of the edges in the
two directions of the directed network so as to achieve the
purpose of modifying the weight. Our next goal is to reveal
the influence of other factors in directed networks on random
walks, such as both nodes and edges having weights. We need to
find more variables that can control the trapping process in
combination with the real network and give a guiding analytical
process.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

JS provided this topic and wrote the manuscript. MM and MZ
discussed and drew all figures. BY modified and guided the
manuscript. All authors contributed to the manuscript and
approved the submitted version.

FUNDING

This research was supported by the National Key Research
and Development Plan under the Grant No.
2019YFA0706401 and the National Natural Science
Foundation of China under Grants Nos. 61872166 and
61662066, the Technological Innovation Guidance Program
of Gansu Province: Soft Science Special Project
(21CX1ZA285), and the Northwest China Financial
Research Center Project of Lanzhou University of Finance
and Economics (JYYZ201905).

REFERENCES

1. Hwang S, Lee DS, Kahng B. First Passage Time for Random Walks in
Heterogeneous Networks. Phys Rev Lett (2012) 109(8):088701. doi:10.1103/
PhysRevLett.109.088701

2. Bestehorn M, Riascos AP, Michelitsch TM, Collet BA. A
Markovian Random Walk Model of Epidemic Spreading.
Continuum Mech Thermodyn (2021) 33:1207–21. doi:10.1007/
s00161-021-00970-z

3. Shirsat A, Elamvazhuthi K, Berman S. Multi-Robot Target Search Using
Probabilistic Consensus on Discrete Markov Chains. In: 2020 IEEE
International Symposium on Safety, Security, and Rescue Robotics (SSRR).
Abu Dhabi, UAE: IEEE (2020). doi:10.1109/ssrr50563.2020.9292589

4. El Hadidy MAA. Generalised Linear Search Plan for a D-Dimensional
Random Walk Target. Ijmor (2019) 15(2):211. doi:10.1504/ijmor.2019.
10022970

5. Blumen A, Zumofen G. Energy Transfer as a Random Walk on Regular
Lattices. J Chem Phys (1981) 75:892–907. doi:10.1063/1.442086

6. Sokolov IM, Mai J, Blumen A. Paradoxal Diffusion in Chemical Space for
Nearest-Neighbor Walks over Polymer Chains. Phys Rev Lett (1997) 79:
857–60. doi:10.1103/physrevlett.79.857

7. Zhang Z, Julaiti A, Hou B, Zhang H, Chen G. Mean First-Passage Time for
Random Walks on Undirected Networks. Eur Phys J B (2011) 84(4):691–7.
doi:10.1140/epjb/e2011-20834-1

8. LinZhang YZZ, Zhang Z. RandomWalks inWeighted Networks with a Perfect
Trap: an Application of Laplacian Spectra. Phys Rev E Stat Nonlin Soft Matter
Phys (2013) 87(6):062140. doi:10.1103/PhysRevE.87.062140

9. Wu B, Zhang Z. Controlling the Efficiency of Trapping in Treelike Fractals.
J Chem Phys (2013) 139(2):024106. doi:10.1063/1.4812690

10. Bentz JL, Turner JW, Kozak JJ. Analytic Expression for the Mean Time to
Absorption for a Random walker on the Sierpinski Gasket. Ii. The Eigenvalue
Spectrum. Phys Rev E Stat Nonlin Soft Matter Phys (2010) 82(1):011137.
doi:10.1103/PhysRevE.82.011137

11. Kozak JJ, Balakrishnan V. Analytic Expression for the Mean Time to
Absorption for a Random walker on the Sierpinski Gasket. Phys Rev E Stat
Nonlin Soft Matter Phys (2002) 65(1):021105. doi:10.1103/PhysRevE.65.
021105

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 8227128

Su et al. Trapping Process of Directed Networks

https://doi.org/10.1103/PhysRevLett.109.088701
https://doi.org/10.1103/PhysRevLett.109.088701
https://doi.org/10.1007/s00161-021-00970-z
https://doi.org/10.1007/s00161-021-00970-z
https://doi.org/10.1109/ssrr50563.2020.9292589
https://doi.org/10.1504/ijmor.2019.10022970
https://doi.org/10.1504/ijmor.2019.10022970
https://doi.org/10.1063/1.442086
https://doi.org/10.1103/physrevlett.79.857
https://doi.org/10.1140/epjb/e2011-20834-1
https://doi.org/10.1103/PhysRevE.87.062140
https://doi.org/10.1063/1.4812690
https://doi.org/10.1103/PhysRevE.82.011137
https://doi.org/10.1103/PhysRevE.65.021105
https://doi.org/10.1103/PhysRevE.65.021105
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


12. Zhang Z, Zhou S, Xie W, Chen L, Lin Y, Guan J. Standard RandomWalks and
Trapping on the Koch Network with Scale-free Behavior and Small-World
Effect. Phys Rev E Stat Nonlin Soft Matter Phys (2009) 79(6):061113. doi:10.
1103/PhysRevE.79.061113

13. Haynes CP, Roberts AP. Global First-Passage Times of Fractal Lattices. Phys
Rev E Stat Nonlin Soft Matter Phys (2008) 78(1):041111. doi:10.1103/
PhysRevE.78.041111

14. Lin Y, Zhang Z. Controlling the Efficiency of Trapping in a Scale-free Small-
World Network. Sci Rep (2014) 4:6274. doi:10.1038/srep06274

15. Zhu F, Dai M, Dong Y, Liu J. Random Walk and First Passage Time on a
Weighted Hierarchical Network. Int J Mod Phys C (2014) 25(9):1450037.
doi:10.1142/s0129183114500375

16. Dai M, Ye D, Li X, Hou J. Average Weighted Receiving Time in Recursive
Weighted Koch Networks. Pramana - J Phys (2016) 86(6):1173–82. doi:10.
1007/s12043-016-1196-8

17. Chen Y, Dai M, Wang X, Sun Y, Su W. Multifractal Analysis of One-
Dimensional Biased Walks. Fractals (2018) 26:1850030. doi:10.1142/
s0218348x18500305

18. Dai M, Dai C, Ju T, Shen J, Sun Y, Su W. Mean First-Passage Times for Two
Biased Walks on the Weighted Rose Networks. Physica A: Stat Mech its Appl
(2019) 523:268–78. doi:10.1016/j.physa.2019.01.112

19. Chennubhotla C, Bahar I. Signal Propagation in Proteins and Relation to
Equilibrium Fluctuations. Plos Comput Biol (2007) 3(10):1716–26. doi:10.
1371/journal.pcbi.0030172

20. Wu Z, Gao Y. Average Trapping Time on Weighted Directed Koch Network.
Sci Rep (2019) 9(1):14609–11. doi:10.1038/s41598-019-51229-2

21. Ohira T, Yamane T. Delayed Stochastic Systems. Phys Rev E (2000) 61(2):
1247–57. doi:10.1103/physreve.61.1247

22. Zhu E, Jiang F, Liu C, Xu J. Partition Independent Set and Reduction-Based
Approach for Partition Coloring Problem. IEEE Trans Cybern (2020) 99:1–10.
doi:10.1109/tcyb.2020.3025819

23. Liu C. A Note on Domination Number in Maximal Outerplanar Graphs.
Discrete Appl Maths (2021) 293(1):90–4. doi:10.1016/j.dam.2021.01.021

24. Liu C, Zhu E, Zhang Y, Zhang Q, Wei X. Characterization, Verification and
Generation of Strategies in Games with Resource Constraints. Automatica
(2022) 140:110254. doi:10.1016/j.automatica.2022.110254

25. Xie P, Zhang Z, Comellas F. The Normalized Laplacian Spectrum of
Subdivisions of a Graph. Appl Maths Comput (2016) 286:250–6. doi:10.
1016/j.amc.2016.04.033

26. Xie PC, Zhang ZZ, Comellas F. On the Spectrum of the Normalized
Laplacian of Iterated Triangulations of Graphs. Appl Maths Comput
(2015) 273:1123–9.

27. Zhang Z, Xie W, Zhou S, Li M, Guan J. Distinct Scalings for Mean First-
Passage Time of RandomWalks on Scale-free Networks with the Same Degree
Sequence. Phys Rev E Stat Nonlin Soft Matter Phys (2009) 80(6):061111. doi:10.
1103/PhysRevE.80.061111

28. Zhang H, Zhang HJ. Determining Average Trapping Time of Delayed Random
Walks on Apollonian Network. Mod Phys Lett B (2019) 33(5520):1950231.
doi:10.1142/s0217984919502312

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Su, Ma, Zhang and Yao. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 8227129

Su et al. Trapping Process of Directed Networks

https://doi.org/10.1103/PhysRevE.79.061113
https://doi.org/10.1103/PhysRevE.79.061113
https://doi.org/10.1103/PhysRevE.78.041111
https://doi.org/10.1103/PhysRevE.78.041111
https://doi.org/10.1038/srep06274
https://doi.org/10.1142/s0129183114500375
https://doi.org/10.1007/s12043-016-1196-8
https://doi.org/10.1007/s12043-016-1196-8
https://doi.org/10.1142/s0218348x18500305
https://doi.org/10.1142/s0218348x18500305
https://doi.org/10.1016/j.physa.2019.01.112
https://doi.org/10.1371/journal.pcbi.0030172
https://doi.org/10.1371/journal.pcbi.0030172
https://doi.org/10.1038/s41598-019-51229-2
https://doi.org/10.1103/physreve.61.1247
https://doi.org/10.1109/tcyb.2020.3025819
https://doi.org/10.1016/j.dam.2021.01.021
https://doi.org/10.1016/j.automatica.2022.110254
https://doi.org/10.1016/j.amc.2016.04.033
https://doi.org/10.1016/j.amc.2016.04.033
https://doi.org/10.1103/PhysRevE.80.061111
https://doi.org/10.1103/PhysRevE.80.061111
https://doi.org/10.1142/s0217984919502312
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	Adjusting the Trapping Process of a Directed Weighted Edge-Iteration Network
	1 Introduction
	2 Preliminaries
	3 Design of a DWEI-Network
	4 ATT for Weighted Walks
	5 ATT for Delayed Weighted Walks
	6 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


