
Soliton Dynamics of the Generalized
Shallow Water Like Equation in
Nonlinear Phenomenon
Ghazala Akram*, Maasoomah Sadaf* and M. Atta Ullah Khan*

Department of Mathematics, University of the Punjab, Lahore, Pakistan

The generalized shallow water like equation is investigated in this research paper. Exact
solutions of generalized shallow water like equation are extracted using modified auxiliary
equation (MAE) method and extended (G′

G2)-expansion method. Many novel soliton
solutions are obtained using these methods. The retrieved solution of governing model
include rational, trigonometric and hyperbolic functions. The 3D graphs, 2D contour
graphs and line graphs of obtained solutions are plotted using symbolic software such
as Maple. The aim of plotting graphs is to demonstrate the dynamical behavior of acquired
solutions. Thus, this study investigate the exact soliton solutions of generalized shallow
water like using proposed methods.
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1 INTRODUCTION

The nonlinear partial differential equations (NPDEs) play important role to construct the
mathematical model of many natural phenomena and dynamical processes such as propagation
of sound or heat waves, fluid flow, elasticity, electrodynamics. Many nonlinear complex phenomena
and dynamic processes are represented by NPDEs such as Navier-stokes equations, Bateman-
Burgers equation Korteweg-De Vries equations, Benjamin-Ono equation, Boomeron equation,
Kadomtsev Petviashvili equation and many other NPDEs. These NPDEs represent numerous
dynamical processes such as fluid dynamics, shallow water wave, internal waves in deep water,
solitary and soliton waves in optics etc.Shallow water equations (SWE) of motion are used to
demonstrate the horizontal structure of an atmosphere and shallow water wave dynamics. The SWEs
illustrate the development of an incompressible fluid under the effect of rotational and gravitational
accelerations. Several types of motions that can be described by the solutions of shallow water
equations, including solitary waves, soliton wave, Rossby waves and inertia-gravity waves.The
evolution equations describing the water waves are nonlinear in general and have been an interest of
research for many years [1]. Many researchers have investigated different physical phenomena and
dynamical processes arising in shallow water waves. Kudryashov et al. [2] discussed the elliptic
traveling waves for the Olver equation which is a unidirectional model to express long, small
amplitude waves in shallow water. Kochanov et al. [3] studied the shallow water waves under a layer
of ice.

The main motivation of this work is to further extend the study on shallow water waves. In this
manuscript, the generalized shallow water like (GSWL) equation is considered. The exact soliton
solutions of the generalized shallow water like (GSWL) equation are constructed using the modified
auxiliary equation (MAE) method and the extended (G′G2)-expansion method. The obtained solutions
may be helpful to understand the dynamical framework of the physical problems related to the
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governing equation. It is worth mentioning that GSWL equation
is investigated using these two mathematical techniques for the
first time in this work to the best of our knowledge.The GSWL
equation of the following form is given, as

ψxxxy + 3ψxxψy + 3ψxψxy − ψyt − ψxz � 0, (1)
where ψ is dependent variable and it is dependent upon the space
variables x, y, z, time variable t. The GSWL equation has been
investigated by some researchers [4–6] using different techniques.

The exact solutions of NPDEs are very important to
comprehend the physical mechanism of natural phenomena,
that have been modeled by NPDEs. Exact solutions provide a
lot of information about structures of NPDEs. Nonlinear
evolution equations (NEEs) are frequently utilized in optical
fibres, plasma physics, mathematical physics and engineering.
There are many wave solutions such as cnoidal wave, snoidal
wave, periodic wave, shock wave, solitary wave and soliton wave
solutions, that illustrate the phenomena modeled by NEEs. In
recent decades, solitons and solitary wave solutions are studied by
many researchers in various nonlinear scientific fields.

A number of methods such as the MAE [7], generalized tanh
method [8], (G′/G)-expansion method [9, 10], simplest equation
method [11], extended simplest equation method [12], (G′/G, 1/
G)-expansion method [13], material ve method [14], Hirota’s
method, tanh − coth method, exp-function method [15], the
homotopy analysis method [16], the extended sin-cosine method
[17], modified Kudryashov method [18], have been developed for
investigating the solitons and solitary wave solutions of NPDEs.

The exact solutions of NPDEs have been extracted for last
decade using numerous methods. The NPDEs such as, Triki-
Biswas equation [19], Burgers equation [20], fractional DNA
Peyrard-Bishop equation [21], Cahn-Allen equation [21] and
Lakshmanan-Porsezian-Daniel model [22, 23], have been
investigated in recent years.In this paper, the exact traveling
wave solutions of GSWL equation are extracted using the
MAE method and extended (G′G2)-expansion method. Among
the traveling wave solutions, soliton solutions are constructed
which are of great significance due to their interesting physical
properties. The physical shape of the wave profiles are also
demonstrated for some of the obtained solutions.

The rest of research article is demonstrated in the following
sections: The algorithm of MAE method and extended
(G′G2)-expansion method is illustrated in Section 2. The
application of proposed methods are given in the Section 3.
Section 4 contains the physical interpretation of obtained
solutions. Section 5 presents the results and discussion. The
last Section 6 contains the conclusion of this research article.

2 DEMARCATION OF METHODS

The NPDE is considered for the unknown function u(x, y, z, t) in
the form

F v, vx, vy, vz, vt, vxx, vyy, vzz, vtt, vxt, vyt, vzt, . . . ,( ) � 0, (2)

where x, y, z are space variables and t is time variable. F is a
polynomial in dependent variable v and its partial derivatives.The
NPDE (2) can be transformed in ordinary differential equation
(ODE) using following transformations,

v x, y, z, t( ) � V η( ), η � x + κy +mz − ϖt. (3)
Equation 3 is transformed into ODE of the form

H V, V′, V″, . . . ,( ) � 0, (4)
where V′ � dV

dη , H represents the polynomial of V and its
derivatives.

2.1 The Algorithm of MAE Method
This method is illustrated in [24] in which the formal solution of
Eq. 4 is considered, as

V η( ) � b0 +∑N
i�1

bi K( )is η( ) + ci K( )−is η( )( ), (5)

where b0, bi and ci are unknown parameters to be determined
later. For function s(η), the auxiliary equation is defined, as

s′ η( ) � δ + αK−s η( ) + βKs η( )
ln K( ) , (6)

where α, β, δ are constants and K ≠ 1, K > 0.The value of N can be
evaluated with the aid of homogeneous balance principle (HBP),
which is illustrated in [25]. In HBP, the value of N is evaluated by
equating the degree of highest order derivative to degree of
nonlinear term in Eq. 4. If deg[Vη] is equal to N, then the
degree of the other terms will be expressed as follows:

deg
dpV η( )
dηp

[ ] � N + p, deg V η( )( )q dpV η( )
dηp

( )w[ ]
� qN + w N + p( ). (7)

By substituting the value of N in Eq. 5, the formal solution
corresponding to Eq. 4 is obtained. Substituting the obtained
formal solution with auxiliary Eq. 6 into Eq. 4, accumulating the
coefficients of Kjs(η) (j = 0, ± 1, ± 2, ± 3, . . . ) and setting equal to
zero, the system of linear equations can be obtained. To solve this
system of equations simultaneously, symbolic software such as
Maple software can be used. In result, the values of unknown
constants b0, bi, ci, κ, m, ϖ, α, β and δ can be obtained.
The function Ks(η) assumes the following solutions.
Case 1. If δ2 − 4αβ < 0 and β ≠ 0, then

Ks η( ) �
−δ +


−δ2 + 4αβ

√
tan 1/2


−δ2 + 4αβ

√
η( )

2β
, (8)

or

Ks η( ) � −
δ +


−δ2 + 4αβ

√
cot 1/2


−δ2 + 4αβ

√
η( )

2β
. (9)

Case2. If δ2 − 4αβ > 0 and β ≠ 0, then
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Ks η( ) � −
δ +


−δ2 + 4αβ

√
tanh 1/2


−δ2 + 4αβ

√
η( )

2β
, (10)

or

Ks η( ) � −
δ +


−δ2 + 4αβ

√
coth 1/2


−δ2 + 4αβ

√
η( )

2β
. (11)

Case3. If δ2 − 4αβ = 0 and β ≠ 0, then

Ks η( ) � −δ η + 2
2βη

. (12)

The exact soliton solutions of Eq. 1 can be obtained by
substituting the values of unknowns b0, bi, ci, m, ϖ, α, β, δ and
putting the solutions from Eqs 8–12 into Eq. 5 along with
transformations from Eq. 3.

2.2 Extended (G9
G2)-Expansion Method

This method is illustrated in [7]. According to the extended
(G′G2)-expansion method, the formal solution of Eq. 4 is
considered, as

V η( ) � b0 +∑N
i�1

bi
G′
G2

( )i

+ ci
G′
G2

( )−i⎡⎣ ⎤⎦, (13)

where G = G(η) and b0, bi, ci are arbitrary constants to be
determined. The auxiliary equation of (13) is defined by

d

dη

G′
G2

( ) � ρ + ϱ G′
G2

( )2

, (14)

where ρ ≠ 1 and ϱ ≠ 0 are arbitrary constants.
The value ofN can be determined by HBP [25] as illustrated in

Subsection (2.1). Substituting general solution (13) along with
auxiliary Eq. 14 into Eq. 4, accumulating the coefficients of (G′G2)i
and equating to zero, the system of linear equations is obtained
where (i = 0, ± 1, ± 2, ± 3, . . . ). To solve this system of linear
equations simultaneously, symbolic software such as Maple
software can be used. In result, the values of unknown
constants b0, bi, ci, κ, m and ϖ are obtained.
The function (G′G2) assumes the following solutions.
Case1. If ρϱ > 0, then

G′
G2

�

ρ

ϱ

√ D cos

ρ ϱ√

η( ) + E sin

ρ ϱ√

η( )
E cos


ρ ϱ√

η( ) −D sin

ρ ϱ√

η( )⎛⎝ ⎞⎠. (15)

Case2. If ρϱ < 0, then

G′
G2

� −

ρ ϱ
∣∣∣∣ ∣∣∣∣√

D cosh 2

ρ ϱ
∣∣∣∣ ∣∣∣∣√

η( ) +D sinh 2

ρ ϱ
∣∣∣∣ ∣∣∣∣√

η( ) + E( )
ϱ D cosh 2


ρ ϱ
∣∣∣∣ ∣∣∣∣√

η( ) +D sinh 2

ρ ϱ
∣∣∣∣ ∣∣∣∣√

η( ) − E( ) .

(16)
Case3. If ρ = 0 and ϱ ≠ 0, then

G′
G2

� −2D
ϱ Dη + E( ). (17)

The exact soliton solutions of Eq. 1 can be acquired by inserting
the values of unknowns b0, bi, ci, m, ϖ and putting the solutions
from Eqs 15–17 into Eq. 5 along with transformations
from Eq. 3.

3 THE APPLICATION OF METHODS

In this section, the MAE method and extended (G′G2)-expansion
method are applied on GSWL equation to extract the exact
solutions. In the following subsection, the MAE method is
applied on GSWL equation.

3.1 The Application of MAE Method
The solutions of GSWL Eq. 1 are acquired by the following
transformations,

ψ x, y, z, t( ) � V η( ), η � x + κy +mz − ϖt, (18)
where U(η) shows the shape of wave and κ, m, ϖ are arbitrary
constants.The GSWL Eq. 1 is transformed into the following
ODE by substituting the transformations from Eq. 18 into
Eq. 1:

κ V iv( ) + 6 κ V′ V″ + κ ϖ −m( )V″ � 0. (19)
By integrating with respect to η and taking integration constant
zero, Eq. 19 is simplified to

κ V′′′ + 3 κ V′( )2 + κ ϖ −m( )V′ � 0. (20)
The highest order term V‴ and nonlinear term (V′)2 are
balanced at N = 1 using HBP, as

deg V′′′[ ] � 3 +N � deg V′( )2[ ] � 2 N + 1( ). (21)
The general solution of Eq. 20 from Eq. 5 can be expressed, as

V η( ) � b0 + b1 K( )s η( ) + c1 K( )−s η( ), (22)
where b0, b1 and c1 are constants to be determined. Substituting
the Eq. 22 along with auxiliary Eq. 6 into Eq. 20, accumulating
the coefficients of Kjs(η), (j = 0, ± 1, ± 2, ± 3, ± 4) and equating to
zero, the system of algebraic equations is acquired involving b0,
b1, c1, κ, m, ϖ, α, β and δ. To solve this system of linear equations
simultaneously, the Maple software is used. In result, three sets of
solutions for the values of constants b0, b1, c1, κ, α and β are
obtained.
Set1.

b0 � b0, b1 � −ϖκ −m

8κα
, c1 � ϖκ −m

8κβ
, κ � κ, α � α, δ � 0. (23)

Set2.

b0 � b0, b1 � 0, c1 � β2κ + ϖκ −m

2κβ
, κ � κ, α � α, δ � δ. (24)

Set3.

b0 � b0, b1 � −β
2κ +ϖκ −m

2κα
, c1 � 0, κ � κ, α � α, δ � δ. (25)
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By substituting the values of unknowns from Set 1 to Set 3 into
Eq. 18 and Eq. 22, the following families of soliton solutions of
Eq. 1 are obtained.Family 1. The soliton solutions for Set 1 are
given, as

ψ x, y, z, t( ) � b0 + −ϖ κ +m( )
8α κ

Ks η( ) + ϖ κ −m( )
8κ β

K−s η( ).
(26)

If δ2 − 4αβ < 0 and β ≠ 0, then

ψ1
1 x, y, z, t( ) � b0 +

δ +

4 α β − δ2

√
tan 1/2


4 α β − δ2

√
η( )( )

16κ −ϖκ +m( )α β
+ ϖκ −m

4κ −δ +

4 α β − δ2

√
tan 1/2


4 α β − δ2

√
η( )( ),

(27)

or

ψ1
2 x, y, z, t( ) � b0 −

δ +

4 α β − δ2

√
cot 1/2


4 α β − δ2

√
η( )( )

16κ −ϖκ +m( )α β
− ϖκ −m

4κ δ +

4 α β − δ2

√
cot 1/2


4 α β − δ2

√
η( )( ).

(28)

If δ2 − 4αβ > 0 and β ≠ 0, then

ψ1
3 x, y, z, t( ) � b0 −

δ +

4 α β − δ2

√
tanh 1/2


4 α β − δ2

√
η( )( )

16κ −ϖκ +m( )α β
− ϖκ −m

4κ δ +

4 α β − δ2

√
tanh 1/2


4 α β − δ2

√
η( )( ),

(29)

or

ψ1
4 x, y, z, t( ) � b0 −

−δ +

4 α β − δ2

√
coth 1/2


4 α β − δ2

√
η( )( )

16κ −ϖκ +m( )α β
− ϖκ −m

4κ −δ +

4 α β − δ2

√
coth 1/2


4 α β − δ2

√
η( )( ).

(30)

If δ2 − 4αβ = 0 and β ≠ 0, then

ψ1
5 x, y, z, t( ) � b0 + −ϖ κ +m( ) −δ η − 2( )

16α κ β η
+ ϖ κ −m( )η
4κ −δ η − 2( ).

(31)
where η = x + κ y + mz − ϖt. The solutions for Set 2 are given in
the following Family 2.Family 2

ψ x, y, z, t( ) � b0 + δ2κ + ϖ κ −m

2κ β
K−s η( )( ). (32)

If δ2 − 4αβ < 0 and β ≠ 0, then

ψ2
1 x, y, z, t( ) � b0 + δ2κ + ϖκ −m

κ −δ +

4 α β − δ2

√
tan 1/2


4 α β − δ2

√
η( )( ), (33)

or

ψ2
2 x, y, z, t( ) � b0 − δ2κ + ϖκ −m

κ −δ +

4 α β − δ2

√
cot 1/2


4 α β − δ2

√
η( )( ). (34)

If δ2 − 4αβ > 0 and β ≠ 0, then

ψ2
3 x, y, z, t( ) � b0 − δ2κ + ϖκ −m

κ −δ +

4 α β − δ2

√
tanh 1/2


4 α β − δ2

√
η( )( ), (35)

or

ψ2
4 x, y, z, t( ) � b0 − δ2κ + ϖκ −m

κ −δ +

4 α β − δ2

√
coth 1/2


4 α β − δ2

√
η( )( ). (36)

If δ2 − 4αβ = 0 and β ≠ 0, then

ψ2
5 x, y, z, t( ) � b0 + δ2κ + ϖ κ −m( )η

2κ −δ η − 2( ) . (37)

where η = x + κ y + mz − wt. The solutions for Set 3 are shown in
the following Family 3.
Family 3

ψ x, y, z, t( ) � b0 − δ2κ + ϖ κ −m( )
2α κ

Ks η( ). (38)

If δ2 − 4αβ < 0 and β ≠ 0, then

ψ3
1 x, y, z, t( ) � b0 −

δ2κ + ϖ κ −m( ) −δ +

4 α β − δ2

√
tan 1/2


4 α β − δ2

√
η( )( )

4α κ β
,

(39)
or

ψ3
2 x, y, z, t( ) � b0 −

δ2κ + ϖ κ −m( ) −δ +

4 α β − δ2

√
cot 1/2


4 α β − δ2

√
η( )( )

4α κ β
.

(40)

If δ2 − 4αβ > 0 and β ≠ 0, then

ψ3
3 x, y, z, t( ) � b0 − δ2κ + ϖκ −m

κ −δ +

4 α β − δ2

√
tanh 1/2


4 α β − δ2

√
η( )( ), (41)

or

ψ3
4 x, y, z, t( ) � b0 − δ2κ + ϖκ −m

κ −δ +

4 α β − δ2

√
coth 1/2


4 α β − δ2

√
η( )( ). (42)

If δ2 − 4αβ = 0 and β ≠ 0, then

ψ3
5 x, y, z, t( ) � b0 − 1/4 δ2κ + ϖκ −m( ) −δ η − 2( )

α κ β η
, (43)

where η = x + κy + mz − ϖt.

3.2 The Application of Extended
(G9
G2)-Expansion Method

In this method, the formal solution of Eq. 20 for value of N = 1 is
given, as

V η( ) � b0 + b1
G′
G2

( ) + c1
G′
G2

( )−1
, (44)

where G = G(η), η = x + κy + mz − ϖt and constants b0, b1, c1 are
to be determined. By inserting the Eq. 44 along with auxiliary
Eq. 14 into Eq. 20, collecting the coefficients of (G′G2)i (i �
0, ± 1, ± 2, ± 3, ± 4) and equating to zero, the system of
linearee equations is acquired involving b0, b1, c1, κ, m, w, ρ and ϱ.
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To solve this system of linear equations simultaneously, the Maple
software is used. In result, three sets of solutions containing the values
of constants b0, b1, c1, κ, α and β are retrieved.
Set1.

b0 � b0, b1 � −2ϱ, c1 � 0, κ � κ, m � m, ϖ � 4 κ ϱ ρ +m

κ
. (45)

Set2.

b0 � b0, b1 � −2ϱ, c1 � 2ρ, κ � κ, m �m, ϖ � 16κ ϱρ +m

κ
. (46)

Set3.

b0 � b0, b1 � 0, c1 � 2ρ, κ � κ, m � m, ϖ � 4 κ ϱ ρ +m

κ
. (47)

By substituting the values of unknown constants from Set 1 to Set
3 into Eq. 18 and Eq.(44), the following families of solutions of
Eq. 1 are obtained.

Family 1. The soliton solutions for Set 1 are given, as

ψ x, y, z, t( ) � b0 − 2 ϱ G′
G2

( ). (48)

If ρϱ > 0, then

ψ4
1 x, y, z, t( ) � b0 −

2

ρ ϱ√

D cos

ρ ϱ√

η( ) + E sin

ρ ϱ√

η( )( )
E cos


ρ ϱ√

η( ) −D sin

ρ ϱ√

η( ) .

(49)
If ρϱ < 0, then

ψ4
2 x, y, z, t( ) � b0 +

2

ρ ϱ
∣∣∣∣ ∣∣∣∣√

D cosh 2

ρ ϱ
∣∣∣∣ ∣∣∣∣√

η( ) +D sinh 2

ρ ϱ
∣∣∣∣ ∣∣∣∣√

η( ) + E( )
D cosh 2


ρ ϱ
∣∣∣∣ ∣∣∣∣√

η( ) +D sinh 2

ρ ϱ
∣∣∣∣ ∣∣∣∣√

η( ) − E
.

(50)
If ρ = 0 and ϱ ≠ 0, then

ψ4
3 x, y, z, t( ) � b0 + 2D

D( )η + E
, (51)

where η � x + κy +mz − 4κϱρ+m
κ t. The solutions for Set 2 are

given in the following Family 2.
Family 2

ψ x, y, z, t( ) � b0 + a1
G′
G2

( ) + b1
G′
G2

( )−1
. (52)

If ρϱ > 0, then

FIGURE 1 | ψ1
1(x, y, z, t): b0 = 0, κ = δ = 0.6, α = β = 0.35, m = 0.06, ϖ = 0.5.

FIGURE 2 | ψ1
3(x, y, z, t): b0 = 0, κ = δ = 0.6, α = β = 0.35, m = 0.06, ϖ = 0.5.
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ψ5
1 x, y, z, t( ) � b0 −2


ρ ϱ√

D cos

ρ ϱ√

η( ) + E sin

ρ ϱ√

η( )( )
E cos


ρ ϱ√

η( ) −D sin

ρ ϱ√

η( )
+ 2


ρ ϱ√

E cos

ρ ϱ√

η( ) −D sin

ρ ϱ√

η( )( )
D cos


ρ ϱ√

η( ) + E sin

ρ ϱ√

η( ) .

(53)
If ρϱ < 0, then

ψ5
2 x, y, z, t( ) � b0 +2


ρ ϱ
∣∣∣∣ ∣∣∣∣√

D cosh 2

ρ ϱ
∣∣∣∣ ∣∣∣∣√

η( ) +D sinh 2

ρ ϱ
∣∣∣∣ ∣∣∣∣√

η( ) + E( )
D cosh 2


ρ ϱ
∣∣∣∣ ∣∣∣∣√

η( ) + D( )sinh 2

ρ ϱ
∣∣∣∣ ∣∣∣∣√

η( ) − E

− 2
ρ ϱ D cosh 2


ρ ϱ
∣∣∣∣ ∣∣∣∣√

η( ) + D( )sinh 2

ρ ϱ
∣∣∣∣ ∣∣∣∣√

η( ) − E( )
ρ ϱ
∣∣∣∣ ∣∣∣∣√

D cosh 2

ρ ϱ
∣∣∣∣ ∣∣∣∣√

η( ) +D sinh 2

ρ ϱ
∣∣∣∣ ∣∣∣∣√

η( ) + E( ).
(54)

If ρ = 0 and ϱ ≠ 0, then

FIGURE 3 | ψ2
4(x, y, z, t): b0 = 0, κ = δ = 0.6, α = β = 0.35, m = 0.06, ϖ = 0.5.

FIGURE 4 | ψ3
2(x, y, z, t): b0 = 0, κ = δ = 0.6, α = β = 0.35, m = 0.06, ϖ = 0.5.

FIGURE 5 | ψ4
1(x, y, z, t): κ = 2, D = 6, rest of constants = 1.
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ψ5
3 x, y, z, t( ) � b0 + 2D

Dη + E
− ρD

2ϱ Dη + E( )( )−1
,

where η � x + κy +mz − 16κϱρ+m
κ t. The solutions for Set 3 are

given in the following Family 3.
Family 3

ψ x, y, z, t( ) � b0 + b1
G′
G2

( )−1
. (55)

If ρϱ > 0, then

ψ6
1 x, y, z, t( ) � b0 +

2

ρ ϱ√

E cos

ρ ϱ√

η( ) − D( )sin 
ρ ϱ√

η( )( )
D cos


ρ ϱ√

η( ) + E sin

ρ ϱ√

η( ) .

(56)
If ρϱ < 0, then

ψ6
2 x, y, z, t( ) � b0 −

2ρ ϱ D cosh 2

ρ ϱ
∣∣∣∣ ∣∣∣∣√

η( ) + D( )sinh 2

ρ ϱ
∣∣∣∣ ∣∣∣∣√

η( ) − E( )
D cosh 2


ρ ϱ
∣∣∣∣ ∣∣∣∣√

η( ) +D sinh 2

ρ ϱ
∣∣∣∣ ∣∣∣∣√

η( ) + E( ) 
ρ ϱ
∣∣∣∣ ∣∣∣∣√ .

(57)
If ρ = 0 and ϱ ≠ 0, then

ψ6
3 x, y, z, t( ) � b0 − 2 ρ

D

ϱ D( )η + E( )( )( )−1
, (58)

where η � x + κy +mz − 4κϱρ+m
κ t.

4 GRAPHICAL EXPLANATION OF
SOLUTIONS

In this section, some of the obtained solutions are plotted as
3D surface, 2D contour graphs and 2D graphs. Since the
retrieved solutions include rational, hyperbolic and
trigonometric functions, therefore the most of the graphs
show kink soliton solution, periodic soliton solution and
singular soliton solutions, which are plotted in Figures 1–6.
These graphs are drawn for the suitable values assigned
to parameters. The graph of (3 + 1)-dimensional function
ψ(x, y, z, t) cannot be plotted in three dimensional space.

To plot the graph of this function, constant values are
assigned to space variables y and z. The vertical axes of
3D graphs represent the values of function ψ. The
determined values of parameters b0, κ, δ, α, β, m, D, E and
w can be taken from the corresponding set to the families.
The line graphs are plotted using fixed value of time
variable t = 1.

5 RESULTS AND DISCUSSION

In this paper, SWL equation is examined using two exact
methods, MAE method and extended (G′G2)-expansion method.
Both methods have provided trigonometric, hyperbolic and
rational function solutions. However, the obtained solutions
include a variety of distinct wave patterns. It can be observed
that the MAE method has provided more solutions as compared
to the extended (G′G2)-expansion method.

The utilized mathematical techniques enable to construct
possible variety of soliton solutions for arbitrary initial
condition. The obtained solutions are useful to learn
various kinds of wave structures which may be observed in
any physical system governed by the GSWL equation. The
physical structure of the waves expressed by the obtained
solutions can be seen using graphical illustration. The 3D
graphs of some of the retrieved solutions have been
presented to show the shape of the corresponding wave.
The graphs have been plotted using some suitable choice of
parameters as described in the last section. The retrieved
graphs depict a variety of physical behaviors depicting kink,
periodic and bright-dark solitons which may appear in many
phenomena involving shallow water waves.

Figure 2 represents kink soliton solution as the graph of the
function ψ1

3 varies from one asymptotic state to another
asymptotic state. Figure 5 represents the periodic wave
solution as the wave pattern is repeated after equal
intervals. The Figure 1, Figure 3 and Figure 6 represent
the bright-dark singular soliton solutions as depicted by
their line graphs at t = 1. Figure 4 is showing singular dark
soliton solution as the intensity of wave is much lower at center
of the wave than its neighboring points.

FIGURE 6 | ψ4
2(x, y, z, t): κ = 2, D = 6, rest of constants = 1.
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6 CONCLUSION

In this paper, the GSWL equation is discussed by MAE
method and extended (G′G2)-expansion method. Many soliton
solutions containing rational, hyperbolic and trigonometric
functions are obtained using proposed methods. The 3D
surface graphs, 2D contour graphs and line graphs are
plotted for retrieved solutions. The obtained graphs include
kink soliton solutions, periodic solutions and bright-dark
soliton solutions. It is worth mentioning that GSWL
equation is discussed for the first time in this work by
using proposed models. In future, GSWL equation can also
be investigated using other methods, therefore much new
work is yet to be done on this model.
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