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Due to the new demonstrations of Laser-induced breakdown spectroscopy (LIBS)
applicability in a surprisingly wide variety of applications, the use of LIBS as a medical
diagnostic tool is steadily gaining momentum. Especially in different cancer diseases, LIBS
has the potential to become a fast and valuable analytical tool. We addressed LIBS
equipment and quantitative analytical procedures, and signal enhancement techniques for
improving element detection. For detailed aspects of applications, we reviewed the recent
progress of LIBS in different cancer diseases diagnoses by using different tissues and
medical fluid as samples. To fulfill the high demands in the medical industry and overcome
the severe tissue sample problem, it is proposed that the chemometric and signal
amplification techniques for quantitative analysis should be employed, and robust and
effective LIBS devices should be developed. This overview of the different cancers by LIBS
is meant to summarize the research performed to date and suggest some suitable
advanced chemometrics techniques and effective LIBS devices, if successfully
implemented, would be significantly beneficial to the medical field in the future.
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INTRODUCTION

Cancer is a kind of disease caused by the uncontrolled growth of abnormal cells in body organs.
These abnormal cells are also called cancer cells, tumor cells, or malignant cells. These cells may
invade other normal tissue of the body. The second major cause of death worldwide is cancer;
therefore, cancer is a critical issue that impacts all human communities [1]. In a broader sense, there
are more than 277 different types of cancer diseases [2]. Scientists have found multiple stages of
cancer. Many scientific and therapeutic efforts are underway to identify and combat cancer
effectively. For this purpose, some X-ray-based imaging techniques like particle-induced X-ray
emission (PIXE), energy-dispersive X-ray spectroscopy (EDX), and X-ray fluorescence microscopy
(XRF) were used [3–5]. Still, these techniques have low sensitivity and accuracy [6]. Recently several
other analytical approaches are generally used as a reference point in clinical research, such as
polymerase chain reaction and histopathological analysis [7]. Such techniques involve a skilled
person with experience, and the research process is time-consuming and complicated. Molecular
spectroscopy like near-infrared (NIR) and Raman Spectroscopy (RS) [8] were also used, which is
very simple and non-destructive. Still, they give only the molecular structure of the tissue sample and
have relatively weak signals and complex spectral background.
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Laser-induced breakdown spectroscopy is a type of laser-based
atomic emission spectroscopy. LIBS has already become a known
and popular analytical spectroscopic technique for studying the
elementary form of any kind of sample, along with solid, liquid, or
gas [9, 10]. A high-energy laser pulse targets a material substrate
(sample) to be analyzed through LIBS, resulting in plasma
production due to the interaction between laser and material
substrate. The spectrometer detects the radiation emitted as
plasma cools and sends it to a computer, where the signals are
collected and processed for further analysis. LIBS offers the most
well-known benefits [11], 1) in-situ and stand-off detection
capabilities; 2) no or little sample preparation; 3) micro-
analysis capability when microscopically connected; 4)
availability of multi-element analysis; 5) ability to analyze
solids, liquids, and gases; and 6) simplicity. LIBS analyses are
available for all types of biomaterials and can detect almost all
elements; furthermore, when coupled with chemometrics and
machine learning algorithms, the technique provides an excellent
ability to quantitatively and qualitatively analyze unknown
substances in real-time. Moreover, the LIBS instrument isn’t
complicated and usually composed of a laser source,
spectrometer, optical system, detector, etc. And access to
samples in LIBS mainly includes focusing optics [12]. To
achieve cancer diagnosis, LIBS was usually used for
pathological detection. The current gold standard in cancer
diagnosis is the histopathological examination in patient tissue
biopsies or surgical excisions [8, 13]. LIBS biomedical application
is mainly divided into two categories [14]. The first category
analyzes and studies the microorganism (e.g., molds, yeast,
bacteria), which causes different human diseases [15]. In the
second category, a clinical specimen of human or animal-like
(tissue samples, blood or other fluid samples, teeth and bones,
etc.) is analyzed and studied [16]. In biomedical applications,
significantly different kinds of cancer detection and classification
are among the fastest-growing fields of study at LIBS. In the
related application especially in cancer diseases diagnosis, LIBS
was used by Kumar et al. [17] firstly to distinguish between
normal and malignant cells of dog hemangiosarcoma and showed
the variation or difference in constituent elements of the tissues
sample. Similarly, Melikechi et al. [18] used mice blood plasma as
a sample to detect the epithelial ovarian cancer (EOC) and
concluded that LIBS can be used as a novel approach to detect
EOC. Gondal et al. [19] studied the determination of heavymetals
in colon cancer using normal and malignant tissue samples of
humans. They concluded that LIBS is a compatible technique for
the assessment and identification of heavy metals such as Pb, Hg,
and Cr in cancerous colon tissues. Rizk et al. [20] reported
variations of different trace elements levels like Mn, Cu, Fe,
Na, Mg, K, and Ca of liver cancer by LIBS. In the same
fashion, Teran-Hinojosa et al. [21] employed LIBS to find the
correlation in elemental concentration between fibrotic and
healthy samples of mice liver tissues. For lymphoma, and
multiple myeloma (MM), Chen et al. [22, 23] used whole
blood and serum sample to differentiate between normal and
cancer blood samples. They preferred the entire blood sample
instead of serum because the entire blood sample consists of large
nutrients and can get good LIBS spectra for analysis. Similarly,

Chu et al. [24] reported the classification of nasopharyngeal
carcinoma using LIBS combined with chemometrics. LIBS was
also used to diagnose colorectal cancer [25], cervical cancer [26],
breast cancer [27], and melanoma [28]. LIBS cancer tests are fast,
accurate, and less invasive. Because of their tremendous potential
for early identification of different cancer diseases, LIBS and
machine learning techniques give patients with more therapy
alternatives and higher survival rates.

The main objective of this paper is to review and survey the
relevant development in the biomedical field of LIBS, particularly
in different cancer detection and analysis over the last decade.
Specifically, the latest results of diagnosis, classification, and
determination of different kinds of cancers (breast cancer, liver
cancer, melanoma, blood cancer, stomach cancer, etc.) by using
LIBS were discussed. This paper presents the measurement and
detection by LIBS of various substrate samples (such as tissues,
tissue in pelletized form, tissue homogenization, blood sample,
blood serum, etc.) and early cancer detection. Finally, emerging
developments and perceptions of the LIBS were proposed in the
study of different kinds of cancers, and new possible approaches
to current LIBS problems.

LIBS FUNDAMENTALS

It is essential to understand the plasma physics behind LIBS to
provide an optimal environment for LIBS measurements. A
considerable number of different environmental conditions
impact the features and lifetime of plasma, which caused
changes in spectral emissions and the efficiency of this method
for chemical atomic level research. Laser ablation and matter
interaction worked on the principle of quantum mechanics laws
describing photons emission and absorption by atoms. Two
pioneer researchers of LIBS, Miziolek, and Cremers, have
published technical details of this field [29]. The LIBS cycle
contains the following sequence of events, where 1) focus a
high-power laser pulsed beam on the specific material
substrate 2) laser-matter interaction takes place, and hot
plasma plume is produced, 3) the hot plasma plume collected
through optical fibre, that equipped with high-resolution gratings
and collecting optical lens 4) the corresponding LIBS signal is
then evaluated to determine and measure the relative existence of
the target material substrate chemical constituents. In Table 1,
some literature about LIBS in different cancer diseases is
discussed and briefly summarizes the experimental techniques,
sample preparation, spectra measurements, and different
chemometric methods. In the medical field, sample collection
is a huge issue and especially in cancer types of diseases. So it is
essential to select the best and suitable sample type for laser
ablation to collect the best spectra.

For excitation and de-excitation purposes, a high-energy
pulsed laser (Nd: YAG laser with typical wavelength 1,064 nm)
is applied to the sample (usually within nanosecond range) in
LIBS [29], because of its durability, ease of use, and high energy
peak pulse. Similarly, Nd: YAG laser second and third harmonic
wavelengths 532 and 355 nm are also often used as excitation
sources [37, 38]. The femtosecond (fs) laser is also used in various

Frontiers in Physics | www.frontiersin.org February 2022 | Volume 10 | Article 8210572

Khan et al. A Review on Laser-Induced Breakdown

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


TABLE 1 | Preparation and presentation of samples as well as mehtods used (in cancer diseases) for LIBS data analysis.

References Sample materials Cancer type Methods Laser/spectrometer/and
no.

of shots

Elemental emission
lines (nm)

[17] Paraffin-embedded
tissues/(dog liver sample)

Liver cancer Elemental analysis Nd: YAG (532 nm, 10 Hz,
5 ns, 10 mJ)/(UV–visible
Echelle optical
spectrograph, range
200–700 nm)

Al 394.4 and 396.15, Ca 393.37,
396.85, 610.27, and 612.22

[20] Paraffin blocks Liver cancer (Human
tissues)

ANN (Artificial Neural
Network)

Nd: YAG (532 nm, 5 ns,
125 mJ)/200–1,000 nm

Cu 570.02, Fe 252.47,263.22,370.78
517.15, Na 589.59,589.99, Mg
383.23, 383.82,
Ca422.67,428.93,430.25, and K
766.49, 850.34

[23] Serum sample/(Human
serum sample)

lymphoma and
Multiple myeloma
cancer patients

PCA, LDA, QDA, kNN Nd: YAG (1,064 nm, 5 Hz,
8 ns, 73 mJ)/Four-channel
spectrometer range
200–850 nm,/100 LIBS
spectra were collected, for
each sample

Ca I422.67, 526.56, Ca II 393.36,
396.85, Na I 588.99, 589.59, 819.48,
K I 766.49, 769.90, H 656.27, O
777.19, 844.64 and N 742.36, 744.23,
746.83

[22] Whole blood sample/
(Human blood sample)

Lymphoma PCA (Principal Component
Analysis), LDA (Linear
Discriminant Analysis), kNN
(k nearest neighbor)

Nd: YAG (1,064 nm, 5 Hz,
8 ns, 73 mJ)/Four-channel
spectrometer range
200–850 nm,/100 LIBS
spectra were collected, for
each sample

Ca I 422.67, 526.56, Ca II 393.36,
396.85, Fe I 371.99, 373.49, 374.56,
374.95, 438.35, K I 766.49, 769.90,
Mg I 516.73, 517.27, Na I 568.82,
588.99, 589.59

[30] Pellets and excised tissue
sample/(mice sample)

Melanoma PCA,LDA Nd: YAG (532 nm, 5 Hz,
5 ns, 7–9 mJ)/
187–1,045 nm at a
resolution of about 0.1 nm/
15 shots

Ca II 393.366, 369.847, Mg II 279.553,
280.170, K I 766.49, 769.90

[28] biological fluids (blood and
tissue homogenates)/(mice
sample)

skin cancer
melanoma

LDA. FDA (Fisher
Discriminant Analysis), SVM
(Support Vector Machine),
Gradient Boosting

150-fs Ti-Sapphire laser
(775 nm, 50 ns, 1.44 mJ)/
spectrsometer range
190–975 nm, resolution
0.013–0.056 nm/

Na I 589.59, Ca I 422.67, Mg I 285.21

[31] Four fresh tissue glioma
samples/(Human tissue
sample)

Glioma brain tumour SVM Nd: YAG (1,064 nm, 1 Hz,
5 ns, 40 mJ)/Spectrometer
range 190–1,100 nm
resolution 0.2–0.3 nm/For
each sample, 200 spectra
were collected

Mg 279.1, 279.8, Ca 393.4, 396.8,
422.7, Na 589.0, 589.6, H 656.3, N
818.5, K 766.5, 769.9 and O 777.4

[24] In total, 160 serum samples
were donated by 100
healthy controls and 60
NPC patients/(Human
serum sample)

nasopharyngeal
carcinoma

ELM(Extreme Learning
Machine), RF(Random
Forest)

Nd:YAG (532 nm, 10 Hz,
8 ns, 30 mJ)/echelle
spectrometer spectral
range: 200–950 nm/The
number of laser shots
was 40

Na 588.99, 589.59, K 766.49, 769.90,
Zn 330.26, Mg 279.55, Al394.40,
396.15 and C–N 385.09, 385.47,
387.14, 388.34

[25] Tissue sample/(Human
tissues)/Samples from 41
patients with breast cancer
and 32 patients with
colorectal cancer

breast cancer and
colorectal cancer

Elemental analysis Nd:YAG (532 nm,5 ns,
100 mJ)/echelle
spectrometer/50 spectra
collected from each sample

Ca 373.6, 422.6, and Mg 280.2, 285.2

[26] Tissue samples (in paraffin
blocks)/(Human tissues)

cervical cancer PCA, SVM Nd:YAG (532 nm, 10 Hz,
8 ns, 30 mJ)/echelle
spectrometer 200–900 nm/
140 spectra collected

Na 588.95, 589.59, Mg 279.55,
280.27, K 766.49, 769.90, Ca 393.37,
396.85, 422.68

(Continued on following page)
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TABLE 1 | (Continued) Preparation and presentation of samples as well as mehtods used (in cancer diseases) for LIBS data analysis.

References Sample materials Cancer type Methods Laser/spectrometer/and
no.

of shots

Elemental emission
lines (nm)

[32] Tissue slices of roughly
5 mm × 5 mm×2 mm are
cut before the laser/Human
tissues

Breast cancer (IDC-
Invasive ductal
carcinoma)

Elemental analysis Nd:YAG (1,064 nm, 10 ns,
1 Hz, 150 mJ)/(Avantes Ava
Spec 2048, NA = 0.22)
range of 200–1,100)/200
LIBS spectra are collected
from each sample

Mg I 285.213, Mg II 279.553 and
280.27, Ca I 422.67, 435.5, and
616.217, Ca II 317.933, 393.366, and
396.847, Na I 588.99 and 589.59, Na II
339.92, K I 766.48, 769.89, N I
742.364, 744.229, 746.831,818.802

[33] Tissue slices of roughly
5 mm × 5 mm×2 mm/
(Human Tissues)

breast, colon, larynx,
and Tongue

Elemental analysis Nd:YAG (1,064 nm, 10 ns,
1Hz, 150 mJ)/(Avantes, Ava
Spec 2048, having NA =
0.22) range of 200–1,100
nm/200 plasma emission
spectra are taken from each
sample

Mg I 285.21, Mg II 279.55,280.27, Na
II 339.92, Ca I 422.67 and 435.5,
616.21, Ca II 317.93, 315.88, 318.13,
393.36, 396.84, Na I 588.99 and
589.59, H 656.3 and Hb 486.13, O I
777.2, 777.4, 777.5 and 844.6, N I
742.36, 744.22, 746.83, 818.8,
821.63, 824.23, 868.02, 868.34,
868.61

[34] Paraffin tissue blocks/
(Human tissue)

Gastric cancer Elemental analysis Nd:YAG (1,064 nm, 1 Hz,
6 ns?30 mJ)/Echelle
spectrometer/

Ca 315.92, 317.96, 393.32, 396.8, Mg
279.56 and 280.3

[35] Blood plasma/ovarian
cancer/176 sample
including normal patients

PCA, SKB(SelectKBest
algorithm)

Nd:YAG (1,064 nm, 7 ns ,
and 30 mJ)/echelle
spectrometer range from
230 to 900 nm

K 766.48, 769.89, Na 588.96 and
589.58, Mg 279.55,280.27, Fe 623.96
and 634.8

[36] Lung tumor/90 samples are
used

Lung cancer SVM, PCA, Gradient
Tree, RF

Nd:YAG (1,064 nm, 10 ns,
10 Hz, 65 mJ)/Mechelle
spectrometer/They collected
140 LIBS spectrum

C 247.8, Mg 279.8, C-N 358.4,388.3,
417.6, Ca 393.3, 396.8, 422.7, Na
588.99, 589.59, K 766.5, 769.9

FIGURE 1 | The achieved classification accuracy result of RF technique (A) in the wavelength range of 250–680 nm (B) and 220–850 nm [18].
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applications of LIBS [29]. In LIBS analysis, the pulsed laser energy
and laser spot size are very significant to infuse on the sample’s
surface [39].

LIBS ANALYSIS FOR DIFFERENT
CANCERS

Ovarian Cancer
Ovarian cancer, often known as ovaries cancer, is one of the most
frequent cancers in women. Ovarian cancer is the fifth leading
cause of death for women. In 2018, new cases of ovarian cancer
diagnosis patients reached around 21,750 in the United States
(US); an additional 13,940 deaths were also reported [40].
Ovarian cancer is one of the leading causes of death among
gynecological cancers (cancer that occurs inside the reproductive
organs. Cervical, ovarian, uterine, vaginal, and vulvar are five
primary forms of cancer that involve a woman’s reproductive
organs). Usually, there are no unique signs and symptoms;
consequently, 70% of cases are found as the disease is grown
at an early stage [41, 42]. For the identification of ovarian cancer,
Melikechi et al. [18] conducted a preliminary investigation on the
blood sample of the transgenic mice to identify and classify
ovarian tumors in the wild type (normal) and transgenic mice
(cancerous). For further LIBS analysis, they collected blood
samples from mice at different ages of 8, 12, and 16 weeks. A
total of 56 blood plasma samples were used in the experiment, 28
of each class (normal and cancerous).

This finding backs up the theory that as the tumour load in the
animals grows, plasma specimens will deviate more from control
specimens. When all six data are combined, however, the
accuracy of classification for each age group drops. We believe
this drop is because the LIBS chamber has to be re-opened after
collecting LIBS spectra from one set of blood plasma samples to
load the new blood plasma samples. The results of RF are shown
in Figure 1. They concluded that more research is needed to
classify ovarian cancer and identify atomic and ionic lines in the
ablated samples. Another interesting perspective is to continue
with the physical understanding of the selected set of wavelengths
for good classification results.

Yue et al. [35] used LIBS combined with machine learning
techniques to diagnose and classify ovarian cancer. They also
used the blood plasma of 176 patients, including ovarian cyst and
normal samples. For cancer diagnosis, they achieved sensitivity
and specificity 71.4 and 86.5%, respectively. In the experiment,
they detected emission lines from certain minor elements in
blood plasma, Fe, Si, P, and Cu, but the contribution in
classification was minimal. Consequently they considered the
major metal elements, K, Na, Mg, and Ca are because these
elements are essential electrolytes in blood and play a critical role
in preserving homeostasis in the body. As a result, an imbalance
in their proportions in a patient shows a state of abnormality.

Furthermore, direct analysis of blood-related liquids is
preferred for a clinical approach among various operation
modes with different types of biological samples because LIBS
corresponds to an easy, cost-effective, and widely used
implementation of biomedical test that is suitable for a wide

coverage screening and can be incorporated in a routine physical
examination.

Lymphoma and Multiple Myeloma (MM)
Most blood cancers, also known as hematologic malignancies,
begin in the bone marrow, which produces blood. When
dysfunctional blood cells begin to develop out of control, they
disrupt the function of healthy/normal blood cells, which fight
infection and create new blood cells. A blood cancer diagnosis is
also a big problem in clinical medicine today [43–45]. Multiple
myeloma (MM), Leukaemia, and malignant lymphoma are the
three most common types of blood cancer [46]. There are two key
obstacles in diagnosing blood cancer: distinguishing cancer from
normal blood cells and identifying the different forms of blood
cancer. Lymphoma and multiple myeloma (MM) are cancers of
the blood cells that affect the body’s hematopoietic and lymphatic
systems. In 2015 about 29,300 died from lymphoma, and 9,200
died from MM, respectively, in China [47]. Three papers have
been published to diagnose blood cancer through LIBS in 2017,
2018, and 2020 respectively.

X. Chen et al. presents a rapid and robust diagnosis and
discrimination of lymphoma and MM using LIBS performed on
serum samples in combination with different chemometric
techniques [23]. They used k nearest neighbors (kNN),
principal component analysis (PCA), linear discriminant
analysis (LDA) and quadratic discriminant analysis (QDA) to
build the malignancy diagnosis and discrimination models for
further analysis. PCA scores are used for best features selection. In
terms of precision of discrimination, the area under the curve
(AUC), sensitivity, and accuracy, the kNNmodel displays the best
results. The ROC curves for all classification models are shown in
Figure 2A. The average specificity of classification was achieved
at 96.0%. In the second paper, for discrimination of lymphoma
using LIBS, the whole blood is taken as a sample [22]. Instead of
serum samples, whole blood samples are used because they
contain more components and have more spectral signatures
for the study of discrimination. All blood samples from
lymphoma patients and healthy controls were analysed and
compared using the LIBS spectrum. Chemometric approaches
have been used to study discrimination, including PCA, LDA
classification, and kNN classification. Both kNN and LDAmodels
have demonstrated extremely excellent discriminating efficiency,
as shown in Figure 2B, with an accuracy of over 99.7%, a
sensitivity of over 99.6%, and a specificity of over 99.7%. It is
assumed, however, that the incidence of cancer is not connected
to either one or two unique elements but rather to several forms of
elements. The confusing impact of other mild disorders can be
minimized to a restricted degree by using discrimination models
based on multivariate analysis instead of univariate analysis. Yet,
it can help boost the robustness of the discrimination models by
incorporating benign disease controls in the model.

Similarly, in the third paper, a technique uses random
subspace method (RSM) based ensemble learning such as
RSM-LDA in conjunction with LIBS [48]. They studied the
Leukemia subtypes of blood cancer like acute myeloid
leukemia (AML), chronic myelogenous leukemia (CML), and
MM and lymphoma. The variable importance (VI) of the selected
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lines was determined to evaluate the significance of the function.
The RSM-LDA model has the highest overall precision rate and
AUC, compared to LDA and kNN, which means that the RSM-
LDA model has the highest accuracy, as shown in Figure 3.
Furthermore, Figure 4 manifests the best performing
classification ROC curve for four different blood cancers. With
the RSM-LDA model, the overall accuracy ratings for AML vs
healthy control (HC), CML vs HC, MM vs HC, and lymphoma vs
HC ranged from 94.33, 94.49, 94.61, and 94.38%–98.77, 96.54,
98.78, and 96.62%, respectively. In the above two papers of blood
cancer, the serum sample and whole blood sample are used on
filter paper, while in the third paper about blood cancer the whole
blood sample used in the form of pellets.

Skin Cancer (Melanoma)
Skin cancer is one of the leading causes of death worldwide.
Squamous Cell Carcinoma (SCC), Basal Cell Carcinoma (BCC),

and Merkel cell cancer are known as non-melanoma skin cancer
(NMSC). These NMSC and melanoma are categorized as skin
cancer. In 2018, NMSC (excluding basal cell carcinomas, BCCs)
was the world’s fifth most prevalent form of cancer, causing more
than 1 million new cases and 65,000 deaths, while melanoma was
the 21st in cancers lethality rank. Malignant melanoma is the
most severe form of skin cancer. It leads to higher patient
mortality due to late pathology diagnosis of almost 300,000
new incidents and 60,000 fatalities [49] and its increased risk
of developing systemic metastases [50]. In this regard, Han et al.
[30] concentrated on the feasibility of LIBS to differentiate
between lesions in the surrounding dermis from melanoma.
Using homogenized pellet extracts from melanoma-implanted
mice, and performed a qualitative and quantitative elemental
analysis of melanomas and the underlying dermis. Based on these
results, they also analyzed distinguishable elements from real skin
tissues of melanoma-implanted mice, reflecting the clinical

FIGURE 2 | (A)The ROC curve for the lymphoma class of different classification models [23]. (B)Receiver operating curve (ROC) for the lymphoma class of LDA and
kNN models [22].

FIGURE 3 | (A) The accuracy rate of different models (B) confusion matrix of RSM-LDA [48].
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FIGURE 4 | The ROC curve was used to compare four different models for (A) AML versus healthy control (HC), (B)CML vs HC, (C)MM vs HC, and (D) lymphoma
vs HC [48].

FIGURE 5 | The classification accuracy result of (A) LDA (B) FDA (C) SVM and (D) Gradient boosting with different substrates of Cu, Si and Aluminum [54].
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situation. The sensitivity and specificity of LDA classifier for
pellet samples were shown to be 99.4 and 100%, respectively,
while those for tissue samples were shown to be 96.7 and 99.7%,
respectively. Rosalba et al. [28] collect and compare the blood
serum and tissue homogenate LIBS spectra harvested from a pre-
clinical model of melanoma. The use of four distinct classification
algorithms (LDA, FDA, SVM, and Gradient Boosting) is effective.
The results of these four algorithms were compared, and Gradient
Boosting was found to provide the best precision for classification
as shown in Figure 5. The classification accuracy could be
significantly impaired by various substrates, with Cu substrate
the best outcomes in the experimental circumstances used.
Similarly, the findings of the fs-LIBS research and analysis
were reported by Moon et al. [51] elemental mapping of a
study of cryosectioned melanoma as an Imaging procedure for
differentiating the areas of the tumour and dermis. They
concluded that dermis and skin cancer fields are
distinguished and compatible in the LIBS elemental mapping
picture with the histologically calculated ones, showing the
viability of LIBS as a beneficial tool for quicker decision
Regions of Skin Cancer. To improve the classification
accuracy of normal and melanoma samples, Ekta et al. [52]
used the Joint Mutual Information Estimation (MIE) and
Weighted Average (WA) methods. To test and pick
representative spectral lines, the MIE procedure was used,
while column-wise Gaussian weighted lines based on the
chosen feature lines and surrounding spectral lines, averaging
was used to process two-dimensional spectral images. Khan
et al. [53] recently used LIBS combined with chemometric
methods to examine and discriminate against human
melanoma FFPE tissue samples instead of animal samples,
and achieved good classification results as shown in Figure 6.

Liver Cancer
In humans, the liver is the sixth most common primary cancer
site, and it is frequently linked with cirrhosis and inflammation
[55]. Kumar et al. [17]used LIBS for the first time to classify a
dog’s liver tissue to identify liver cancer. The findings
demonstrate that the ratios of calcium (Ca), copper (Cu) and
sodium (Na) to potassium (K) line concentrations are higher in a
malignant sample than those in a normal one. They also used
inductively coupled plasma emission spectroscopy (ICPES) to
compare the results with LIBS and achieved good approximation
results of both methods.

For the diagnosis and classification of liver cancer, Sherbini
et al. [20] used a scaled conjugate gradient back-propagation
ANN to construct a diagnostic model to differentiate between 26
malignant samples and four regulars (zero cancer level) samples
randomly selected from patients with liver cancer aged
6–56 years. All the malignant samples were accurately identified.

Hepatic fibrosis is chronic liver damage that can progress to
cirrhosis, hepatic failure, and finally hepatocellular carcinoma
(HCC) or liver cancer [56]. Hinojosa et al. [57] used LBS to
demonstrate the differentiation of chronic liver injury known
from normal for hepatic fibrosis liver diseases. For this purpose,
they used a fibrotic and normal liver sample of mice. PCA is used
for further classification analysis of different fibrotic levels of
METAVIR score system (histopathological system for liver
tissues identification) from F0 to F4, F0 is considered the
normal one as shown in Figure 7. They also concluded that
an increase in calcium (Ca) concentration found in cirrhosis (a
late stage of scaring also known as fibrosis) could be linked to
intracellular or extracellular calcium buildup. Although the
findings are preliminary, LIBS might be used as a stand-alone,
quick way to identify hepatic fibrosis at an early stage.

Brain Tumor
Glioma is a prominent brain tumor, which arises in the brain and
spinal cord. According to World Health Organization (WHO),

FIGURE 6 | The classification accuracy of ANN, PLS-DA, LDA, and QDA
models by using multiple preprocessing methods with different input data
types [53].

FIGURE 7 | PCA score of different MTAVIR scores from F0 to F4 [57].
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glioma is graded in four different categories: Grade I, which is
typically curable by surgery; grade II, known as lower-grade
glioma (LLG), grade III, known as anaplastic astrocytoma, and
grade IV, known as Glioblastoma Multiform (GBM) which is the
most severe kind with the lowest survival rate [58–60]. For the
first time, Teng et al. [31] proposed LIBS to discriminate the
infiltrative glioma boundary based on elemental components. In
this work, they used fresh glioma and infiltrating boundary tissue
samples for laser ablation. They concluded that to discriminate
the glioma boundary, Mg and Ca are linked to the development of
tumors and play a more critical factor in tumour formation.

Similarly, the CN band also contains relevant details for
recognition of Tumors boundaries. They used two different
chemometric models, SVM and kNN, for glioma and
infiltrative boundary classification. For discrimination of
glioma and infiltrating boundary SVM achieved 95% correct
classification rate (CCR), which is better than kNN as shown
in Figure 8A.

Similarly, for four different types of brain tumour (glioma,
meningioma, hemangiopericytoma, and craniopharyngioma)
classification Teng et al. [61] performed LIBS combined with
machine learning techniques. They proposed to use the molecular
fragment spectra (MFS) for further brain tumors diagnosis.
Molecular fragments play a key role in the diagnosis of brain
tumor, in literature, few researchers have worked on this. The
MFS in LIBS is very new and commonly not practiced in
biological samples. The most often used signals in LIBS
research are the atomic spectra (AS). In this article, they
used 12 patients’ tissue samples of four types of brain
tumor. The four types above of brain tumors were
diagnosed and classified as infiltrative and non-infiltrative
tumors. Instead of the conventional machine learning
technique, they established and implemented the spiking
neural network (SNN) in MFS data analysis. They
investigated the development processes of MFS in brain

tissue in-depth, looking at three different types of formation
mechanisms: combination, rearrangement, and break. The
recognition precision reached 88.62% in 1–2 s, together with
the proposed SNN brain-like computing system. This study
presented three different MFS data types, with the ratio data
type best suited for diagnosing various brain tumors. Due to
substantial overfitting, the traditional machine learning
methods kNN, ANN, and SVM did not perform well. SNN,
as a third-generation neural network, has the potential to
tackle this problem effectively, as shown in Figure 8B.

Nasopharyngeal Carcinoma
Nasopharyngeal carcinoma (NPC) is a rare subtype of head and
neck cancer with a highly unbalanced endemic spread [62]. There
is about one new occurrence for every 100,000 people every year
in most parts of the world. The incident rate of NPC is 20–50 per
100,000 in southern China and Southeast Asia [63, 64]. For NPC
discrimination, Chu et al. [65] used LIBS combined with
chemometric methods. In this research, a total of 160 serum
samples was used, including 100 healthy controls and 60 NPC
patients.

Similarly, different chemometric methods like kNN, extreme
learning machine (ELM) and feature extraction RF were used
for classification and identification of NPC. The serum sample
was dropped on a boric acid substrate for laser ablation. The
major elements (Na, Mg, K, and Zn) from LIBS spectra were
selected for diagnosis and further classification purposes. They
concluded that, the variable importance of three lines (K I
766.49, K I 769.90, and Na I 589.59 nm) with RF extraction
are much greater than the average variable importance. The
accuracy rate, sensitivity, and specificity of NPC serum and
healthy controls were 98.330, 99.022, and 97.751%, respectively,
using the RF coupled with the ELM classifier. Furthermore, the
RF-ELM model’s AUC was 0.987, which means that it has huge
diagnostic efficiency.

FIGURE 8 | (A) Classification result of SVM and kNN of infiltrative glioma [31]. (B) The identification accuracy of an infiltrative and non-infiltrative brain tumour [61].
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Cervical Cancer
In 2018, there were nearly 570,000 cases of cervical cancer and
311,000 deaths reported. Cervical cancer is the fourth most
widespread cancer among women. It is ranked after breast
cancer (2.1 million cases), colorectal cancer (0.8 million), and
lung cancer (0.7 million) in 2018 [66]. For the identification of
cervical cancer Wang et al. [26] used paraffin-embedded tissue
samples of normal and cervical cancer patients. They coupled
LIBS with chemometric methods PCA and SVM for classification
purposes. It was hard to distinguish between normal and cervical
cancer tissue using the raw spectra. PCA was performed, but the
result of PCA was overlapped, hard to differentiate the cervical
and normal sample. Then for normal tissues and cervical cancer
tissues identification, SVM and PCA-SVM were used. The
findings found that the PCA-SVM identification accuracy is
much better than SVM and increased from 93.06 to 94.44%.
They also concluded that LIBS technology has a lot of potential
for cancer diagnosis in real-time. To achieve the best calcification
and discrimination results the sample numbers should be raised
in the future.

Stomach Cancer
Stomach cancer is also known as gastric cancer. In worldwide
cancer ranking, it is on fifth number. According to Cancer
Global Observatory, in 2018, over one million new cases were
reported [67]. For gastric cancer identification, Seifalinezhad
et al. used spark discharge assisted laser-induced breakdown
spectroscopy (SD-LIBS) in investigating the possibility of
distinguishing neoplastic (cancerous) from non-neoplastic
(normal) stomach tissues [68]. In this study, they also
found the difference between neoplastic and non-neoplastic
gastric tissues emission spectra. The study concentrated on an
in vitro comparison of elemental concentrations in distinct
tissues. Depending on these observations, the intensities of Ca
and Mg in cancerous spectra are higher than the normal
sample spectra obtained from the same person. Likewise,
they also concluded that the number of samples used in this
study was insufficient to draw a firm conclusion, and more
research is needed to generalize this concept. Furthermore, the
SD-LIBS technique should become easier to use in future in
vivo studies.

Breast Cancer and Cervical Cancer
Breast cancer is the most top cancer among women throughout
the world. In all-female cancer-related diseases, breast cancer is
responsible for up to 16%. It is estimated that 2,088,849 new cases
were reported, and 626,679 people died of breast cancer in 2018,
and themost (69%) of deaths occur in developing countries, while
this cancer is considered an acquired world disease [49]. Ghasemi
et al. [69] used LIBS and acoustic response (AR) techniques to
classify malignant human breast tissues from normal tissue. Here,
using an acoustic analyzer, for sensing audio signals during
microplasma generation. The signals distinguish the tissues
according to the audio level and the spectral changes during
the laser-induced development of micro-plasma. In malignant
tissues, LIBS indicates a noticeable increase in trace elements such
as calcium (Ca), sodium (Na), and magnesium (Mg) as
determined by the characteristic emissions inside the laser
induced micro-plasma.

Similarly, Hussain et al. [25] used spectroscopic techniques
such as LIBS to recognize two human forms of cancer, including
breast and colorectal cancer, as well as condition grade and
incidence assessment. They found distinct variations in the
density of calcium (Ca) and magnesium (Mg) spectral lines in
the LIBS spectrum of non-neoplastic and malignant breast and
colorectal tissue samples. To differentiate between cancerous
in vitro human tissues of interest (breast, colon, larynx, and
tongue) and normal ones, Ghasemi et al. [33] used the LIBS
method. Using the laser mediated plasma spectrum, the trace
elements are investigated. They concluded that the concentration
of trace elements (such as calcium, sodium, and magnesium) in
cancerous tumors is considerably higher in terms of the signature
emissions of calcium (Ca), sodium (Na), and magnesium (Mg)
within the laser-induced plasma. They also figure out that the
plasma temperature is measurably higher for cancerous tissues
than normal ones. Likewise, Wei et al. [70] Implemented multi-
elemental LIBS mapping, based on conventional
histopathological tumor therapeutic impact analysis and
associated anti-tumour pathways, would offer a new approach
to estimating the anti-tumor therapeutic effect and the molecular
process, in line with the possible growth of precision medicine.
Collectively, four distinctive elements from tumour tissues,
calcium (Ca), copper (Cu), magnesium (Mg), and sodium

FIGURE 9 | PCA result of different bone by fsLIBS [74].
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(Na), were studied to project tumor therapeutic effects and
investigate the potential of biological elements in the study of
anti-tumor mechanisms. In addition, the complementarity and
compatibility of elemental imaging focused on LIBS with
conventional histopathology will offer a new avenue for the
study of anti-tumor therapy.

Bone Cancer
Bone cancer occurs when abnormal cells in bone grow out of
control [71]. It damaged normal bone tissue. The most prevalent
bone cancer is osteosarcoma. This is responsible for almost two-
thirds of all bone cancers cases. About 1,200 patients are
diagnosed annually in the United States with osteosarcoma
[72–75]. For the classification of bone tumors, Gill et al. [74]
proposed research to understand the variations in femtosecond
LIBS (fsLIBS) spectra. For laser ablation, they used samples of a
primary bone tumour, a secondary bone tumour, and normal
bone in this study. Essential differences in the fsLIBS signal
between the primary tumor of the bone and normal bone
samples were observed. They compared the separation of
tumour and normal tissue with many other “normal” bone
samples using a PCA decomposition of this combined data
set. The PCA results revealed that the PCs of the two data sets
substantially overlap, which shows that even when fresh new
normal bone tissue is added to the data, the chemical distinctions
between normal and cancerous tissue remain consistent. In
tumor tissue, the magnesium (Mg) peak level (516 nm)
increases compared to the calcium (Ca) peak intensity
(526 nm) as well as PCA results are shown in Figure 9. The
explanation why they did not notice a difference in the spectrum
between metastatic bone tumor and normal bone may be because
primary cancer cells migrate across the body, and other forms of
cells may not cause a metabolic change (such as bone).

Colon Cancer
Colon cancer is one of the world’s leading cancers and, along with
lung, prostate and breast cancer, is considered among the major
killers [75]. Gondala et al. [19] proposed a study to examine the

samples of malignant and nonmalignant colon tissue using the
LIBS technique and to ascertain a link between the accumulations
of such heavy metals responsible for the formation of colon tissue
malignancy. They found that LIBS is a reliable tool for detecting
heavy metals in cancerous colon tissues, such as Hg, Cr, and Pb.
These heavy metals were found in the malignant tissues, although
these elements were not identified in control (healthy) colon
tissue samples.

The ICP-OES methodology has been used to determine the
authenticity and to validate the consistency of LIBS results. In
addition, by concentrating on specific elements such as Hg and
Cr in control tissues, electron temperature and electron
density were calculated for the plasma derived from the
malignant and control tissues to show that the plasma was
in the LTE condition [19].

Lung Cancer
Lung cancer has long been seen as a significant public health issue.
Every year, around 1.35 million people are diagnosed with the
disease, with 1.18million dying. This statistic is considerably higher
than other cancers like breast and colon cancer, and the death rate
in China and other countries is still rising [76]. The line between
the lung tumour and the border tissue is blurry, during surgery.
Recurrence can shorten a patient’s life if tumour excision is
incomplete [77]. Lin et al. [36] used LIBS combined with
machine learning techniques to differentiate lung boundaries
from lung tissues. For this purpose, they used 90 tissue samples
of lung tumor and lung boundary from 45 patients, of which 20
men and 25 were female, respectively. They used SVM and
Boosting Tree classification models that employ PCA and RF to
enhance accuracy, sensitivity, specificity, ROC curves, and AUC
through 10-fold cross-validation. The RF-Boosting tree
outperformed the competition in classification and recognition,
with an accuracy of 98.9%, sensitivity and specificity of 99.3 and
98.6%, respectively, and an AUC of 0.988., as shown in Figure 10.
The use of RF features increases data retention, reduces training
time, and avoids duplicate data and interference. The combination
of LIBS with an RF-Boosting Tree model to detect lung tumour
boundaries is a rapid and accurate method.

SUMMARY AND FUTURE PROSPECTUS

In this review we discussed developments in LIBS technologies and
critical discoveries on the identification and discrimination of
various cancers. LIBS’s extraordinary discrimination findings
based on different samples (tissues, blood) samples are extremely
promising. Table 1 lists the LIBS technique studies on various
cancers published in the literature, organized with varying sample
categories. This table also recorded information on the laser,
spectrometer, and analytical instruments used in the experiments.
LIBS is a valuable and credible method for distinguishing between
malignant and benign tissues and classifying normal tissues. A
significant research project is to find ways to reduce the gap
between LIBS laboratory research and clinical translation.

Any kind of sample can be analyzed using LIBS in a typical
laboratory environment. It is vital to prevent any surface

FIGURE 10 | Four different classification models ROC curves [36].
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contamination when processing the sample to perform repeatable
LIBS analysis. Furthermore, instrumental parameters (such as laser
energy and sample surface orientation about the laser focus) must
be monitored and maintained during the whole experiment. LIBS
can also be used in combination with other spectroscopic
techniques, including Raman spectroscopy [78], and laser-
induced fluorescence [79, 80]. These multi-modal methods hold
massive potential because they can gather detailed information
about the samples’ composition.

Furthermore, in-depth evaluation and analysis with high
precision are needed for various aspects such as the economy,
health, and lifestyle. To this end, new methods for medical
samples analysis are being tested regularly to keep up with
scientific advancements. Preliminary tests on a variety of
different tissues or fluids samples have shown extremely
impressive findings for LIBS. The number of applications
requiring different chemometric data processing has grown
significantly in recent years to enhance the system’s capability.
Chemometrics is also used to solve a variety of practical problems,
such as the exploitation of biologically active species, the effective
use of biomarkers, the advancement of clinical diagnosis, the
monitoring and prediction of a patient’s condition, drug design,
and the classification of toxic chemical substances [81].

Regarding future developments and practical uses of LIBS in
cancer detection and classification, the following suggestions were
made: 1) Suitable chemometric methods and preprocessing methods
should be used to enhance LIBS calibration and classification
accuracy. Chemometrics models’ performance, accuracy, and
pattern recognition in cancer detection and classification differ
depending on the sample type and model type utilized. Further
performance improvements of LIBS technology in various
application fields, especially in the medical area, will undoubtedly
be part of the future advancement of chemometrics analysis of LIBS
data. Preprocessing methods combination with chemometrics, we
believe, play a critical role in LIBS. 2) For a deeper understanding and

practical use, the mechanism of laser-matter interaction for medical
samples should be investigated further. While signal enhancement
and data processing methods have enhanced efficiency, the
mechanisms beyond these methods are still unknown. 3) For
successful LIBS analysis, the input data must be of the highest
quality, optimizing the experimental parameters and controlling
them during LIBS measurements. 4) To achieve the best
calssification and discrimination results the sample numbers
should be raised in the future.

Finally, this review aims to assist those who wish to use the LIBS
technique in a medical setting in gaining a basic understanding of
the prerequisites and shortcomings to do a thorough study of this
field. The reader is also faced with various chemometrics tools that
can be used in LIBS measurements to obtain valid qualitative and
quantitative data, especially in different cancers detection and
classification.
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