AUTHOR=Kusne A. Gilad , McDannald Austin , DeCost Brian , Oses Corey , Toher Cormac , Curtarolo Stefano , Mehta Apurva , Takeuchi Ichiro TITLE=Physics in the Machine: Integrating Physical Knowledge in Autonomous Phase-Mapping JOURNAL=Frontiers in Physics VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2022.815863 DOI=10.3389/fphy.2022.815863 ISSN=2296-424X ABSTRACT=
Application of artificial intelligence (AI), and more specifically machine learning, to the physical sciences has expanded significantly over the past decades. In particular, science-informed AI, also known as scientific AI or inductive bias AI, has grown from a focus on data analysis to now controlling experiment design, simulation, execution and analysis in closed-loop autonomous systems. The CAMEO (closed-loop autonomous materials exploration and optimization) algorithm employs scientific AI to address two tasks: learning a material system’s composition-structure relationship and identifying materials compositions with optimal functional properties. By integrating these, accelerated materials screening across compositional phase diagrams was demonstrated, resulting in the discovery of a best-in-class phase change memory material. Key to this success is the ability to guide subsequent measurements to maximize knowledge of the composition-structure relationship, or phase map. In this work we investigate the benefits of incorporating varying levels of prior physical knowledge into CAMEO’s autonomous phase-mapping. This includes the use of