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Mueller matrix polarimetry is exploited to find a potential polarization feature sensitive to
subwavelength pore size variation in porous alumina samples. After careful analysis using
standard machine learning methods, it is observed that existing Mueller matrix
decomposition methods and parameters are insufficient to distinguish areas with
different pore sizes. Thus, a new angular-based Mueller matrix polarimetry parameter
capable of linearly separating areas with varying pore sizes is proposed. Such an angular-
based parameter is novel because it is based on angular parameters, it utilizes multi-angle
measurements, and it extracts physical information independent of existing decomposition
methods or parameters. Hopefully this work should inspire future research on the angular
parameters in Mueller matrix polarimetry and their relationships to microstructure
information.
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INTRODUCTION

Mueller matrix (MM) microscopy is a promising tool for scientific research and clinical application
because it reveals the intrinsic optical property of objects [2–4]. When light interacts with samples,
the polarization state of light may change due to scattering, absorption, refraction, and other optical
phenomena; such changes in the polarization state before and after light interaction can be
comprehensively described using the Mueller matrix. Scholars have exploited Mueller matrix
polarimetry to analyze various materials and biological samples because the Mueller matrix
encodes rich microstructure information [5–8]. Existing studies prove that Mueller matrix
polarimetry can differentiate cancerous tissues [6, 7], liver fibrosis [9], selected species of algae
[10], and aerosol particles [11].

The Mueller matrix encodes microstructure information, but it would still be obscure to us if the
information is unextractable. Specifically, Mueller matrix polarimetry can be exploited to classify
different materials, but it is often challenging to find an analytical form of such discriminating
parameters. Scholars commonly start by analyzing the Mueller matrix parameters such as the
Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT), which
are interpretable physical parameters in extremely simplified models [4, 12, 13]. This approach can
be effective but not sufficient because in almost all cases, the samples are too complex to be
differentiated using these simple parameters. An alternative way of extracting discriminating
parameters from the Mueller matrix is using the PBP-PFP approach. Polarization basis
parameters (PBPs) refer to the MMPD and MMT parameters, which are interpretable but
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oversimplified. PBPs are then linearly combined to create
polarization feature parameters (PFPs), which are much more
microstructure-specific. This approach is proven useful in
pathological samples [4–6]. To differentiate more complex
samples, nonlinear models in machine learning could be
utilized, but such models are often uninterpretable, and the
results are not generalizable.

Machine learning is a powerful tool for extracting
microstructure information from polarimetric data. Given the
sample data, machine learning algorithms build a model to make
classification predictions or clustering decisions. Studies have
shown that by utilizing machine learning, Mueller polarimetry
can classify ex vivo colon cancer, hematoxylin and eosin (H&E)-
stained and unstained breast cancer, H&E-stained cervical
cancer, and skin cancer [5, 6, 31, 32]. Using deeper models
and convolution layers that specialize on processing imagery
data, the models trained using polarimetric data are capable of
transforming between polarimetric imaging and brightfield
imaging, synthesizing polarization-sensitive optical coherence
tomography images from OCT images and classifying objects
in degraded environments [33–35]. In this study, the machine
learning algorithm, linear discriminant analysis, is applied to
classify regions with different pore sizes using rotation-invariant
parameters [29].

One of the limitations with the current microstructure feature
parameter extraction methods is that they are mainly based on
the rotation-invariant parameters. The orientation of the sample
should not affect its microstructure information, so consequently,
the microstructure feature parameters should not vary as the
sample rotates. Therefore, it may seem logical to use rotation-
invariant parameters as the basis parameters since their
combination will also be rotation-invariant. However,
polarization is sensitive to anisotropy, and such information is
often contained in azimuthal parameters rather than in rotation-
invariant parameters. To fully utilize Mueller matrix optics, the
use of angular parameters is essential.

In this work, the idea of angular parameter-based
microstructure feature parameters is explored and
experimented. Using the porous anodic alumina (PAA)
Mueller matrix polarimetry measurement data from the
published work of Chuhui Wang [1], it is discovered that
while the rotation-invariant parameters could not differentiate
the pore size, the proposed parameter can not only differentiate
areas with different pore sizes but also do so with a simple explicit
analytical form. Through this study, we emphasized the
importance of angular parameters in Mueller matrix
polarimetry, demonstrated their potential for differentiating
different microstructures, and hopefully inspired future
research in this area.

MATERIALS AND METHODS

Porous Anodic Alumina Fabrication
Porous anodic alumina (PAA) is a nanomaterial with a
controllable porous aspect ratio and radius [14–17]. An
electrochemically anodized alumina sheet under specific

conditions will form an ordered porous alumina film on top
of the thin barrier layer alumina (BLA)-covered aluminum
substrate [19–24]. Its uniform pore sizes and dense
distribution of pores makes PAA an idea membrane. Studies
have shown that PAA can also be used as a photonic crystal [18].

Using the secondary anodization method, a PAA sample with
two different pore diameters was fabricated and studied. The
setup is shown in Figure 1. The fabricated sample is imaged
under a scanning electron microscope, and Figure 2 shows the
top and side view of the PAA sample. For the detailed fabrication
process, please refer to [1].

Mueller Matrix Polarimetry
The dual-rotating retarder Mueller matrix measurement method
is used in this study [1, 26]. An LED light source with a center
wavelength of 633 nm is used. The system is calibrated using air
as the standard sample, with a maximum error of 2%. Detailed
information regarding the Mueller matrix imaging system can be
found in [1].

The Mueller matrix images of the samples are measured at two
angles: normal incidence and 32° tilting angle. At normal incidence,
the pores are colinear with the light ray, so the interaction between
the pores and light is relatively weak. At a tilting angle, the
interaction starts becoming obvious. By comparing the Mueller
matrices from two distinct tilting angles, it is possible to isolate the
optical effect due to the pores. The tilting angle of 32° is selected for
experimental convenience.

Analysis of Angular Parameters
The fabricated PAA sample is measured twice. With a random
sample orientation, the PAA sample is first measured at normal
incidence and then measured again at 32° tilting angle. At 0°

tilting angle, the MMT parameter αr is measured using the
following formula:

α(0)
r � 1

2
tan−1( −M(0)

24 /M
(0)
34 ).

The superscript (0) indicates that the values from the 0-degree
incidence angle measurement are used for calculation. For a pure
phase retarder, the MMT parameter αr is the anisotropic azimuth
angle of the retarder [1, 4]. Because this parameter is measured at
0 tilting degree, it should not be sensitive to porous information
since the pores and the light ray are colinear. Moreover, at 32°

tilting angle, the MMT parameter δ is calculated using the
following formula:

δ(32) � cos−1M(32)
44 .

The superscript (32) indicates that the values from the 32-
degree incidence angle measurement are used for the calculation.
For a pure phase retarder, the MMT parameter δ is the phase of
linear retardance [1, 4]. This parameter is sensitive to both the
retardance due to the material and the pores. It is assumed that

α(0)
r ∝ δ(32),

which is experimentally observed to be valid. All the naturally
formed blocks and their corresponding α(0)r and δ(32) values are

Frontiers in Physics | www.frontiersin.org March 2022 | Volume 10 | Article 8155392

Wan et al. Mueller Matrix Angular Parameter Analysis

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


measured and recorded. One can then try determining the slope
and y-intercept of the scatter plot using the least square linear
regression algorithm, by essentially fitting a line to the observed
data [28]. It is observed that the y-intercept of the lines encodes
pore size information.

RESULTS

Figure 3 shows themeasuredMueller matrix of the PAA sample. A
clear vertical line separates the regions with different pore sizes. It is
noted that the M12, M13, M21, and M31 elements are nearly zero,
indicating the PAA exhibits a strong birefringence property.
Natural formation of blocks is observed, and each block has its
distinct azimuthal orientation, as indicated by theMMT parameter

α(0)r . As the tilting angle increases, the birefringence signal becomes
stronger as well, as reflected in the decrease of the M44 element
after inclination. It is noted that the image is distorted when the
sample is tilted, so to register the data measured from different
incidence angles, we have used control point methods to estimate
the geometric transformation matrix.

Now, to proceed with the analysis, we have manually selected
several blocks from two regions with different pore sizes. Figure 4
shows all the blocks that we have chosen.

The PBP-PFP approach is first tested for reference. The
rotation-invariant parameters from MMT are used as basis
features, in order to linearly combine into a polarization feature
parameter that can differentiate the blocks from the two regions
with different pore sizes. Linear discriminant analysis is an
algorithm that finds the hyperplane that separates different

FIGURE 1 | Diagram of the secondary anodization method [1]. Reprinted with permission from [1] © The Optical Society.

FIGURE 2 | SEM images of the PAA sample, from the top view (A) and the side view (B). The hexagonal pore structure is clearly observed [1]. Reprinted with
permission from [1] © The Optical Society.
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groups of data, given the group labels [29]. In this study, it is used to
find the optimal linear combination of polarization parameters that
discriminate the sets. An 8-fold cross validation method is used to
determine the generalizability of the obtained PFP. The data points
are partitioned into eight subgroups, and the model is evaluated
eight times, each time selecting a subgroup as the testing set and the
rest as the training set [30]. Using the 0-degree tilting data, the
mean accuracy is 58.8%; with the 32-degree tilting data, the mean
accuracy is 92.5%; the mean accuracy using data from both tilting
angles is 80.4%. Such results imply that the interaction between the
pores and photons is much stronger when the sample is tilted, and

the rotation-invariant parameters cannot differentiate areas with
different pore sizes.

An alternative approach based on angular parameters is
proposed. Assuming a linear relationship between α(0)r and
δ(32) with no phase delay, the two variables are plotted against
each other, where α(0)r is on the x-axis and δ(32) is on the y-axis.
We can clearly observe a linear relationship between them, as
shown in Figure 5A. The points from regions with differing
pore sizes clearly lie on two distinct lines, and they are easily
differentiable. Due to the observed phenomenon, it is
speculated that the y-intercept might correlate with the
pore size.

However, the zero-phase-delay assumption is unlikely to be
true most of the time, depending on sample orientation. In other
words, a perfect straight line is unlikely to be observed. So instead
of representing the relationship between two periodic variables in
the Euclidian fashion, the proper way of representing the linear
relationship between α(0)r and δ(32) is by using the polar
coordinate. In Figure 5B, the scatter points are determined by
using 2α(0)r as the angle and δ(32) as the radius. Two non-
overlapping spirals are observed, each representing data from
a different pore size.

DISCUSSION

To summarize, a pore size discriminative parameter is proposed
based on the Mueller matrix angular parameter with multi-angle
measurement. The parameter proposed in this study is important
for three main reasons: first, it contains subwavelength pore size
information; second, it extracts microstructure information
outside of the existing MM parameters’ span; and finally, it
proves that multi-angle measurement is necessary for decoding
pore size information. All these points will be further addressed in
the following paragraphs.

FIGURE 3 | Experimentally measured Mueller matrix of the PAA sample with normal incidence (A) and 32° tilting angle (B). The black dotted line separates the
regions with different pore sizes.

FIGURE 4 | Locations of the manually selected block. The blocks from
the two regions with different (query) are marked with different markers: one
with blue dots and the other with red squares.
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First, the proposed parameter can differentiate PAA regions
with different sizes of nanoscale pores. The pore diameter in PAA
ranges from 50 to 420 nm [21], depending on the modulating
condition. Successfully discriminating regions with varying
interpore diameters proves that Mueller matrix polarimetry is
capable of resolving the nanostructure beyond the optical
resolution limit.

Second, the proposed parameter expands outside the span of
known rotation-invariant polarization parameters. Using MMT
parameters as basis features, the performance of the linear model
is unsatisfactory for the task of discriminating regions with

different pore sizes, as shown in the last section. On the other
hand, the proposed parameter can fully separate points from
different pore size regions with a linear function. It implies that
the polarimetric angular parameter encodes microstructure
information that is not contained in rotation-invariant
parameters.

Finally, the pore size information can only be extracted through
multi-angle measurement. Clearly, the MMT parameters cannot
fully describe pore size information through single-angle
measurement since the best accuracy achieved was 92.5%. Even
the newly proposed parameter needsmeasurement from two distinct

FIGURE 5 | Scatter plot of α(0)r and δ(32) , drawn in Euclidean (A) and polar (B) coordinates. For (B), the angle of the scatter plot is 2α(0)r and the radius is δ(32).

FIGURE 6 | Scatter plot of α(0)r and δ(32) at a different orientation angle. (A) shows the original scatter plot without unwrapping, (B) shows the scatter plot after
unwrapping, essentially shifting the points on the left of the dotted line by one period, and (C) shows the same plot in polar coordinates, where the angle of the scatter plot
is 2α(0)r and the radius is δ(32).
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incline angles. Therefore, it is possible that multi-anglemeasurement
is compulsory for pore diameter extraction.

For context, there are two fields of polarimetry for the analysis
of periodic nanomaterial: ellipsometry and Mueller matrix
imaging. In the field of ellipsometry, experimental data are
matched with theoretical simulation to obtain the physical
parameters of the observed samples, such as porosity and pore
size [27]. This is the idealistic approach for nanomaterial analysis
since it has unrealistic assumptions for the sample, such as perfect
uniformity. While on the other hand, in the field of Mueller
matrix polarimetry, the decomposition/parametric approach is
taken, and a non-idealistic sample is assumed. In this context, this
study attempts to bridge the two fields, using the parametric
approach to decode microstructural information, and attempted
to obtain a feature parameter for pore size discrimination without
making any unrealistic assumptions for the sample.

It is worth noticing that the linear relationship between α(0)r
and δ(32) is essentially a form of invariance. In other words, no
matter how the PAA sample is rotated, the resulting point will
always stay on the line (with proper unwrapping). Invariance
indicates conserved quantities, and conserved quantities usually
have physical meanings. In the case of the proposed parameter, it
is reasonable to hypothesize that the parameter correlates with
the porous structure of the sample. In the photonic crystal
language, the proposed parameter could encode information in
the momentum space. For further studies, a detailed relationship
between the proposed parameter and the pore size should be
studied, to see if any correlation exists.

Despite the microstructure information it contains, the use of
angular parameters for feature parameters has its limitations. The
largest problem with angular parameters is unwrapping. As the
sample rotates, the α(0)r parameter changes as well, but it is
constrained in its range. The sample orientation displayed in
the result section was carefully selected to avoid the unwrapping
problem, while in fact, if the sample is rotated at a different angle,
the linear relationship between α(0)r and δ(32) is a lot less obvious,
as shown in 6a. However, if we shift the points on the left of the
green-dashed line by one period, the linear relationship between
the two variables is restored, as seen in Figure 6B. This
demonstrates the essence of the unwrapping problem; the fact
that one can freely add or subtract any integer amount of period

from the angular parameters makes it difficult to determine the
real angular value. Here, it is assumed that the true value of α(0)r is
the one that restores the linear relationship. The unwrapping
problem could be somewhat avoided if we use the polar
coordinate, as shown in Figure 6C. Now, instead of lines we
can observe spirals, and it solves the unwrapping problem since
the angle is now represented in two-dimension instead of one.
However, it poses new challenges on the quantification of feature
parameters in polar coordinates.

In total, the angular parameter encodes nanoscale structural
information regarding the PAA pore diameter. It is proven
experimentally that α(0)r and δ(32) parameters can linearly
discriminate PAA regions with different pore sizes. It can
potentially become a method to quantify photonic crystal’s
microstructure information to reduce the undesired scattering
effect. To mass produce, photonic crystals need a high-
throughput monitoring method with subwavelength resolution,
which Mueller matrix polarimetry is capable of. The use of
angular parameters as basis features can be challenging due to
the unwrapping problem, but it contains information that
rotation-invariant parameters do not. This study provides a
new perspective in the analysis of angular parameters, but to
further study them, the unwrapping problem must be solved by
either unwrapping or devising distribution-based rotation-
invariant parameters in future studies.
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