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Imaging in scattering media has been a challenging and important subject in optical
science. In scattering media, the image quality is often severely degraded by the scattering
and absorption effects owing to the small particles and the resulting nonuniform
distribution of the intensity or polarization properties. This study reviews the recent
development in polarimetric imaging techniques that address these challenges.
Specifically, based on the polarization properties of the backscattering light,
polarimetric methods can estimate the intensity level of the backscattering and the
transmittance of the media. They can also separate the target signal from the
undesired ones to achieve high-quality imaging. In addition, the different designs of the
polarimetric imaging systems offer additional metrics, for example, the degree/angle of
polarization, to recover images with high fidelity. We first introduce the physical
degradation models in scattering media. Secondly, we apply the models in different
polarimetric imaging systems, such as polarization difference, Stokes vector, Mueller
matrix, and deep learning-based systems. Lastly, we provide a model selection guideline
and future research directions in polarimetric imaging.
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1 INTRODUCTION

Optical imaging through scattering media, including turbid water [1, 2], haze [3, 4], fog [5], and
biological tissue [6–8], enjoys a wide range of applications in areas such as underwater rescue [9],
automatic driving [10], underwater archaeology [11], and biomedical imaging [12]. Therefore, the
realization of clear visions in scattering media is of great interest and significance. However, the
visibility and identifiability of the target scene are usually compromised as the radiance observed
from a scene is scattered and absorbed by aerosols and particles existing in the environment [13]. The
optical performance is thus limited in many practical applications [14]. In other words, the image
quality captured by a camera deteriorates significantly, resulting in low image contrast [15], distorted
color [16], and poor visibility [17].

Various dehazing or de-scattering techniques that have been developed to restore the image
quality can be classified into two categories, non-physical and physical model-based methods, as
shown in Figure 1. The non-physical methods, based on the image enhancement method, aim to
highlight the target of interest and improve the contrast. The simplest non-physical method is the
histogram equalization (HE) method, which enhances the overall image contrast by increasing the
dynamic range of the gray value. Depending on the difference in the computing region of an image,
HE can be divided into global HE (GHE) and local HE (LHE). The advantage of GHE lies in its higher
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efficiency and lower computation requirement, which is
particularly suitable for enhancing excessively dark or bright
images. This method does not fit images with high local
brightness values, which often cause the “halo” effect. Such an
issue can be addressed by applying the LHEmethod, for example,
contrast limited adaptive histogram equalization (CLAHE) [18].
However, the “blocking effect” accompanied by increased
computation complexity [19] cannot be avoided. Besides, HE
methods may amplify noises during dehazing. Retinex-based
algorithms [20, 21] are models based on the color perception
of human eyes, with the main concept of obtaining an object’s
reflection property to model the color invariance. Thus, the
Retinex-based algorithms have been widely applied in the field
of image enhancement to remove haze and scattered light. In
addition, this method helps increase an image’s contrast and
brightness and regulate the dynamic range of its gray level.
Nevertheless, the Retinex-based algorithms do not preserve
edges well, which may lead to the halo phenomena in sharp
boundary regions [21, 22]. Finally, with regard to the dehazing
technique, the frequency domain filtering (FDF) method proves
to be another popular solution for image enhancement. More
details can be found in the previous works [23–25].

The physical model-based dehazing and de-scattering
methods are based on the knowledge related to the scene’s
physical features. To successfully restore an image, one of the
key factors is to acquire an accurate depth of the scene [26], that
is, the physical distance between the camera and target scene.
However, the depth map is always unattainable for practical
applications [27]. Therefore, a fundamental challenge in
optical de-scattering techniques is to accurately estimate the
depth map, that is, the transmission of scattering media [28].
Various methods have been proposed to overcome the challenge.
For example, Fattal et al. [27] proposed a method that inferred the
medium transmission map by estimating the albedo of the scene.
However, such a method assumes that the transmission and
surface shading are locally uncorrected and thus may fail
when handling dense haze. Hautiere et al. [29] estimated the
depth by determining the relationship between the road visibility
and the contrast in the foggy image. Based on the analysis of the
side geographical information obtained via an onboard optical
sensor system, a 3D geographical model was established to
remove the fog. Upon observing the property of haze-free

outdoor images, He et al. [3] proposed the dark channel prior
(DCP), based on the premise that “dark pixels” had a very low
intensity in at least one-color channel except in the sky region.
His method included three steps: air-light/scattered light
estimation, transmission map estimation and refinement, and
the final image reconstruction. Thanks to its effectiveness in
dehazing, DCP has been adopted by most of the recent
physical model-based techniques.

Almost all methods above are implemented based on the input
of a single image, where certain assumptions or prior knowledge
are necessary. The other physical model-based methods are based
on multiple images corresponding to the same scene, that is, the
images obtained under different visibility [30], images obtained
with visible and near-infrared cameras [31], and images acquired
with different polarization angles [15, 32, 33]. While images
under different visibilities render the estimation of the depth
map and scene structures to significantly enhance the image
contrast, it remains challenging to handle real-time scenes [34].
Thanks to the excellent “long-distance transmission capacity” of
the near-infrared light, the visible and near-infrared fusion
methods improve the image quality by combining the rich
color information of the visible image and the high visibility
of the near-infrared image. However, the major obstacle is to
acquire the visible and near-infrared images simultaneously,
where expensive equipment and accurate optical alignment are
both required. As opposed to the above methods, polarimetric
imaging [35–37] is more effective because the scattered light is
partially polarized [35] and the polarization information of the
object and the turbid medium is different. Therefore, in principle,
obtaining the polarization information of the scene and then
processing them can effectively suppress the scattered light and
extract the light coming from the object light [15, 32, 38]. A series
of studies have shown that polarization-based imaging is a
physical, low-cost, and applicable way to enhance the image
quality, especially in highly scattering environments [2, 39, 40].

The typical polarimetric imaging systems include the
polarization difference (PD) imaging [1, 41, 42], Stokes-based
polarimetric (SP) imaging [43], and Mueller matrix (MM)
imaging [44, 45]. The PD imaging is based on two
orthometric polarized sub-images to estimate the
transmittance by analyzing the degree of linear polarization.
The SP imaging, especially the full-SP imaging, leverages the
robustness of the polarization angle [38] or the “memory effect”
of circular polarization to achieve the backscatter removal [39, 46,
47]. The MM imaging benefits from its complete polarization
characterization. These three basic models are built upon
different optical systems that offer flexible options subject to
different application requirements. Besides, the polarization-
based methods can be further improved by integrating with
computer-vision-based and learning-based methods [2, 15, 48].
In other words, by introducing the polarization information into
the traditional vision or learning-based method, greater
application possibilities can be explored due to enhanced
performance in image quality [2, 49–52].

This study first introduces the basic principles of the common
polarimetric imaging models in scattering media and provides a
comprehensive and up-to-date review for both traditional and

FIGURE 1 | Classification of dehazing/de-scattering methods.
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advanced works. We explore topics that include the progress in
model optimization and parameter estimation and the analysis of
different methods from the perspectives of their limitations and
potential solutions, with application-based recommendations for
readers in optics and engineering communities. Section 2
introduces the imaging model through the scattering media
and the related optical imaging systems. Section 3
demonstrates the polarimetric methods for imaging through
turbid media based on different imaging systems. Section 4
provides a conclusion and an overlook for future development.

2 IMAGINGMODEL IN SCATTERINGMEDIA

2.1 Physical Imaging Model in Scattering
Media
The particles existing in the scattering media, such as in the
atmosphere during hazy or foggy weather and under turbid water
or sea, generally absorb and scatter light, resulting in the decay of
image contrast, saturation attenuation, and color-shifting in the
detected images [39, 46]. Therefore, image dehazing or de-
scattering plays an important role in various practical
applications, such as traffic surveillance systems, security
systems, object recognition, medical imaging, and remote
sensing. Studies related to the image degradation mechanism,
imaging systems, and recovery algorithms are receiving much
attention.

Koschmieder et al. [53] proposed the first atmospheric
scattering model, which was further modified by Narasiman
and Nayar [54, 55]. Based on their model, the image signal
received by the camera is composed of two components: 1)
direct transmission D(x, y), which represents the effect of
scattering of light and the eventual decay of light before it
reaches the camera, and 2) backscattered light A(x, y), which
denotes the undesired backscattered lights from the particles in
the object line of sight (LOS) [1, 32]:

I(x, y) � D(x, y) + A(x, y). (1)
As the light from the target progresses towards the camera, its

energy is lost due to scattering and absorption. The fraction that
does reach the camera is the direct transmission given by

D(x, y) � Lobject(x, y)e−βz(x,y), (2)
where z(x, y) is the distance between the object and the camera
and depends on the pixel coordinates x and y; β is the attenuation
coefficient; and Lobject(x, y) is the object radiance not scattered
and absorbed along the LOS [1, 35]. The attenuation coefficient is
given by β, and the term e−βz(x,y) is also called the transmittance
of light t (x, y).

A(x, y) denotes the undesired lights received by the camera
mainly due to scattering by particles. It does not originate from
the object on the LOS but varies with the horizontal distance by

A(x, y) � A∞(x, y)[1 − t(x, y)], (3)
where A∞ refers to the intensity value of backscattered light from
infinity in the turbid medium. In most works, it is assumed to be a

global constant independent of the location (x, y). Figure 2A
shows the image formation and visual illumination components
through the scattering medium. According to Eq. 2 and Eq. 3, we
can observe that Lobject(x, y) and, thus, the recovered image
could be obtained as far as the transmittance and backscattering
are estimated accurately and the attenuation of the object light is
compensated. Combining Eq. 1 and Eq. 2, one can recover
Lobject(x, y) as follows:

Lobject(x, y) � I(x, y) − A(x, y)
1 − A(x, y)/A∞

. (4)

The currently reported polarimetric imaging-based dehazing
methods are based on the above physical model and the scattered
light’s polarization property. The published results in various
works show the high information restoration capacity and
computational efficiency [56]. For the recovered image in Eq.
4, many quantitative criteria are used to characterize the quality
of results, including the visibility range or distance [56, 57],
Michelson contrast (MC) [43], peak-to-correlation energy
(PCE) [58], mean gradient [51], measure of enhancement
(EME) [2, 17, 48], blind-reference-less image spatial quality
evaluator (BRISQUE) [2], natural image quality evaluator
(NIQE) [17], entropy [2], and peak signal-to-noise ratio
(PSNR) [19, 27, 54]. Among the above criteria, PCE and
PSNR describe the similarity between the restoration and clear
image, EME and entropy describe the image contrast, and
BRISQUE and NIQE quantify the distortion indicator of quality.

The superiority of the polarimetric methods also embodies the
robustness of polarization parameters in various complex
scattering conditions. Many works study the propagating
light’s physical characteristics and polarization properties in
scattering media [59–61]. For example, with the aid of the
Monte Carlo simulations, Xu et al. [62] demonstrated that the
intensity of the polarized light after being transmitted underwater
sharply decreases as the transmission distance increases, but the
degree of polarization (DoP) of the transmitted lights remains
above 0.75. It means that compared with the traditional imaging
encoded with intensity information (in which the intensity will be
significantly lost), the polarization encoding by DoP has
overpowering advantages. Besides, Shen et al. [61]
demonstrated that the depolarization behavior of light is
sensitive to the mixing ratio or the distribution state of
particles. Tao et al. [60] also found that the polarization
properties provide additional information for the imaging, and
the contrast of the polarization image can be significantly
enhanced compared to the simplex intensity image in the
turbid media. Moreover, the circular polarization images offer
better contrast and higher visibility than linear ones under the
same circumstance. All these reported results make the
polarimetric methods and polarization control more promising
for imaging in scattering media.

To date, whether it is on the basis of two images [15, 32], three
or four images [38, 46], and nine or 16 images [44, 45], various
polarization recovery methods have been developed bymodifying
the basic model in Eq. 1. These methods are related to different
polarization information, such as the PD, Stokes vector, DoP,
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angle of polarization (AoP), and MM. The following section
introduces the related imaging systems and configurations.

2.2 Polarimetric Imaging Systems
Based on different polarization information, various polarimetric
imaging systems have been developed. Early works in
polarimetric imaging applications mainly focused on cases
with linearly polarized light. This cross-polarization imagery,
also called the PD imagery, was commonly used to enhance
image contrast and minimize the blurring light in media with
relatively low concentrations. The main element of this system is
shown in Figure 2B1. In the setup, a light source, such as a light-
emitting diode or a laser, is expanded with a beam expander. The
light is polarized with a linear polarizer and hits on the target
scene. A camera is positioned normal to the target scene to avoid
most of the glare created by the interface. Finally, a rotating
analyzer, always a linear polarizer, is placed in front of the camera
to filter the back-reflected polarized light. By this configuration,
two images (I‖, I⊥) with orthogonal polarization states are
acquired, from which one can calculate the degree of linear
polarization (DoLP) as

P � I‖ − I⊥
I‖ + I⊥

. (5)

Stokes parameters have played a prominent part in the optical
literature on polarized light [63, 64]. As early as 1947,
Chandrasekhar [65] used the Stokes vector to formulate the
radiative transfer equations for scattering partially polarized
light. Furthermore, the Stokes parameters give a complete
description of any polarization state of light:

S � [S0, S1, S2, S3]T, (6)
where the first three parameters are linear components of the
Stokes, while the last one is the circular component [49, 63]. From
this formalism, other parameters can be deduced, such as the DoP
(P), the DoLP (Pl), the degree of circular polarization (DoCP),
that is, Pc, and the AoP (α). They are defined as follows:

P �
����������
S21 + S22 + S23

√
S0

, Pl �
������
S21 + S22

√
S0

, Pc � S3
S0
, and α � 1

2
tan−1[S2

S1
].
(7)

A more detailed description of Stokes vector can be found in
the books about polarized light [63].

Unlike the PD imagery for linear polarized light, the Stokes
vector contains the ellipticity of the beam. Hence, the complete
imaging system for the Stokes vector requires an extension of the
instrumentation. Optical retarders or wave plates (WP) are
usually introduced into the system to generate or measure
elliptical or circular states. Four intensity measurements are
needed to calculate the complete Stokes vector parameters.
Figure 2B2 shows a typical Stokes vector imagery, consisting
of two sections: the polarization state generation (PSG) and the
polarization analysis (PSA). In PSG, a WP and a linear polarizer
are used to generate polarized illumination with an arbitrary state.
The reflected intensity from the target scene is measured by
adjusting the WP and/or polarizer’s states in PSA. Based on these
captured intensities, one can estimate the Stokes vector of the
reflected light. In practice, the measurement of S0, S1, and S2 is
conducted by removing the WP in PSA. Only the last term, S3,
requires this element to measure an elliptical/circular state.

FIGURE 2 | (A) Image formation and visual example of illumination components through the turbid media (reprinted from Springer Nature: Scientific Reports [2],
copyright 2018). (B) Different polarimetric imaging systems: (B1) PD imager, (B2) Stokes/Mueller imager, and (B3) DoFP camera-based imager.
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Moreover, with the development of nano-structures fabrication, a
snapshot imaging solution has recently gained much attention
using a division of focal plane (DoFP) polarization camera [66,
67]. It can simultaneously capture four polarization angles from
each video frame without image mismatch [68]. Besides, by
adding a rotated WP, one can measure the full Stokes with
only two shots [69]. The polarization camera makes real-time
polarimetric imaging a reality and its applications possible.

The MM, proposed by Hans Mueller in the early 1940s [63,
70], is another common parameter in addition to the Stokes
vector in polarization imaging technology. The Stokes vector is a
parameter describing the characteristics of the incident and the
outgoing light when interacting with the materials, while the
Mueller matrix is a “bridge” between the light and the material
and describes the modulation of the incident light by the material
[71, 72]. The Stokes vector’s description of a light beam requires
four parameters. The modulation relationship between the
incident and outgoing light can be fully described using a 4 ×
4 matrix [73]. This matrix is called the MM.When a beam of light
is incident on objects, the polarization properties of the reflected
or transmitted light generally change [74, 75]. Assuming that the
Stokes vector of the incident light is S, the Stokes vector of the
outgoing light after interaction with the medium is S’, and the
MM can express their relationship as follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
S0
′

S1
′

S2
′

S3
′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
S0
S1
S2
S3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (8)

That is,

S′ � M · S. (9)
In practice, the MM can be obtained using some possible PSG

and PSA combinations in Figure 2B2. A straightforward
implementation includes setting the light source at three linear
states and the right circular state. Finally, 16 intensity
measurements are needed to calculate the full 4 × 4 MM. By
removing the WPs in PSG and PSA, the configuration becomes
the same as that of the Stokes imager (Figure 2B2). Then, by
respectively rotating the directions of the two polarizers three
times and obtaining a total of nine intensities, one can calculate a
linear or incomplete MM with a size of 3 × 3.

In addition, according to the light sources’ properties or the
selected optical elements, the configurations can be categorized
into different types as follows:

(1) Depending on the existence of light sources, it can be
categorized into “active illumination type” (with additional
source) and “passive illumination type” (with nature light).

(2) Depending on PSG’s composition, it can be categorized into
“unpolarized illumination type” and “polarized illumination
type.” In particular, the “polarized illumination type” can be
further divided into “linearly polarized illumination” and
“circularly polarized illumination.”

(3) To match the type of illumination, the PSA will contain a
polarizer with “linearly polarized illumination” or a polarizer

together with a retarder if it is “circularly polarized
illumination.”

Choosing the configuration types depends not only on the
polarization parameters being used but also on the environment
in reality. For example, in the atmospheric environment, “passive
illumination type” with sunlight is recommended, while in
underwater, undersea, or low-light surroundings, the
“polarized active illumination type” is preferred. In addition,
for different target scenes, one needs to switch between linear
and circular polarized illuminations. In the following section, we
introduce well-established polarimetric methods in accordance
with the above-mentioned configurations for imaging in
scattering media.

3 MODELS OF POLARIMETRIC IMAGING IN
SCATTERING MEDIA

3.1 Polarization Difference Imaging
3.1.1 Basic Model and Configuration
Inspired by the polarization-sensitive vision of some animals,
PD imaging systems are proposed and developed to improve the
visibility of objects in scattering media. This model is served as a
common-mode rejection amplifier that can reduce the effects of
background scattering and amplify the signal from targets
where the PD magnitude is distinct from the background
[41, 76]. Based on the images captured for the same scene at
two orthogonal linear polarization states (I‖(x, y) and
I⊥(x, y)), the traditional PD system, proposed by Tyo et al.
in 1995 [76], generates the PD and polarization-sum (PS)
images as

IPD � I‖(x, y) − I⊥(x, y), IPS � I‖(x, y) + I⊥(x, y) , (10)
where the PS image is equivalent to a polarization blind image
obtained by a conventional imaging system. The PD image
clearly depends on the choice of polarization axes, whereas the
PS image does not. Such a relationship with the choice of axes
can be used to minimize the effects of a partially polarized
background in a PD image [42]. Notably, the scattered light is
partially polarized and has the orthogonal and the same
polarization components to the incident light at the same
time. The performance of the PD method depends on the
ratio of different components, which may be determined by
the properties of scattering media, the incident polarization, the
incident and observed angles, and so on.

Unlike Tyo’s PD model, which is based on the theory of
common-mode rejection, Schechner et al. [32, 35] proposed a
novel de-scattering method based on the atmospheric scattering
model in Eq. 1, as shown in Figure 3. Similarly, this method
captures two orthogonal polarized images composed of two
unknown components (the scene radiance in the absence of
haze and air-light). Because the air-light is usually partially
polarized, these two images can be described by

Ii(x, y) � D(x, y)
2

+ Ai(x, y), i ∈ [ ‖,⊥ ] . (11)
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This model considers the natural polarization effects in
imaging through the haze and builds the relationship of
atmospheric properties, polarization properties, and imaging
formalism. It does not require modeling the scattering
particles’ size or the precise scattering mechanisms. In general,
such methods based on Schechner’s model need to estimate two
critical global parameters: air-light at infinity A∞ and DoP p.
Then, the air-light and the transmittance can be calculated by

Â(x, y) � I‖(x, y) − I⊥(x, y)
p

, t̂(x, y) � 1 − Â(x, y)
A∞

, (12)

respectively. Here, A∞ and p rely on the choice of background or
sky region Ω and are usually calculated by

p � I‖Ω − I⊥Ω
A

, A∞ � I‖Ω + I⊥Ω . (13)

Finally, all these parameters are involved in the polarimetric
model to obtain the recovered image as

L(x, y) � I(x, y) − A(x, y)
1 − A(x, y)/A∞

� I‖(x, y) + I⊥(x, y) − A(x, y)
1 − A(x, y)/A∞

.

(14)
The PD-basedmethods share the same configuration shown in

Figure 2B1. The polarizer in front of the camera or other
intensity detectors is a must to capture two orthogonal
polarized images. In contrast, the polarizer behind the light
illumination source is optional and depends on the actual
scene, active or passive illumination.

3.1.2 Representative Methods
As the first attempt, Tyo et al. [41, 76] designed a special sample,
an aluminum target containing two abraded patches with
orthogonal directions, to verify the effectiveness of PD
imaging systems. This sample is placed in a tank with inside
dimensions of 30 × 30 × 15 cm3. This tank is filled with water and
milk to simulate the scattering environments. PS and PD images
after being transformed for optimal display are shown in

FIGURE 3 | Polarization-based atmospheric scattering model (reprint from OSA: Applied Optics [32], copyright 2003).

FIGURE 4 | The comparison results by (A) Tyo’s imaging method (reprint from OSA: Applied Optics [41], copyright 1996) and (B) Guan’s methods (reprint from
OSA: Optics Express [42], copyright 2013). (C1) Imaging recovery example in air-environment (reprint from OSA: Applied Optics [32], copyright 2003), (C2) and (C3)
underwater based on Schechner’s model (reprint from IEEE: Transactions on Pattern Analysis and Machine Intelligence [35], copyright 2008).
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Figure 4A. We can see that the abraded patches are clearly visible
in the transformed PD image but practically invisible in the
transformed PS image. The key factor contributing to the
enhanced visibility of the two patches in the PD image is the
common-mode rejection feature intrinsic to PD. Based on a series
of validation, Tyo et al. [76] found that the PD imaging model is
quite sensitive to intrinsically small signals and possesses valuable
qualities of being passive, simple, and potentially fast.

This method does not employ polarized illumination, which
makes it constantly suffer from a reduced signal-to-noise ratio
(SNR) because light reflected from the target and diffusive light
backscattered from the turbid medium are superposed. Guan
et al. [42] developed the traditional model and added a linear
polarizer behind the light source to generate a polarized
illumination. By measuring the co-polarization (parallel to the
incident light’s polarization state) and cross-polarization
(perpendicular to the incident light’s polarization state)
images, they obtain an improved PD image, expressed as
IPDI � I‖ − I⊥. Figure 4B presents the comparison between PS
and PD images. The result shows that the proposed method
significantly suppresses the background noise, and the image
contrast is improved approximately 1.7 times [42].

However, the biggest challenge of the common-mode
rejection-based method is that it cannot process scenes with
complex conditions and objects because it does not consider
the degradation mechanism in the scattering media. To solve this
problem, Schechner et al. [32, 35, 77, 78] combined both
polarized optics and the typical atmospheric scattering model
and showed how the polarization tool boosts the vision clarity in
scattering media. An example in the air environment is shown in

Figure 4C1. The dehazed image has much better contrast and
color, especially in the distant regions of the scene noted as the
green forest and the red roofs [32]. Unlike such applications in
the air environment, which rely on natural sun illumination,
active illumination is necessary for underwater applications. In
2004, Schechner et al. [57] developed their original model for the
de-scattering in turbid water by introducing a polarized
illumination, as shown in Figure 4C2. The corresponding
results are shown in Figure 4C3. From the results, we may
observe that the objects (i.e., the iron box) are well restored in
both contrast and color. However, we must point out that their
model is based on three assumptions:

(1) Only the backscattering light/air-light is polarized, while the
objects are unpolarized.

(2) The total attenuation for objects at infinity also equals
inhomogeneous haze; that is, t∞ � 0.

(3) The multiple scattering (which affects the angular scattering
distribution) is dominated by single scattering.

The first assumption does not apply to all practical cases
because the object radiance could also contribute to polarization.
When the depolarization degree of target objects is low, the light
scattered or reflected by objects could contribute considerably to
polarization. As a result, the previous methods may cause
significant estimation errors. Huang et al. [59] found that the
estimation produces negative values of t (as shown in Figures
5A–D) at the pixels corresponding to the low-depolarizing
material if one assumes that the light emanated from objects
in the scene is unpolarized. To solve this problem, they modified

FIGURE 5 | (A) Raw image. The deduced (B) transmittance and the recovered (C) radiance of the objects when the light emanating from objects in the scene is
unpolarized. The retrieved (D) transmittance and (E) radiance of the objects by Huang’s method (reprint from OSA: Optics Express [59], copyright 2016). (F) The fitting
spatial distribution of A∞ and p. (G) Raw intensity image of the scene. (H) Recovered image by Hu’s and (I) Schechner’s methods [32] (reprint from IEEE: Photonics
Journal [79], copyright 2018).
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the traditional model by estimating the PD image of the target
signal with feasible region fitting. Figure 5E shows that the
recovered results reveal the details, which are not visible in the
intensity images, regardless of the area corresponding to the
objects having a high depolarization degree (plastic cube) or a
low depolarization degree (metal coin).

To overcome the limitation caused by the second assumption
and improve the recovery performance in complex conditions,
such as that in the non-uniform optical field, Hu et al. [79]
proposed a method of retrieving the radiance of the object based
on estimating the spatial distributions of the DoP and the
intensity of backscatter light by extrapolation fitting. For
example, the progress of fitting spatial distribution is shown in
Figure 5F, and the corresponding results are also shown for
comparison. It shows that this method reveals the details of the
scene (in orange and blue rectangles) that decay significantly in
the intensity image, and it has better quality than the image
recovered by Schechner’s method because, under the non-

uniform optical field, the DoP of backscatter A∞, represented
by p, on the right side of the background region is considerably
higher than that on the left side. Suppose we recover the image
with Schechner’s method, which considered the backscatter and
its DoP to be constants; the transmittance can be considerably
overestimated because of the improper estimations of A∞ and p.
In that case, it will lead to incomplete haze removal, thus a less
clear recovered image [79].

The third assumption makes the traditional methods perform
poorly in the case of dense haze [2, 39]. To overcome this issue, Li
et al. [2] proposed to combine the polarization-based model and
the computational processing method, such as histogram
stretching (HS). Their main idea is to reduce the density of
haze computationally. Specifically, this method stretches the
histograms of the orthogonal polarization images while
maintaining the polarization relation in between. Based on the
processed orthogonal polarization images, the recovered image
with higher quality can be obtained by the traditional

FIGURE 6 | (A) (A1)Ground truth and (A2) the raw intensity image under water. Comparison of recovered scenes by using (A3) Li’s [2] (labeled as “Our”) and (A4)
Schechner’s [32] methods (reprinted from Springer Nature: Scientific Reports [2], copyright 2018). Comparison of the recovered images when the raw image is (B1):
using (B2) DCP, (B3) DCP with transmission map by soft matting, and (B4) Brosseau’s method (reprint from OSA: Optics Express [80], copyright 2019). (C)Measured
absorption and scattering coefficients of pure seawater (reprint from OSA: Optics Letters [82], copyright 2018). (D1) and (E1) Directly captured images in 41 NTU
and 70 NTU turbid water; (D2) and (E2) results from traditional polarization imaging method; (D3) and (E3) finally detected images by the Liu’s method (reprint fromOSA:
Optics Letters [82], copyright 2018).
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polarimetric recovery method. Figure 6A presents an example in
the dense turbid medium. The results show that the method
significantly removes the scattered light and restores more details
than Schechner’s method. This method opens a door and verifies
the feasibility and effectiveness of combining computer vision
and polarimetric methods for image recovery in scattering media.
Although the HS method and Schechner’s polarimetric recovery
method involved in this work are both old methods, the core idea
of this combination has many perspectives. For example,
Brosseau et al. [80] combined the low-pass polarization filter
and DCP method and demonstrated the ability to significantly
improve visibility and reduce runtime by a factor of about 50 for a
4K image. Figure 6B shows the natural imaging experiments
at sea.

It is worth noting that the wavelength of the active
illumination also affects the imaging performance because the
scattered light caused by both water and particles is wavelength-
dependent. Smith and Baker [81] measured the absorption
coefficients and scattering coefficients of pure seawater on the
wavelength ranging from 200 to 800 nm and validated the
dependence of scattering on wavelength. Liu et al. [82] plotted
the measured absorption and scattering coefficients of pure
seawater in the visible-light range, as shown in Figure 6C.
Results show that scattering decreases with wavelength
increase. Based on this wavelength-dependent fact, they
proposed a wavelength-selection-based polarization imaging
method to image through highly turbid water with red light
illumination. This method makes a good balance between range
and vision and can turn targets from “undetectable” into
“detectable,” as shown in Figures 6D,E.

In fact, as one of the earliest polarimetric imaging techniques,
the PD-based methods have received a great deal of attention for
image dehazing/de-scattering in scattering media. This makes
them enjoy fast development in terms of scientific research and
engineering applications. However, the PD-based methods only
contain two polarized images, which means that the freedom
degree of information is limited to two. A complete polarization
characterization of the scattered light and objects is helpful in
further enhancing the recovery performance. Naturally, possible
solutions include capturing more images and obtaining
polarization parameters with high information freedom
degrees, such as Stokes vector and MM [64, 83].

3.2 Stokes-Based Polarimetric Imaging
3.2.1 Basic Model and Configuration
As the information dimension (number of polarization sub-images)
in Stokes vector configurations is higher (i.e., three for linear Stokes
and four for complete Stokes) than two in the PD imaging system, the
Stokes vector is more suited for characterizing polarization properties
of scattered light. In contrast, as the two important parameters (AoP
and DoP), which are highly relevant to the scattered lights’ properties
[66, 84], can be directly deduced from the Stokes parameters,
introducing Stokes analysis into the scattering removal is promising.

According to the fundamental model in Eq. 1, we know that
the estimation of transmittance t(x, y) depends on the scattering
section A(x, y), where the polarization property can be
characterized by the Stokes vector SA(x, y). Here, SA0 is the

captured intensity corresponding to A(x, y). In this way, Eq.
1 can be rewritten as

S(x, y) � SD(x, y) + SA(x, y), (15)

where SD(x, y) denotes the Stokes vector related to the direct
transmission D(x, y). If the target objects are assumed
unpolarized, SD(x, y) equals [D(x, y), 0, 0, 0]T; conversely,
SD(x, y) � [D(x, y), SD1 (x, y), SD1 (x, y), SD1 (x, y)]T, and the
last three polarization parameters cannot be ignored. Based on
the intensity measurements in different polarization states, we
can estimate SA. Accordingly, we can obtain the A∞ and t(x, y).
In other words, the Stokes-based methods remove the veiling
light by building the model between Stokes vectors (or the related
polarization parameters) and (A∞, t(x, y)); that is,

(A∞, t(x, y)) � f(P, Pl, Pc, α), (16)
where the parameters in Eq. 16 (i.e., P, Pl, Pc, and α) are defined
in Eq. 7. The basic configuration of the Stokes-based methods can
refer to that in Figure 2B2, and the specific choice depends on the
used algorithm and realistic environments. According to the
number of the used Stokes parameters, the methods can be
classified as the linear-Stokes (LS) and the circular-Stokes (CS)
based methods. In particular, for the LS-based methods, the PSA
contains a fixed linear polarizer to generate polarized illumination,
while the PSG contains a rotating linear polarizer. By adjusting the
polarizer in PSG at least three times, we can obtain polarization
sub-images. Based on these images, we can obtain a 1 × 3 linear
Stokes vector. In contrast, in the CS-based methods, both PSG and
PSA contain a linear polarizer and a retarder (e.g., QWP or liquid
crystal variable retarders). By adjusting PSG’s states at least four
times and obtaining the related intensity images, we can get a 1 × 4
complete Stokes vector. The difference between the two systems is
whether the circular component of the Stokes vector (i.e., S3) is
considered.

However, the CS-based methods do not depend on the
scattering angle and can survive more multi-scattering events
than linearly polarized light [47, 85, 86]. Figures 7A,B present the
DoP as a function of optical depth in water with different
diameter particles, from which we can observe that the CP
light maintains better polarization characteristics than linear
polarization (LP) [47]. This property, the so-called circular
polarization (CP) memory effect, can be explained by the Mie
scattering phase functions of LP and CP. The phase function in
the circular case possesses a marked forward lobule that permits
the photons to propagate around the beam axis with a higher
probability than in the linear case [87, 88]. Figure 1B presents the
effects of size on the DoP. Results show that when the size
parameter is large, the DOP for CP is greater than that for LP
[85]. The characteristics in Figure 7B attest to the superiority of
CS-based methods in dense turbid water or underwater
environments with large-sized particles. Besides, Sara et al.
[89] quantitively demonstrated the superiority of circularly
polarized light in foggy environments. The experiments are
carried out at CEREMA’s 30 m fog chamber under controlled
fog density conditions. Figure 7C compares the ratio of CO
channels (probe the prevalence of the input polarized light
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through the fog) with respect to the intensity signal as a function
of the radius of the intensity profile of the source image for
circular (solid lines) and linear (dashed lines) polarizations at
three visibilities. The results imply that circular polarization has a
larger signal-to-noise ratio in transmission at deeper layers,
whereas the signal from the linearly polarized light carries
some noise due to its higher depolarization ratio when
propagating in scattering media.

3.2.2 Representative Methods
To enhance the contrast, the two orthogonal polarized images in
the traditional PD imaging model must be strictly selected to
make the projections of the veiling light onto the two
orthogonal axis directions equal [41]. However, this selection
is time-consuming and inconvenient by rotating the polarizer
mechanically, which is unsuitable for rapid imaging applications.
Tian et al. optimized the traditional PD model to deal with this

FIGURE 7 | DoP as a function of optical depth in water with different diameter particles; (A) 2 μm particle; (B) the size parameter (ka) varies (reprint from Elsevier:
Applied Sciences [47], copyright 2021). (C) Comparison of the ratio of Co channel with respect to the intensity signal as a function of the radius of the intensity profile of
the source image for circular (solid lines) and linear (dashed lines) polarizations at three visibilities: 12, 18, and 24 m (reprint from OSA: Optics Letters [89], copyright
2022).

FIGURE 8 | (A) Raw intensity. (B) Imaging results by M-PDI. (C) Intensity profiles by raw intensity, traditional PI, and M-PDI. (D) Contrast distributions of the object
obtained by raw intensity, traditional PI, and M-PDI versus optical thickness (reprint from Elsevier: Optics and Laser Technology [90], copyright 2018). (E) Comparison of
traditional and interpolation method-based PDI systems. (F) Images corresponding to target in (F1) clear water and (F2) turbid conditions. (F3) Stokes vector elements
for the direct measurement (D), separated scatter (B), and target (T). (F4) Generation of numerical plots for the direct measurement and separated target (reprint
from IOP: Journal of Physics D: Applied Physics [91], copyright 2018).
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limitation. They proposed a modified PD imaging method
(M-PDI) based on the Stokes vector analysis of the veiling
light [90]. The output image after removing the veiling light is
expressed by

IM−PDI � S1sin2α − S2cos2α, (17)
where α is the polarization orientation angle of the veiling light.
The optimal value of α corresponds to the highest image
contrast. A linear Stokes vector is calculated by capturing
three images in polarizer’s directions of 0, 45, and 90° and
searching the optimal α. The significant advantage of this
method is that the recovery performance can be updated
automatically by the computation program when obtaining
the Stokes parameters, which makes the implementation of
PD imaging ideal for rapid imaging. Figures 8A–D show the
recovery results of this method. The result shows the
background noise is significantly suppressed, and the
contrast of the target “Z” is significantly improved.

In 2018, Guan et al. [91] modified the above method and
proposed another M-PDI method via the Stokes vector-based
interpolationmethod. Figure 8E compares the traditional and the
modified polarization filtering methods in PD imaging. The
principle of this method is shown in Figure 8F [91]. From the
image results, the object’s contrast is significantly enhanced, and
the background noise is significantly decreased. More details of
this method and the comparison with the traditional PD method
can be found in [91].

Although the M-PDI method has partially addressed certain
inherent drawbacks of the traditional model based on Stokes
analysis, the determination of crucial parameters, based on the
computational searching, makes the model performance unstable
and sensitive to noise [38]. To overcome this issue, Liang et al.
[38] further explored the relationship between the Stokes vector
and veiling light and estimated the backscattering/air-light using
the AoP analysis. Based on the three captured images on different
polarizer directions (i.e., 0, 45, and 90°), the Stokes vector is
calculated by the expressions in [38]

S0 � I(0) + I(90)
S1 � I(0) − I(90)
S2 � 2I(45) − S0

, (18)

where I(i) denotes the captured image when the direction of the
polarizer is set to i degree. Then, we can calculate the intensity
level of air-light as

Ap � 2I(0)
cos2θ

− S0, (19)

where θ � 1/2actan(S2/S1) denotes the AoP of air-light. Then,
the output with a clear vision can be obtained by the typical
physical model in Eq. 14. In this method, the noise in the sky area
can be eliminated without any imaging-processing algorithm,
which makes this method much more convenient and reliable in
practical applications. Based on the technique, Liang et al.
developed a series of algorithms to further enhance the
recovery performance. For example, in 2015, they optimized
the estimation of critical parameters (e.g., AoP and the

intensity level of the air-light) to accommodate dense haze
and achieved a 74% enhancement in the range of visibility
(ROV) [43]. In 2016, as the infrared radiance has a better
capacity for traveling through the haze, they modified the
model by merging visible and infrared images. The ROV was
thus improved by 100% [43]. In 2021, they introduced low-pass
filtering into the AoP-based polarimetric imaging model and
overcame the drawback of “noise sensitivity” in estimating the
AoP value. The final imaging performance of these methods is
shown in Figure 9. We can observe from the results that the faint
information in hazy images is well preserved, and the contrast of
the recovered image is increased significantly [92].

Such works based on AoP analysis accelerate the
development of polarimetric imaging in specific scattering
media. However, all these methods are based on the linear
Stokes vector, which only includes three parameters and merely
reflects the interaction of target objects with the linearly
polarized light without considering the response to circularly
polarized light. In particular, in some special scattering media
requiring active illumination, the circularly polarized light tends
to maintain its original polarization property better than the
linearly polarized light, namely, the “circular polarization
memory” effect [93, 94]. Therefore, using circularly polarized
light can improve the recovery performance in dense turbid
media more than linearly polarized light. Therefore, Hu et al.
[46] proposed a new polarimetric image recovery method in
dense turbid media with the illumination light featuring circular
polarization. In this method, the active illumination is
modulated by a polarizer and an additional retarder to
generate circularly polarized light. The estimated Stokes
vector is decomposed into linear polarization, circular
polarization, and un-polarization parts as follows:

S � Sl−polarized + Sc−polarized + Sunpolarized, (20)
where the subscripts of l and c indicate the linearly and
circularly polarized light, respectively. According to this
decomposition, the linear and circular components of the
veiling light are removed by solving the DoLP and DoCP of
the backscattering. Figure 10A shows the difference between
these two degrees of polarization, while the circular one is
always missed in most methods. This is the first polarimetric
imaging system and algorithm considering circularly polarized
lighting. The recovered result and its comparison with the
linear one are as shown in Figure 10B and further evidenced
by experimental results for the scenes with different
polarization properties, for example, a rough wooden board
with patterns and words on its surface and the non-flat
plastic toy.

With the improvement in the theoretical model, the trend of
Stokes-based polarimetric imaging in scattering media continues
to optimize the estimation of key parameters and render more
accurate values, such as the polarization information of object
and scattering signals. For example, Jin et al. [52] proposed a
scattering removal method from the perspective of global
estimation of polarization information to realize polarimetric
calculation of global pixels for automatically estimating the
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DoP. This global pixel calculation is accomplished by utilizing the
gradient prior information of the total intensity image.
Figure 10C shows the flowchart of this method, and
(Figure 10D) shows the comparison results of three classical
recovery methods and this method in different turbidity [32, 41,
82]. Apparently, as opposed to methods with the assumption of
constant DoP of target light, this method can retrieve the DoP of
the target light of each pixel in the image. As a result, it has a

better performance of recovering the scene’s details even though
the water is turbid [52].

In short, the Stokes-based methods outperform the PD-based
methods because the Stokes vector renders more useful
polarization information, such as DoP and AoP, which are
closely related to the backscattering/veiling light caused by the
existing particles. Improving the information dimension and
estimating key parameters are two effective ways to boost

FIGURE 9 | Recovery performance for Liang’s methods in Refs. (A) Ref1 (reprint from Chinese Laser Press: Photonics Research [38], copyright 2014). (B) Ref2
(reprint from OSA: Optics Express [43], copyright 2015). (C) Ref3 (reprint from OSA: Optics Express [40], copyright 2021). (D) Ref4 (reprint from OSA: Applied Optics
[56], copyright 2016).

FIGURE 10 | (A) Intensity image of the scene, DoLP, and DoCP. (B) Recovery comparison for methods in [46] and [32] (reprint from OSA: Optics Express [46],
copyright 2018). (C) Flowchart of underwater polarization reconstruction utilizing polarimetric calculation method of the global pixel. (D) Comparison results of three
classical restoration methods (PD: polarization difference [41], ML: Schechner’s method [35], VLC: Vanderlugt correlator) and this method in different turbidity (reprint
from IEEE: Photonics Journal [52], copyright 2021).
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imaging performance. However, we must remember that, unlike
MM, the Stokes vector is not a complete polarization
characterization [63, 95]. Therefore, the trial based on the MM
has become the preferred approach to improve the information
dimension, an exciting solution to enhance imaging performance
in scattering media further.

3.3 MM-Based Polarimetric Imaging in
Scattering Medium
3.3.1 Basic Model and Configuration
Unlike the Stokes vector, which is usually used to characterize
the polarization properties of the light beam, the MM contains
all the polarization information of the target materials.
Therefore, the MM is always applied to distinguish different
materials [8, 96–98] and 3D physical imaging [99–101].
According to the basic model in Section 2, the received
signal or images can be classified into the target and
scattered signals. The Stokes-based methods build the
relationship between the Stokes vector and the scattered
light. However, they fail to distinguish objects with different
polarization properties. These methods are unsuitable for
objects whose reflected light has a similar Stokes vector with
the backscattering light.

With the information provided by MM, the operational space
for polarization image processing is greatly improved, making it
possible to distinguish objects in a high degree of freedom for the
polarization information [102]. In addition, the MM-based
configuration opens the door to modulate the incident
illumination with a significant polarization space. In other
words, the MM-based scattering suppression imaging
technology modulates the illumination and analysis parts
simultaneously. The basic configuration of MM-based methods
is as shown in Figure 2B2, and one can remove the WPs in
accordance with the type of MM (incomplete or complete) that is
desired.

3.3.2 Representative Methods
The MM-based polarimetric suppression method for the imaging
in scattering media is mainly based on modulating the
polarization state of the active illumination. The earliest
attempts focused on imaging linear MM and required nine
intensity images [44, 45, 103]. In the related configurations,
the WPs in PSG and PSA in Figure 2B2 are removed, and the
polarizers in PSG and PSA are rotated to three different positions
to capture nine images, respectively.

In 2019, Guan et al. [44] found that the illumination
polarization angle and the MM difference between the

FIGURE 11 | (A) Principal diagram of polarization difference method based on MM. (B) Comparison results of scattering suppression by different methods and
different scattering medium concentration, where Wang’s method is labeled by “Best (Our)” (reprint from Elsevier: Optics Communications [103], copyright 2021). (C)
MM image of the scene in turbid water. (D) Variation of DoP with the azimuth and the ellipticity of PSG. (E) Underwater image restoration results and the histograms in
different turbidities of water (reprint from IEEE: Photonics Journal [45], copyright 2021).

Frontiers in Physics | www.frontiersin.org March 2022 | Volume 10 | Article 81529613

Li et al. Polarimetric Imaging Through Scattering Media

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


medium and the object could affect the SNR of recovered results
obtained by the rotation orthogonal polarization imaging
method. They designed a linear MM-based polarimetric
method to precisely control the illumination polarization angle
and achieve a rapid imaging process. In 2021, Wang et al. [45]
plotted backscattered light and target reflected light in the point
cloud diagram in Figure 11A by establishing a differential
imaging model. According to Figure 11A, on the premise that
the angle between the polarizer’s direction and the backscattering
light’s polarization direction is 45°, the backscattering light can be
removed by the PD method to achieve scattering suppression. By
analyzing the principle of polarization difference, the output
result under ideal conditions is given by

Iout(x, y) � (IPB‖(x, y) − IPB⊥(x, y)) + (IPT‖(x, y) − IPT⊥(x, y))
� ∣∣∣∣IPT(x, y)∣∣∣∣ · sin(2θ),

(21)
where IPB‖(x, y), IPB⊥(x, y), IPT‖(x, y), and IPT⊥(x, y)
represent the horizontal and vertical projection of the
polarized part of the backscattering and target light,
respectively. It can be seen from the above formula that the
output result of the differential image will be affected by the
polarization angle between the target and backscattered light.
Therefore, by modulating the incident light and changing θ, the
performance of the traditional PD method can be improved.
Figure 11B presents the comparison results of this method with
the traditional PD method and other classical methods. We see
that the modulation of incident light has a significant influence on
polarization differential scattering suppression.

In other work, the authors disregard the traditional PD
method and instead directly process the image according to
the MM45. By modulating the polarization state of the
incident active illumination light, the DoP of the backscattered
light is directly maximized, thus achieving the best suppression of
the backscattered light. Based on the configuration in Figure 2B2,
one can obtain any specific polarized incident light by adjusting
the PSG. The Stokes vector of the incident light Sin can be
expressed by its DoP value P, azimuth α, and ellipticity ε as
follows:

Sin � Sin0 [ 1 PST ]T � Sin0
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
P cos 2 α cos 2 ε
P sin 2 α cos 2 ε

P sin 2 ε

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (22)

where Sin0 denotes the intensity of the illustration light and S �
[ Sin1 , Sin2 , Sin3 ] is the normalized Stokes vector. When the DoP
of backscattered light Pback is higher, more backscattered light can
be blocked by the PSA. Therefore, to suppress the backscattered
light optimally, one must maximize the DoP of the backscattered
light by choosing an optimal set of azimuths and ellipticities
(αopt, εopt). This optimization problem can be expressed by

(αopt, εopt) � arg
(αopt,εopt)

max{Pback(M, α, ε)}
, (23)

where

Pback(M, α, ε) � 1∑3
j�0M0jsinj (α, ε)

⎧⎨⎩∑3

i�1∑3

j�0[Mijs
in
j (α, ε)]2⎫⎬⎭

1
2

.

(24)
Figure 11C presents theMM image of the target scene, and the

corresponding optimal set of azimuths and ellipticities can be
found by a global search shown in Figure 11D. The imaging
results and the comparison with the traditional PD method are
shown in Figure 11E. The results demonstrate that this method is
stable and can be implemented with any digital image processing
to achieve a more scattering suppression performance.

In 2022, Liu et al. [104] developed an MM-based de-scattering
method and introduced the depolarization (Dep) index into the
de-scattering algorithm. Dep is derived from the MM and is
defined by

DepM(x, y) �
������������������
tr(MTM) −m2

00(x, y)√
���������
3m2

00(x, y)√ . (25)

By studying the backscattering distribution in different NTU
turbidities, it is found that the background intensity correlates
linearly with Dep in a remarkable way, as shown in Figures
12A–B. Therefore, Dep is used to characterize scattering media.
By quantifying the light attenuation with the transmittance map,
a clear vision of targets can be recovered using the information of
scattering media. An example of recovery performance is shown
in Figures 12C1,C2. The results demonstrate that the image
contrast is significantly improved after recovery. In particular, the
paper stripe and metal ruler are both clearly visible. From the
zoomed-in view in Figures 12C3,C4, the ruler in the intensity
image blurs, especially the tick mark and edges. In contrast, the
edges of the ruler are visible after recovery, even with
distinguishable tick marks.

The MM-based methods have many advantages. For example,
they provide more helpful information by increasing the degree of
freedom for polarization and making a clear differentiation
among objects with similar intensity appearance but different
polarization properties. However, it should be noted that a very
scarce amount of works, less than five to the best of our
knowledge, has placed the focus on MM-based de-scattering.
Indeed, making full use of the MM decomposition and other
MM-related parameters is promising and needs more attention.

3.4 Learning-Based Polarimetric Imaging
As discussed in Section 2, one of the dehazing methods is based
on a physical model where prior knowledge is applied to extract
physical parameters related to the scattering media and then
recover the targeted signal. In this case, the estimation accuracy of
these key parameters determines the final performance.
Therefore, almost every developed method strives to optimize
the accuracy of parameter estimation to make it as close as
possible to the physical values in the scene. However, the
optimizations come at the cost of increased computation
complexity and reduced universality. In contrast, the methods
not directly based on a physical model aim to improve the image
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quality by enhancing the image contrast and the difference
between different image structures. This kind of method
handles different scenarios indiscriminately but can perform
poorly, especially with complex conditions.

The deep learning- (DL-) based method is data-driven and
thus capable of extracting the hidden relationship and physical
properties between/in the raw and target data. This makes it a
promising choice for de-scattering. In some ways, the
traditional “end-to-end” network corresponds to methods
that are not based on the physical model, while the “physical
embodiment” network is based on physical models. The
following section introduces learning-based polarimetric
imaging in scattering media from the basic concepts to well-
established applications.

3.4.1 Basic Concepts of the DL and Neural Network
In 1943, psychologist Warren McCulloch and mathematical
logician Walter Pitts proposed the concept of the artificial
neural network and the mathematical model of the artificial
neuron, thus prompting the era of artificial neural network
research [105]. They abstracted the entire working process of
neurons into the model shown in Figure 13A. In the model, input
data xi are given to the network processed with weights and bias
parameters. Then, a nonlinear activation function φ(p) is

applied to obtain the final output Y. The whole process is
called forward propagation. The weights wi and bias b are
the parameters to be learned, which can be seen as the
memory of the neural network. The final output is the
prediction result obtained by the network according to the
input data, which may be different from the ground truth.
Therefore, it is necessary to calculate the deviation between
the predicted result and the ground truth, or the network loss,
to update network parameters. The process of updating weights is
usually via some variant of a gradient descent algorithm. The
training process of the network repeats the forward propagation
and backpropagation process until the loss is minimal so that
when we put in input data, we obtain an output nearly the same as
the ground truth [106].

To boost the network performance and suitability for various
tasks, different advanced network structures have been
developed, such as LeNet [107], AlexNet [108], GoogleNet
[109], ResNet [110], and DenseNet [111]. In the field of
computer vision, learning-based solutions have become the
hottest topic. Particularly, various learning-based works focus
on improving imaging quality in scattering media. For example,
Chen et al. [112] proposed an “end-to-end” dehazing network. In
their review, a generative adversarial network (GAN) is used to
realize end-to-end image dehazing. The work focuses on solving

FIGURE 12 | (A) Four measured intensity images at different values of NTU. (B1–B4) Fitting results of backscattering intensity as a function of Dep values. (C1)
Intensity image; (C2) recovered image with the proposed de-scattering method; (C3) and (C4) the zoomed-in view of the region of interest in (C1) and (C2)marked out
with red rectangle (reprint from Chinese Laser Press: Chinese Optics Letters [104], copyright 2022).
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the problem of grid artifacts and has greatly improved the
indexes of peak signal-to-noise ratio (PSNR) and Structural
Similarity Index Measure (SSIM). In 2019, Pan [113] proposed a
physics-based feature dehazing network for image dehazing
network. In contrast to most existing end-to-end trainable
network-based dehazing methods, they explicitly considered
the physical model of the hazing process in the network design
and removed haze in a deep feature space. However, all these de-
scattering methods are based on a single intensity image. In
recent years, DL has been successfully applied to polarimetric
imaging [49, 66, 114]. Such works develop mainly from two
parts: polarization acquisition and polarization processing. The
related applications include denoising, dehazing, image fusion,
targets detection and classification, and super-resolution (a brief
classification is shown in Figure 13B). In the following, we focus
on the learning-based de-scattering works.

3.4.2 Representative Methods
The currently popular neural network ResNet was first
proposed by He et al. [110] in 2015 and is widely used in
many scenarios of DL. This structure can solve the problem of
gradient disappearance when the network is deep. Huang et al.
[111] proposed DenseNet in 2017, which can alleviate gradient
disappearance, strengthen feature propagation, encourage
feature reuse, and significantly reduce the number of
parameters through the dense connections between layers.
Based on these two networks, Hu et al. [50] first proposed a

polarimetric dense network (PDN) and applied it to
underwater polarization image restoration. The network
structure of PDN is shown in Figure 13C1. This network
includes three main components (shallow feature extraction,
residual dense block, and dense feature fusion) to deeply
extract shallow features of polarization information from
three polarization images and then fuse them. The loss
function used is defined as

l(Θ) � 1
2N

∑N

i�1
∣∣∣∣∣∣∣∣∣∣Ipredi (x, y;Θ) − Igti (x, y)2F∣∣∣∣∣∣∣∣∣∣, (26)

where Ipredi (x, y) and Igti (x, y) refer to predicted and ground
truth images, respectively, with their polarization information.
Because the polarization is considered, the recovered image in
Figure 13C2 has more detailed features than the intensity
image used alone. Besides, there are more artifacts in the
recovered result by “intensity-Net” than “Polarimetric-Net.”
These results demonstrate that embedding polarization
information and constraints into the network helps improve
performance.

In 2021, Zhang et al. [115] studied how to optimize the
network structure and loss function to improve the suitable
model performance. They found that, by adding polarized
information along with the light intensity information to the
model at the very front of the model structure, a better-
recovered image can be obtained. The model structure
proposed can be used for image recovery in turbid water or

FIGURE 13 | (A) Schematic diagram of neural network structure. (B) Classification of polarimetric imaging via DL. (C1) The architecture of polarimetric dense
network (PDN) and (C2) recovered image (reprint from Elsevier: Optics and Lasers in Engineering [50], copyright 2020).
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other scattering environments. It should be noted that both the
above methods are “end-to-end” and depend on paired training
data. Although the application of neural networks has
significantly improved image de-scattering performance
compared with traditional methods, its disadvantages are
also easily recognizable. DL networks, especially end-to-end
networks, have poor interpretability as the neural networks are
more like a black box. It is difficult to explain and understand
the inner operation process. To solve this problem, Ren et al.
[116] integrated the polarimetric imaging model with the DL-
based method and proposed a lightweight network structure,
which can restore underwater images with different turbidity.
This method makes the image restoration through neural
networks more in line with the physical principle and
achieves good results.

To complete the physical meaning in the network and reduce
the degree of freedom of the model, Zhou et al. [117] proposed a
generalized physical formation model of hazy images and a
robust polarization-based dehazing pipeline without the
assumptions in traditional polarimetric methods. The designed
network includes sub-networks to estimate different parameters,
as shown in Figure 14A. The network divides the whole image
de-scattering process into two steps. At the end of each step,
semantic and contextual information is used to refine the output
of the corresponding sub-network. This method provides a new
perspective for the fusion of physical models and neural
networks. However, the generalization ability on the real
dataset is still limited for utilizing computer-synthesized
datasets. In order to get rid of the paired data’s dependence
and make the learning-based methods applicable in practice, the
unsupervised model-based and untrained model-based solutions
are proposed. For example, Yang et al. [118] designed an end-to-

end unsupervised generative network to remove the
backscattering light, as shown in Figure 14B1. This method
produces an adversarial loss with the discriminative network
to improve the performance. In addition to using GAN to
remove the backscattering light, they also modified the
underwater imaging model based on several physical priors.
The DoP of backscatter is the same as that of background
light. This new model can be applied in a variety of non-
uniform optical fields. Figure 14B2 shows its recovered results
by different methods. Besides, they also verified that this
unsupervised solution could adapt to the non-uniform optical
field with different incident angles. In 2021, Zhu et al. [119]
proposed a non-GAN unsupervised method by combining the
polarization physics model and DL technology. Figure 14C1
presents the network’s architecture. Rather than using
atmospheric scattering model directly, they input the
polarimetric hazy images into U-Net to obtain the
corresponding de-scattered images, added haze to the output
of the network through the model proposed by Liang et al. [43],
and finally calculated the loss between the generated hazy images
and corresponding captured images. Figure 14C2 presents a
visual comparison among different de-scattering methods.
From the results, we may observe that the background area
with the homogeneous scattering effects is removed using this
method, but the object information is preserved. In short, the
unsupervised image de-scattering through U-Net does not need
paired datasets or even haze-free images.

All the above works can be considered strong evidence that
learning-based, especially the physics-embedded learning-
based method, can resolve the limitations of traditional
methods and provide an irreplaceable solution for imaging
tasks in scattering media. It should be noted that the reported

FIGURE 14 | (A) Schematic diagram of neural network structure proposed by Zhou et al. (reprint from MIT Press: Advances in Neural Information Processing
Systems [117], copyright 2021). (B1) The architecture of the GAN-based polarization network and (B2) the recovered images (reprint from OSA: Applied Optics [118],
copyright 2021). (C1) The architecture of untrained network in [119] and (C2) visual comparison among different de-scattering methods: our method, i.e., Zhu’s method
[119], IFM, MIP [120], HE [121], RGHS [122], DCP [3], GC [123], and RoWS [124] (reprint from OSA: Optics Express [119], copyright 2021).
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DL models and research largely depend on a particular
dataset, and it is hard to guarantee similar performance
from other datasets. This is where this method falls short if
compared with other common traditional models.
Nevertheless, we firmly believe that DL techniques hold a
crucial place in this field.

3.5 Polarimetric Imaging Through
Scattering Tissues
In the above sections, we have reviewed the polarimetric imaging
through such scattering media as fog, haze, and turbid water.
Meanwhile, biological tissues as another important scattering
media and the related polarimetric imaging techniques have
gained great attention in the biomedical field. To be more
specific, the biological tissues contain fiber-like macromolecules
(e.g., the collagen fibers in the skin and tendons, muscle fibers, and
myofibrils in skeletal muscles), which exhibit a certain degree of
structural anisotropy and anisotropy in dielectric response. These
properties manifest themselves via birefringence [125, 126], which
can be observed using polarization measurement or polarimetric
imaging [127]. For example, many works have shown that the
depolarization, retardance, and diattenuation induced by the
birefringent tissues can be considered indicators to assess
macromolecules’ microstructure, thus being conducive to
diagnosis and the study of pathological alterations [128, 129].
However, the scattering (especially the multiple scattering) in
thick tissues often results in the depolarization of light, which
makes detection of the remaining information-carrying

polarization signals challenging. Therefore, various polarimetry
or polarimetric imaging techniques have been developed to
maximize measurement sensitivity to assist in analyzing useful
tissue information [97, 127, 130, 131].

In fact, the polarimetric imaging through the biological tissues
often shares the same basic polarization configurations as
mentioned in Section 2: polarization difference, Stokes vector,
and Mueller matrix polarimeters. However, the focus and
methods of the related research are significantly different from
those in Section 3. Here, the main focus is to study the properties
of scattering media, namely, the tissues themselves. For example,
the emphasis will be placed on modeling the polarized light
transport and the depolarization of multiply scattered light in
tissues by both Monte Carlo simulation and the real experiments
[132–135] or the study of the mechanism of depolarization and
its dependence on the different tissue or media parameters (e.g.,
the density, size, distribution, shape, and refractive index) [131,
136–140]. On the contrary, for the reviewed physical degradation
mode-based polarimetric recovery methods in Section 3, the
properties of scattering media do not directly impact the recovery
performance. This is because these techniques aim to remove the
scattered light (i.e., A(x, y) in Eq. 1) and recover the direct
transmission (i.e., D(x, y) in Eq. 1). The critical step is to
calculate media transmittance (i.e., t(x, y)) and the intensity
level of scattered light (i.e., A∞) by estimating polarization
properties (i.e., DoP and AoP). In short, the recovery
performance mainly relies on the accuracy of the estimation
polarization properties. More details can be found in the related
works in Refs. [130, 141].

TABLE 1 | Summary of polarimetric de-scattering methods.

Method Principle Captures num. Pros & cons Ref

PDI • Common-mode rejection amplifier 2 Pros 1,15,16
• Physical degradation model •Easy to operate 32,33,35

• Low computational complexity 38,40,41
• Low system complexity 47,50,78
Cons 79,82
•Poor performance under complex conditions
•Prior knowledge-dependent
• Inability to distinguish objects of different polarization properties

Stokes-based • Stokes polarimetry 3 or 4 Pros 34,38-40
• Physical degradation model •Adjustable incident illumination 43,46,47

• Low computational complexity 56,92
Cons
•Higher system complexity
•Ability to partially distinguish objects of different polarization properties

MM-based Mueller polarimetry 9 or 16 Pros 44,45
•Adjustable incident illumination 103,104
•Ability to fully distinguish objects of different polarization properties
Cons
•More captured images required
•Highest system complexity
• Fails in real-time applications

DL-based DL techniques and polarization model ≥2 Pros 50
•Excellent performance 116-119
• Fast processing speed (after finishing the training)
Cons
•Data-dependent
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4 CONCLUSION AND OUTLOOKS

In this review, we have presented an overview of the polarimetric
imaging methods through scattering media from the perspectives
of the basic model, imaging system, and representative works.
Table 1 provides a brief summary and comparison across these
methods.

Thanks to the property of polarized light propagated in
scattering media, polarimetric methods outperform
traditional intensity-based methods, particularly under
complex conditions such as high-density turbid media,
non-ideal illumination environments, and scenes with
multi-material objects. We have demonstrated that the
increase in polarization information dimension can
constantly improve the imaging performance and the
polarimetric methods. However, the complexity in both the

imaging systems and computations is inevitably increased. It
is worth noting that to achieve the balance between
performance and complexity, advanced optical equipment
and innovation in imaging systems must come into play. In
addition, the demand for practical applications will
certainly drive the development of polarimetric imaging
methods. As such, we propose several topics of interest for
future studies:

4.1 Multispectral-Polarization Systems and
Fusion Algorithms
The combination of multi-spectral and polarization is often
applied in the field of remote sensing [142, 143]. They found
that more complex and accurate indices and models can be
developed to reveal more information when the polarization

FIGURE 15 | (A) Images by LWI-DoFP camera (reprint from Elsevier: ISPRS Journal of Photogrammetry and Remote Sensing [146], copyright 2021). (B)
Polarimetric imaging in the field of self-driving [153]. Different systems of polarimetric underwater imaging were developed for realistic applications. (C) Schechner’s
imaging system (reprint from IEEE: Transactions on Pattern Analysis and Machine Intelligence [35], copyright 2008). (D) FOREEEA’s waterproof system (reprint from
OSA: Optics Express [80], copyright 2019). (E) Full Stokes real-time dehazing system (reprint fromOSA: Applied Optics [34], copyright 2017). (F)DoFP polarization
camera (reprint from OSA: Optics Express [49], copyright 2020).
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information is supplemented [144, 145]. Therefore,
combining multi-spectral and polarization into an
integrated imaging system and fusing multi-parameters are
two possible directions to enhance the image quality in
complex scattering media.

As mentioned in Section 3, the long-wave light is more
robust for transmitting through the haze than visible light.
Another powerful example is using a long-wave infrared
DoFP polarization in road detection, as shown in
Figure 15A [146]. The fusion of short and long
wavelengths effectively increases the visual range at the
cost of decreased resolution. Therefore, an optimal tradeoff
is helpful for this solution [147, 148]. Besides, in the realistic
underwater scene, seawater appears in different colors
because the scattering and absorption depend on both the
wavelength and the physical properties of the particles. It
seems that a tunable wavelength source will make the imaging
system have a wide range of application scenarios. On the
contrary, the existing polarimetric methods mainly focus on
recovering information only related to the intensity, that is,
“to see it.” However, the most significant advantage of
polarization is that it can see what human eyes cannot (in
the intensity condition), such as information related to DoP
[149], AoP [150], or the index of polarization pure (IPP) [151,
152]. These parameters help distinguish different materials
and different optical responses. For example, the DoP and
AoP have been successfully applied in self-driving. They can
provide additional information in complicated meteorological
environments (fog and rain), as shown in Figure 15B [153].

Fusing multiple polarization parameters and intensity into a
frame, further increasing the information dimension, may open a
new door for the imaging in scattering media and take a
transform from “could be seen” to “see far” and from “see
clearly” to “see more.”

4.2 Real-Time, Real-Scenario, and Robust
(3R) Solution for Polarimetric Imaging
Most reported polarimetric imaging methods for scattering
media have been demonstrated under laboratory conditions.
Although some were implemented in real-life scenarios, the
imaging process was static, and the analysis was completed
afterward. To achieve real-time, real-scenario, and robust (3R)
solutions for polarimetric methods, advanced algorithms for
optical information processing need to be developed and an
improved collaborative imaging system is also required.

Schechner et al. first developed an underwater polarimetric
imaging system, as shown in Figure 15C. This system is designed
based on their basic PD imaging model and performs better in
real-life scenarios by combining necessary post-processes [35]. In
2019, Khadidja et al. used the waterproof imaging system
designed by FORSSEA Robotics Company, as shown in
Figure 15D, to carry out the experiments under more realistic
conditions [80]. Compared with the preceding imaging system,

their setup is improved and can be integrated into underwater
detectors, such as the underwater robot and autonomous
underwater vehicles. However, these two systems are based on
linear polarized light, and there are only two images with
orthogonal polarization states. Zhang et al. designed an
aperture-division polarimetric camera, as shown in
Figure 15E, to capture four polarization images in the
atmosphere via methods based on the full Stokes vector. It
successfully achieves real-time image haze removal with an
output rate of 25 fps [34]. However, the dehazing performance
can be significantly affected by the registration accuracy. With the
development of the DoFP polarization camera, as shown in
Figure 15F, real-time processing is made possible without
registration error. Our team has integrated this DoFP camera
with a watertight device and an adjustable polarized illumination
to create the underwater polarimetric imaging system (UPIS).
The corresponding configuration is shown in Figure 2B3 to
perform de-scattering (in air and undersea) tasks in real-life
scenarios. Using custom dehazing algorithms, the visual range
is increased by about 8.5 times, and the processing speed reaches
15–25 fps for images with a resolution of approximately 1000 ×
1000 [154]. In other words, this custom-made system has fulfilled
the “3R-criterion” to a much greater extent. However, compared
with traditional solutions with a single image and advanced
computer-vision-based algorithms, there remains room for
further improvement in the 3R-polarimetric imaging system.

A possible approach going forward is to further exploit
integrated polarimetric imaging systems based on the DoFP
polarization camera and automatic rotating devices in PSG
and PSA [155–159]. As such, the polarization modulations in
both illumination and detector can be controlled simultaneously
to handle multifunctional applications.

In the review, we have covered some, if not all, of the established
works in the fields of polarimetric imaging in scatteringmedia, and
we are keen to seemore studies in the area as further understanding
in polarimetric imaging will undoubtedly benefit both the
academic and industrial communities in a significant way.
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