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Diffusion MRI is widely used for the clinical examination of a variety of diseases of the
nervous system. However, clinical MRI scanners are mostly capable of magnetic field
gradients in the range of 20–80mT/m and are thus limited in the detection of small tissue
structures such as determining axon diameters. The availability of high gradient systems
such as the Connectome MRI scanner with gradient strengths up to 300mT/m enables
quantification of the reduction of the apparent diffusion coefficient and thus resolution of a
wider range of diffusion coefficients. In addition, biological tissues are heterogenous on
many scales and the complexity of tissue microstructure may not be accurately captured
by models based on pre-existing assumptions. Thus, it is important to analyze the diffusion
distribution without prior assumptions of the underlying diffusion components and their
symmetries. In this paper, we outline a framework for analyzing diffusion MRI data with
b-values up to 17,800 s/mm2 to obtain a Full Diffusion Tensor Distribution (FDTD) with a
wide variety of diffusion tensor structures and without prior assumption of the form of the
distribution, and test it on a healthy subject. We then apply this method and use a machine
learning method based on K-means classification to identify features in FDTD to visualize
and characterize tissue heterogeneity in two subjects with diffuse gliomas.

Keywords:magnetic resonance imaging, connectome scanner, diffusion tensor imaging, glioma tumor, full diffusion
tensor distribution

1 INTRODUCTION

Diffusion MRI (dMRI) is capable of characterizing tissue microstructure and differentiating between
different types of tissues in diseases of the central nervous system [1–5]. This is because water
diffusion is hindered or restricted by the presence of cells, blood vessels and other structures inside
tissues. Thus, these diffusion properties can be used to characterize tissue structure. For example,
water molecules inside axons can diffuse relatively freely along the axon axis, however, the diffusion
perpendicular to the axon axis is more restricted. As a result, angular measurement of the diffusion
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coefficient allows MRI (e.g., diffusion tensor imaging (DTI) [6,
7]) to identify axon directions and white matter tracts [8] and
other tissues [9, 10]. Pathologic tissues (such as brain tumors)
exhibit different microstructural properties compared to normal
tissue, therefore resulting in altered water diffusion (e.g. [11–13]).
In addition, molecular diffusion properties reflect the molecular
composition as well as the physical and fluidic environment. For
example, when a water molecule is present in viscous fluid, its
diffusion coefficient will be reduced. In the existing MRI
literature, anisotropic diffusion properties are often described
by a diffusion tensor, D, defined as a 3-by-3 matrix,

D �
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (1)

Mathematically,D is a symmetric tensor, so that Dxy = Dyx, Dxz =
Dzx, and Dyz = Dzy. The diffusion tensor can be diagonalized in its
eigenvector space where D is a diagonal matrix with eigenvalues
λ1, λ2, λ3. For tissues, we expect these eigenvalues to vary broadly
both in values and symmetry.

In dMRI, such as DTI [6, 7], the MRI signal can be
described as:

M b( ) � M0 exp −b: D[ ], (2)
whereM0 is the signal when b = 0,D is the diffusion tensor and b
is the diffusion weighting b-tensor, and the expression b: D
indicates a tensor product [2, 6]. In tissues, many different
microstructural components are often present within a single
voxel of the image. These different components exhibit different
values of the diffusion coefficient values, so that the total signal is
the sum of all components [14–18],

M b( )/M0 � ∑N
j�1

fj · exp −b: Dj[ ]. (3)

HereDj, and fj are the diffusion tensor of the j-th component and
its weight, andN is the total number of components. For example,
it is common in neuroimaging to consider three components
[19]: 1) the signal associated with axons with an anisotropic
diffusion behavior, 2) the signal associated with the tissue in
which the diffusion is restricted isotropically, and 3) the signal
from an unrestricted water pool [20, 21]. These three water
compartments (or pools) grossly reflect the structure of brain
tissue but represent an oversimplified model. This is because,
even within the same water population, the details of the tissue
microstructure may vary, including axon diameters, axonal
orientation, and the degree of restricted diffusion. As a result,
it is necessary to expand this model to beyond only a few
components to accurately describe the underlying tissue
microstructure. The goal of this work is to develop a method
that captures all possible diffusion tensors in biological tissues
with no a priori exclusion of certain diffusion tensors or limit on
their amplitudes.

However, Eq. 3 belongs to a class of integral equations that are
mathematically ill-conditioned and difficult to solve for noisy
experimental data [22] in the sense that small changes in the data

noise can cause significant changes in the resulting fi. This
inversion stability can be improved by imposing constraints
on the obtained distributions, e.g., by fixing the diffusion
tensor eigenvalues and solving for the orientation distribution
function (ODF) or only considering a few components with pre-
defined or heavily constrained diffusivities [19, 21, 23–25]. For
example, the RSI model (Restriction Spectrum Imaging [21])
includes 12 axially symmetric diffusion tensors and analyzes the
fiber orientation distributions of different diffusion components
to demonstrate its potential in visualizing tumor cellularity and
white matter tracks around brain tumors [13]. Other methods
have applied constraints to the potential functional forms of the
diffusion properties based on the understanding of tissue
microstructures, e.g., Refs. [26–29]. Although these constraints
facilitate data inversion and are necessary given the limited range
of b values available on clinical MRI scanners, they often rely on
assumptions that are difficult to fully justify, which may give rise
to bias and errors [30, 31]. In this work, we leverage the higher
gradients afforded by the Connectome scanner with b-values up
to 17,800 s/mm2 [32–35] to better characterize tissue
microstructure in normal human brain and diffuse gliomas.
We accomplish this by further eliminating the restriction on
diffusion tensors and the functional forms of the distribution and
thus obtaining a full diffusion tensor distribution (FDTD). We
further used a data-driven method, K-means clustering algorithm
[36] to visualize the tissue heterogeneity in the diffuse gliomas.

2 METHODOLOGY

2.1 Background of Full Diffusion Tensor
Distribution
To obtain a comprehensive description of tissue properties using
Eq. 3, we expand the definition of diffusion tensor components to
include those with and without axial symmetry. It is common to
order the eigenvalues in an ascending order, i. e., λ1 ≤ λ2 ≤ λ3. In
this coordinate frame, if two eigenvalues are equal, then the
tensor is considered to be axially symmetric. For example,
because of the cylindrical symmetry of the axons, the diffusion
tensor for axon water is considered axially symmetric.
Furthermore, since the geometric restriction is along directions
transverse to the axon axis, the diffusion tensor for axons is
generally believed to be characterized by:

λ1 � λ2 ≪ λ3. (4)
Such symmetry with a strong anisotropy has been observed in
many white matter regions where the axon bundles are highly
aligned. However, the diffusion anisotropy varies throughout
white matter regions. In gray matter regions, the voxel-
averaged anisotropy can be quite low due to the broad
orientation distribution of axons. In white matter regions,
there can be a significant variation of axon diameter [37–39].

In order to accurately characterize brain tissue, we explicitly
consider a wide range of λ1, λ2, λ3 without restricting them to
certain symmetries or their numerical values, in order to capture
all possible diffusion tensors within the range:
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dmin ≤ λ1, λ2, λ3 ≤ dmax, (5)
where dmin and dmax are the minimum andmaximum value of the
diffusion coefficient allowed in the analysis. For example, dmax =
3*10−3 mm2/s, which is approximately the diffusion coefficient of
water at normal human body temperature. On the other hand,
dmin can be set to zero, or 1/100 of dmax.

A few special cases of the diffusion tensor should be
mentioned explicitly. For the D with identical three
eigenvalues, λ1 = λ2 = λ3, the diffusion tensor is isotropic,
i.e., diffusion along any direction will be identical, such as for
bulk water, or water in very large pores. For example, diffusion in
the ventricles of human brain exhibits such isotropic behavior.
For theD with λ1 = λ2 < λ3, it is often called a prolate spheroid. In
particular, when the anisotropy is large, the shape is like a needle.
For the D with λ1 < λ2 = λ3, it is often called an oblate spheroid
which has a disc-like shape. In the analysis of dMRI, the use of a
prolate spheroid (needle-like shape) to model the axon is
common. However, the oblate spheroid (disc-like shape) or
other shapes in particular with three different eigenvalues (λ1
≠ λ2 ≠ λ3) are not often used in previous DTD (diffusion tensor
distribution) models. Jian et al. [23] andMagdoom et al. [29] have
proposed to include oblate and other anisotropic tensors,
however, constrained the DTD to certain predefined functions.
Herberthson et al. [40] also studied the generalized diffusion
tensor for orientationally averaged dMRI data.

Within an MRI voxel of tissue, multiple types of tissue may
exist concurrently and thus the MRI signal is a sum of all the
different types of tissues that are characterized by their diffusion
tensors, D:

M b( )/M0 � ∫ dD · f D( )exp −b: D[ ]. (6)

Here, f(D) is the full diffusion tensor distribution (FDTD)
function, which is proportional to the amount of water
molecules with a specific diffusion tensor D and ∫dDf(D) = 1.
b is the diffusion weighting factor that is determined by the MRI
pulse sequence, in particular the field gradient pulses to provide
diffusion sensitivity. Specifically, the gradient pulses are applied
along different directions (for example based on the Q-Ball
method [41]) and b is described by a tensor [2, 6]. The
integration is over all the independent tensor elements, and
can be performed over the eigenvalues (λ1, λ2, λ3) and
orientations (the corresponding Euler angles) of the diffusion
tensor.

2.2 Subject Enrollment and MRI Acquisition
In order to obtain the full diffusion tensor information which
includes the magnitude of the diffusion coefficients and the
orientation of the eigenvectors, it is necessary to acquire MRI
data for a wide range of diffusion weightings b, and the direction
of the gradients. For clinical examinations, the commonly used
DWI (diffusion weighted imaging) method is usually performed
with a single b value. These DWI data cannot be used to obtain
FDTD. Similarly, single-shell DTI or diffusion kurtosis MRI data
(DKI) [42] are insufficient to obtain high quality FDTD. Instead,
DTI (or diffusion-weighted) acquisition with more than three

b-value shells is needed. For our experiments, up to 8 b-value
shells were used with b-values from zero up to 17,800 s/mm2. The
large b-values are useful to identify the components with low
diffusion coefficients. Since the expected diffusion coefficient
spans a very large range, b values should also span a
correspondingly large range. For our experiments, 32–64
different directions for each gradient value were used. More
directions used in the measurement would improve the
angular resolution of the FDTD but this would occur at the
expense of longer scan times. The key advantage of the
Connectome scanner is the ability to achieve better signal-to-
noise ratio (SNR) at high b values than conventional MRI
scanners so that the entire diffusion-induced signal decay can
be observed.

In this Institutional Review Board-approved study, three
participants (one healthy subject, two subjects with diffuse
gliomas) provided written informed consent. All subjects were
scanned on a high-gradient 3 Tesla MRI scanner (MAGNETOM
CONNECTOM, Siemens Healthcare, Erlangen, Germany) with a
maximum gradient strength of 300 mT/m using a 64-channel
head coil [43]. For the healthy subject, the multishell acquisition
consisted of two diffusion times (19 and 49 ms) and eight gradient
strengths per diffusion time, which were linearly spaced from 30
to 290 mT/m with a maximum b value of 17,800 s/mm2.
Diffusion-weighted images were acquired with spatial
resolution of 2 × 2 × 2 mm3 voxels, echo time/repetition time
= 77/3,600 msec, parallel imaging acceleration factor R = 2,
simultaneous multislice imaging with a slice acceleration factor
of 2, and anterior-to-posterior phase encoding. Interspersed b = 0
images were acquired every 16 images. The total acquisition time
for the dMRI of one diffusion time was about 24 min. Further
details of the protocol can be found in Refs. [38, 39]. For glioma
patients, 4 and 5 gradient increments were used for the two
diffusion times respectively with a similar b value range.
Additionally, T1-MPRAGE and T2-SPACE-FLAIR sequences
were obtained with a total scan time of about 56 min. Both
glioma patients had non-enhancing T2/FLAIR-hyperintense
tumors. Thus, the T2/FLAIR-hyperintense region was defined
as the tumor region of interest (ROI).

2.3 Analysis Method to Obtain FDTD
Once the multishell DTI images are obtained, the signal for each
voxel can be written as a vector, S = si, where i is the index of the
experiments covering all b-values and gradient orientations. Eq. 6
may be re-written in a matrix form:

S � K · F, (7)
where S is the data vector, F is FDTD in a vector form (e.g., Fj is
the j-th component of FDTD), and K is the kernel function that is
defined as

Kij � exp −bi: Dj[ ]. (8)
Here the index i corresponds to the i-th experiment with bi, and j
is the index of the j-th diffusion tensor. A diffusion tensor is
characterized by the three eigenvalues and the three Euler angles
(α, β, γ):
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Dj � D λ1, λ2, λ3, α, β, γ( ). (9)
In our formulation, Fj corresponds to the signal weight for the Dj

component and the length of F and D is the same. In order to
achieve a comprehensive representation of the diffusion tensors,
the range of Dj should be quite large. For example, we typically
discretize the eigenvalues and the Euler angles as follows:λ1, λ2, λ3:
each from 3 × 10−5 to 3 × 10−3 mm2/s, in 10 steps in log space; α,
β, γ: each from 0 to 180 or 90°, in 10 steps. As a result, the total
number of diffusion tensor components can be very large, e.g.
~ 106. The number of components can be reduced to ~ 1/8 by
considering λ1 ≤ λ2 ≤ λ3. This reduction does not limit the

distinctive diffusion tensors. The size of the diffusion tensor
space can be further reduced by, e. g. excluding certain
symmetries or particular tensor values if appropriate for
certain applications. Given the large range of diffusion
coefficients, it is often beneficial to discretize λ1, λ2, λ3
uniformly on a logarithmic scale. The solution to Eq. 7 can be
obtained by inversion techniques such as CONTIN [44] or Fast
Laplace Inversion (FLI) as described in Refs. [45, 46]. Positivity
constraint (Fi ≥ 0 for all i) is implemented for FLI and the L2-
norm regularization parameter is set to 1 in this work. As part of
the FLI algorithm, singular value decomposition was calculated
for the kernel matrix K using the IRLBA algorithm [47]. The

FIGURE 1 |Multishell DTI signal simulation and inversion results for three models of diffusion tensors (Box 1–4). Gaussian noise of 0.01 amplitude was added to the
simulated signals. The unit for the eigenvalue axes is mm2/s. In Box 1, two components of diffusion tensors are simulated, one isotropic and one anisotropic. In Box 2, five
anisotropic tensors with different orientations are considered. Box 3 considers four diffusion tensors: two isotropic tensors (blue and cyan), one prolate (red) and one
oblate (black) tensor. Box 4 uses the samemodel as Box 3 and shows the results with amaximum b value of 3,000 s/mm2 exhibiting significant broadening. In each
Box, the top-left panel show the simulated data (blue stars), fitting (red line) and the fit error (black line, shifted vertically by −0.1 for clarity) demonstrating a uniform fit
residue for all data points. The insets in the top-left panel also shows the model of diffusion tensors. Other panels show the 2D projections of diffusion tensor eigenvalue
distributions. The circles (blue and cyan for isotropic signals, red for axon-like signals, black for oblate tensor) indicate the model values of the projections demonstrating
the consistency between the models and the inversion results for all simulations.
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algorithm was implemented in Matlab (MathWorks, Natick, MA,
version 2020a) and most of the inversion was performed on a
Linux computer with 32 Intel Xeon CPU and three Nvidia
TITAN X GPUs. The core portion of the optimization
algorithm was executed on the GPU for acceleration.

2.4 Examples of FDTD Inversion Using
Simulated Data
Here we show four simulation examples using the FLI inversion
algorithm (Figure 1) and all simulations were performed using
the protocol for the healthy subject. First, we consider a two-
component system (model 1) with an isotropic diffusion tensor
λ1,2,3 = 10−3 mm2/s, and an anisotropic tensor with λ1,2 = 0.05 ×
10−3 mm2/s, and λ3 = 2 × 10−3 mm2/s. Such a diffusion tensor has
a fractional anisotropy (FA) of 0.96, as the FA for an intact axon
can approach unity [48] similar to that of the highly anisotropic
white matter regions (discussed later in Section 3.1). The dMRI
signal is simulated with b vector for the healthy volunteer (in
Section 2.2) shown in Figure 1A. The inversion results are
displayed in 2D projections in Figures 1B–D. The model
values of the eigenvalues are illustrated in Figures 1B–D to
highlight the consistency of the inversion results with the
models. The second model (model 2) considered is 5 axons
oriented along different orientations in the X-Z plane, λ1,2 =
0.1 × 10−3 mm2/s, and λ3 = 2 × 10−3 mm2/s. The inversion result
(Figures 1F–H) is able to identify a single components of high
anisotropy of the intrinsic diffusion tensor, consistent
with themodel as illustrated by the agreement with the red circles.

We further consider a model 3 that include two isotropic water
compartments, with λ1,2,3 = (0.05, 1) × 10−3 mm2/s, one prolate
tensor: λ1,2 = 0.05 × 10−3 mm2/s, and λ3 = 2 × 10−3 mm2/s, and oblate
tensor: λ1 = 0.08 × 10−3 mm2/s, and λ2,3 = 1 × 10−3 mm2/s and the
results are shown in Figure 1I–L. Panel J–L show a reasonable
consistency between the model (circles) and the inversion result,
however, significant broadening is observed near the low diffusion
coefficient areas. Similar broadening is also seen in Panel F and J for
the model 2 with 5 axons. This broadening is more severe when the
maximum b value is smaller, such as bmax = 3,000 s/mm2 shown in
Figure 1M–P. Such resolution limitation is related to the ill-
conditioned nature of the diffusion kernel function and the
available SNR of MRI data [49]. Similarly, there can be
considerable uncertainty and broadening in determining diffusion
tensor anisotropy (e.g. shown in Refs. [2, 50]). This is particularly true
if one is trying to interpret a specific peak position, or amplitude at a
specific diffusion coefficient. Thus, we use integrals of FDTD as
defined in the following equation in our additional analysis to identify
tissues types, i. e:

ϕ � ∫ dDf D( )p D( ), (10)

where the p(D) is the parameter defined as a function of D, and
the integral is performed over the diffusion tensor space. For
example, signals related to axons can be defined as p = 1 only for
the high anisotropic D similar to a needle. The specific definition
of p used in this paper is described in the Table 1 above.

In addition to help the visualization of the 3-dimensional
diffusion tensor distribution, the uncertainty of such integrals ϕ
will be much reduced [51, 52] as compared with that of an
individual tensor. This behavior is common in ill-conditioned
problems due to the exponential functional form. An integral
function of the distribution Eq. 10 will show less uncertainty
because the amplitudes of similar decay components (such as
diffusion coefficient, T1 and T2) are often anti-correlated [53]. An
example is the integral over the entire diffusion coefficient space
which equals the total signal, a completely well-conditioned
parameter.

2.5 K-Means Clustering Algorithm to
Analyze FDTD
To further visualize the FDTD analysis, a K-means clustering
algorithm [36] was applied to classify tissues. The main
application of the K-means method is to optimally group the
data points into several clusters so that the data points within a
cluster are closer (more similar) to their center (centroid) than to
other clusters. The K-means method has been used widely and
there are many easily accessible introductory text on this topic
(e.g. wikipedia, https://en.wikipedia.org/wiki/K-means_
clustering). Here we will describe our implementation using
Matlab (Mathworks, Natick MA). First, the three angular
dimensions of the full 6-dimensional FDTD matrix F are
integrated to yield a three-dimensional matrix F3. This step
reduces the data size substantially to speed up the subsequent
calculation, and it also focuses the classification on the
microscopic tissue properties instead of the orientation of the
tissues. In the second step, a volume of F3 data is formatted to use
the kmeans function in Matlab:

[kmap,C] = kmeans(F3,nCluster),
where F3 is the input data matrix reformatted to conform to

the syntax of kmeans function, nCluster is the number of clusters
to perform K-means algorithm, C is the resulting list of centroids,
and kmap is the classification result.

As an input parameter, nCluster is chosen empirically. We
applied the K-means algorithm for nCluster = 1 to 10 and
calculated the WCSS (Within-cluster-sum-of-squares) which

TABLE 1 | Definition of the integration space used in Eq. 10 for the different
classes of signals.

Class Criterion (unit: mm2/s)

Isotropic water, Wiso λ1 ~ λ2 ~ λ3, and larger than 0.5 × 10−3 mm2/s
3λ1 ≥ λ2, and 3λ2 ≥ λ3

Prolate water, needle-like λ1 ~ λ2 ≪ λ3
Wneedle λ1 < Dcut, λ2 < Dcut, (λ1 + λ2) < λ3/8

where Dcut = 0.1 × 10−3

Oblate water, disc-like λ1 ≪ λ2 ~ λ3
Wdisc λ1 < Dcut, λ2,3 ≥ Df, λ2 > λ3/3 and λ2 < 3λ3

where Df = 0.5 × 10−3, Dcut = 0.1 × 10−3

Anisotropic disc-like water λ1 ≪ λ2 < λ3
λ2 ≥ Dcut, λ3 ≥ Dcut, λ1 ≤ Dcut and 2λ2 < λ3
where Dcut = 0.1 × 10−3

Anisotropic 3D water All three eigenvalues are significantly different
λ1,2,3 ≥ Dcut, λ1 < λ2/2, and λ2 < λ3/2
where Dcut = 0.1 × 10−3
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describes the average distance of the data points to the centroids.
The results are shown in Figure 2 with a gradual decay of WCSS.
At nCluster = 5, WCSS decay is reasonably flattened and is about
10% from its asymptote at large nCluster. Furthermore, at larger

nCluster’s, the resulting K-means map becomes progressively
unstable, a sign of over fitting. For the further analysis in this
work, we choose nCluster = 5 to obtain five tissue clusters: c1, c2,
c3, c4 and c5 and the kmeans algorithm assigns every voxel to one
of the clusters (c1-c5).

We used the F3 data from Patient 1 to obtain the centroids
Cp1 of the 5 clusters. We then applied the same centroids to the
F3 data of Patient 2 using the following Matlab syntax:

[kmap, C, sumd] = kmeans(F3,nClass,‘MaxIter’,1,‘Start’,Cp1).
Since the maximum iteration (MaxIter) is only 1, the

algorithm classifies the new data (F3) using the input centroid
Cp1, but does not further change the centroid.

3 RESULTS: FDTD FROM IN VIVO DMRI OF
HUMAN BRAINS

3.1 FDTD Results in Healthy Brain
Figure 3A shows the raw dMRI image for a healthy volunteer and
the inversion FDTD results to visualize the different patterns of
water distribution. For example, the isotropic water signal
(Figure 3B) is concentrated in fluid-filled areas, such as the
ventricles and sulci along the brain surface. Strong signals with
prolate (needle-like) symmetry (Figure 3C) are found along
white matter regions (e. g. corpus callosum). Oblate water
(disc-like) signal (Figure 3D) is not commonly used to
analyze dMRI, but is seen throughout the brain. It is
interesting to note that oblate water is absent in the corpus
callosum. Anisotropic disc-like water (Figure 3E) is similar to

FIGURE 2 | A plot of WCSS of the resulting K-means analysis as a
function of nCluster, on the F3 data from patient number 1. The decay of
WCSS slows down at nCluster = 4 and is flattened at larger nCluster. A choice
of nCluster = 5 is made to provide a stable K-means map. The centroids
obtained from this data is applied to the data from other patients.

FIGURE 3 | Connectome dMRI image of a healthy volunteer and the results of FDTD analysis. (A) dMRI raw image at b = 0 s/mm2. (B–F) Images of the water
signals classified based on diffusion tensor properties. Detailed definition of the water fractions can be found in the text. The colorbars indicate signal intensity and
highlight the relative scale between the panels.
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oblate symmetry except that λ2 and λ3 are significantly different,
and is characterized by a uniform spatial distribution throughout
the brain except in the ventricles. This spatial distribution is very
different from that of the oblate water. Figure 3F exhibits a weak
signal of the anisotropic diffusion tensor suggesting that such
symmetry may not be important for healthy brain tissues.

Figures 4A–D shows a comparison of FDTD with maps of
fractional anisotropy (FA) from a conventional DTI analysis.
Among the three FDTD panels, Wneedle map shows a close
similarity to the FA map. This is understandable since the
signal for both FA and Wneedle is mostly derived from axons

with strong diffusion anisotropy. This is most clearly
demonstrated in area where FA approaches 1, such as at the
diamond position in Figure 4B1–4 (FA = 0.93), where the FDTD
indicated a strong signal of Wneedle ~ 0.88 and little signals from
other water pools (Wiso ~ 0 andWdisc ~ 0.01). In a low FA area (as
indicated by the circle) in Figure 4B1–4, FA = 0.11, we found that
Wiso andWdisc are significantly stronger andWneedle ~ 0.06 is low,
suggesting that tissue microstructure and composition are very
different from areas with high FA (see diamonds).

On the second row (Figure 4B1–4), the ventricles are well
identified in panel B2, and the corresponding areas in B3 and B4

FIGURE 4 | Comparison of DTI-FA image with FDTD of the healthy volunteer. First row shows the full frame images, second and third rows show the expanded
images indicated in the red and white boxes, respectively. The four columns show the images of FA derived from DTI analysis, and Wiso, Wneedle, Wdisc from FDTD
analysis, respectively. For Panels (B2–4) and (C2–4), each plot denotes the fraction of the respective signal normalized by the total signal measured at the four positions
indicated by the circles, diamonds, squares and pluses. The colorbars indicate the signal intensity scale and highlight the relative scale between the panels. Panel
(D1) shows the FA values at the four positions. Panel (D2) shows the average fractions of the five water pools at different FA ranges.
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show a very low signal in both Wneedle and Wdisc. On the other
hand, the near-zero FA region (B1) is much larger than the
ventricle defined by B2. As a result, the FDTD result is able to
resolve a greater degree of tissue detail in this area (FA~ 0).

The third row (Figure 4C1–4) focuses on areas with
intermediate FA, e. g. FA ~0.6 at the square and plus positions
where both show zeroWiso, but intermediateWneedle and stronger
Wdisc. Furthermore, the Figure 4C1 shows a clear pattern of FA
while the maps of Wneedle and Wdisc are much more spread out.
The averages of these fractions are shown in Figure 4D2 plotted
as a function of FA ranges. For example, the isotropic water
fraction is found to decrease to zero as FA increases, and the
Wneedle increases gradually and dominates as FA approaches
unity. In the intermediate FA, several types of tissues
contribute with similar weights. The error bars indicate the
range of the fractions in each FA range.

3.2 FDTD Results in Diffuse Gliomas
Diffuse gliomas originate from glial cells within the central
nervous system and include histologically benign and
malignant tumors [54]. They are spatially heterogeneous
(characterized by areas of infiltrating and solid tumor cells,
necrosis, hypoxia, and vasogenic edema) and diffusely infiltrate
surrounding brain tissue. While low-grade (World Health
Organization (WHO) grade 2) gliomas are typically slow

growing, high-grade (WHO grade 3 and 4) gliomas (including
glioblastomas) are aggressive tumors and associated with a dismal
prognosis [55, 56]. Accurate delineation of tumor extent to assist
with surgical and radiation therapy planning as well as
longitudinal monitoring of the tumor resection cavity and
residual tumor are important to improve treatment outcomes.

We analyzed dMRI data of two patients with diffuse gliomas:
Patient 1 had a WHO grade 3 anaplastic astrocytoma and Patient
2 had a WHO grade 2 oligodendroglioma. Both tumors were
isocitrate dehydrogenase (IDH)-mutant, denoting a somatic
molecular alteration that confers improved prognosis
compared to diffuse gliomas that are IDH-wild-type [57–60].
Both tumors lacked contrast enhancement after gadolinium
administration and were T2/FLAIR-hyperintense.

The FDTD results from Patient 1 are shown in Figures 5A–F.
Panel A and B show the raw DTI images at b = 0 and 2,600 s/mm2

(averaged over all gradient orientations). The red outlines in each
panel delineate the T2/FLAIR-hyperintense region, which is
defined as the tumor region of interest (ROI). The tumor ROI
exhibits increased signal at b = 0 s/mm2, which decays greatly at
b = 2,600 s/mm2 in the central region of the tumor, reflecting the
presence of highly diffusive components. This strong signal decay
in the central portion of the tumor (compared to contralateral
normal brain) suggests the presence of fewer tissues with
restricted diffusion (such as axons) in this region.

FIGURE 5 | Brain dMRI images and FDTD analysis of Patient 1 with grade 3 glioma. (A,B) Brain diffusion MRI images at b = 0 and 2,600 s/mm2 (averaged over all
gradient orientations); (C–E) Images of three pools of water signals from the FDTD analysis. (F) Image of the tissue classification from K-means analysis (c1-c5). The red
lines indicate the perimeter of the cancer region. The black box in tumor center (F) indicates the position from where the histopathologic sample was obtained.
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Figure 5C shows the presence of isotropic water, which is
highly diffusive (thus less restricted) and related to free water.
This isotropic water signal is strongest in the cerebrospinal fluid-
filled ventricles (Figure 3). In addition, there is a significant
amount of isotropic water in the center of the tumor (Panel C).
Figure 5D shows the prolate (needle-like) water signal, which is
due to a highly anisotropic diffusion tensor and related to water in
axons or other highly directional structures. Figure 5D shows a
reduction of prolate water signal within the center of the tumor
ROI compared to contralateral normal brain, suggesting that
axonal structures are absent in this area. A similar pattern of
fewer axonal structures in the center of gliomas has been reported
using a DTI fibre tracking technique [61]. Lastly, Figure 5E shows
accumulation of the oblate water signal along the lateral margins
of the tumor ROI. Given the different symmetry of the oblate
diffusion tensor, this suggests that the tissue microstructure along
the tumor periphery differs from that within the center of
the tumor.

FDTD analysis provides a comprehensive voxel-wise
characterization of tissue for each voxel. However, the

resulting FDTD dataset is very large (e. g. half a million data
points per voxel) and difficult to visualize. The integration of a
few types of tensor symmetry, as described for Figure 5 is a more
practical approach. On the other hand, such an approach is
influenced by the simplified assumptions of the underlying
tissue microstructure, e. g. to focus on signals with an axial
symmetric diffusion tensor to characterize axons. This is the
bias that we would like to avoid. To continue our approach of
unconstrained diffusion tensors, we choose to use a numerical
classification method, K-means, to identify features in FDTD
without direct assumption.

The K-means result kmap with nCluster = 5 is shown in
Figure 5F with five tissue clusters: c1, c2, c3, c4 and c5, as
illustrated in different colors. For Patient 1, c5 is present in the
ventricles where the signal is derived from cerebrospinal fluid. c4
and c3 are found within the tumor ROI where c4 highlights the
central tumor ROI and c3 is predominantly found along the
tumor periphery. It is interesting to note that c3 and c4 localized
well to the tumor ROI using the K-means algorithm without the
algorithm knowing about the T2/FLAIR data or the tumor ROI.

FIGURE 6 | Brain dMRI images and FDTD analysis of Patient 2 with grade 2 glioma. (A,B) Brain diffusion MRI images at b = 0 and 2,600 s/mm2 (averaged over all
gradient orientations); (C–E) Images of three pools of water signals from the FDTD analysis. (F) Image of the tissue classification from K-means analysis, showing
primarily c3 within the tumor ROI. Note that there are c4 voxels within the circle indicative of the biopsy area. The red contour indicates the tumor ROI as defined by the
T2/FLAIR-hyperintense region.
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There are also voxels of c5 within the tumor center (Panel F and
other slices). Overall, c4 and c5 reside in the central region of the
tumor ROI and c3 covers the peripheral tumor ROI. c2
corresponds to normal brain and c1 localizes to regions
outside the brain. The results from the K-means clustering
analysis are consistent with our heuristic discussion above that
identifies distinct types of tissue in the center and periphery of the
tumor. The key difference is that our heuristic relies partly on the
conventional understanding of brain tissue structure while the
K-means method derives the result from the F3 data only, in
keeping with our approach.

The results for Patient 2 are shown in Figure 6 in a format
similar to Figure 5. The raw diffusion images show the significant
signal reduction in the tumor area at b = 2,600 s/mm2, similar to
Patient 1. The FDTD analysis illustrates the presence of free water
only in a small part of the tumor. Similar to Patient 1, the needle-
like signal is also reduced significantly in the center of the tumor;
while the disc-like signal is rather strong in the tumor. The
K-means cluster analysis further classified the tissue in the tumor
ROI to be mostly c3 (green) and, to a lesser extent, c4. A small
portion of the tumor ROI is found to be c2. Note that there are
some voxels to be classified to be c4 around the white circle. The

white circle indicates the area where biopsy was obtained to
establish a diagnosis of a grade 2 oligodendroglioma.

We further define c3 as “Type A tissue,” and c4 and c5 as
“Type B tissue” since c4 and c5 were found in the central region of
the tumors. We found that the fraction of the Type A and B
tissues (ϕA and ϕB) in the tumor ROI were 0.36 and 0.52 for
Patients 1, and 0.79 and 0.08 for Patient 2, respectively. Thus, the
grade 3 tumor in Patient 1 showed a similar fraction of Type A
and Type B tissue whereas the grade 2 tumor in Patient 2 showed
a significantly greater fraction of Type A than Type B tissue.
Histopathologic correlation (Figure 7A) in Patient 1
demonstrated that Type B tissue corresponded to areas of
densely cellular solid tumor. Histology from Type A tissue
(Figure 7B) in Patient 2 showed areas of diffusely infiltrating
and less cellular tumor (as opposed to solid tumor).

4 DISCUSSION

Clinical dMRI typically uses 1–2 b-values to obtain average diffusion
properties (e.g.mean diffusivity, fractional anisotropy and kurtosis) of
tissues and is not able to capture the large range of diffusion tensors
necessary to describe the complexity and heterogeneity of biologic
tissues. The high b-values (up to 17,800 s/mm2) and short echo time
achieved by the Connectome scanner provide a unique approach for
improved characterization of tissue microstructure in a global and
non-invasive fashion. We show that the multi-shell DTI data
acquired on the Connectome allow us to perform analysis of a
full diffusion tensor distribution in a healthy subject and patients with
diffuse gliomas. Our results suggest the presence of a significant
amount of signals associated with planar characters of the diffusion
tensors (both with and without axial symmetry).

Given the ill-conditioned nature of the exponential kernel, it is
desirable to examine the uncertainty of the inversion results.
Figures 8, 9 show our preliminary uncertainty analysis on a few
voxels for the healthy subject and the glioma Patient 1. For each
voxel, we created 100 realizations of the data points by adding
Gaussian noises to the fit from the FDTD analysis. The noise
amplitude is determined from the experimental data. The
obtained 100 realizations are further analyzed by FDTD to
determine the average and standard deviation of Wiso, Wdisc,
Wneedle,Wani−disk andWani−3D, shown in panels (C) of Figures 8,
9. It is clear that the observed variance is quite small for all voxels.

The observation of signals associated with the planar characters of
the diffusion tensor is quite different from the conventional
assumption of many dMRI models, such as NODDI [19] and
AxCaliber [62] in that only isotropic and prolate tensors are
considered. On the other hand, Wedeen et al. [63] suggested that
the 2D sheet structure is common “throughout cerebral white matter
and in all species, orientations, and curvatures”. Planar symmetry in
diffusion tensor was found in epidermoid cysts but also for normal
brain tissues with a weaker but finite planar anisotropy [64]. Laminar
structure has also been reported in the cortical regions using
polarization-sensitive OCT down to a spatial resolution of
4–10 μm [65]. Recently, Lichtman’s group has reported electron
microscopy imaging of brain tissues by identifying cells down to
4 nm resolution and showed layered structures in the cortex with

FIGURE 7 | Histopathologic correlation from Type B tissue in Patient 1
(grade 3 glioma) and Type A tissue in Patient 2 (grade 2 glioma), stained for
IDH-R132H and demonstrating densely cellular solid tumor in Patient 1 (A)
and less dense and diffusely infiltrating tumor cells in Patient 2 (B).
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distinct cell types, cell body sizes, and orientations [66]. Mechanical
stress in tumors has been shown to cause cellular deformation along
the plane between solid tumor normal tissue [67] and may be a
possible source of planar tissue signatures. Given such a complex
structure of brain tissues, we would expect that the assumption of
only isotropic and prolate tensors would be considered a simplified
model and thus oblate tensors and of other symmetries should be
considered. In addition, our model may be also viewed as a useful
numerical representation of the diffusion data that is amenable to
data-driven analysis such as K-means clustering.

The FDTD data and the associated K-means analysis in
subjects with diffuse gliomas demonstrates areas of tissue

heterogeneity within the tumor ROI that are not evident on
conventional T2/FLAIR sequences. The different distribution of
Type A (corresponding to c3 from the K-means analysis) and
Type B tissue (corresponding to c4 and c5 from the K-means
analysis) between the two glioma patients may be related to the
degree of tumor cellularity, given that, histologically, Type B
tissue in Patient 1 corresponded to areas of densely cellular solid
tumor (which is expected in a grade 3 glioma). By contrast, in
Patient 2, Type A tissue corresponded to moderately cellular
infiltrating tumor cells as is expected in a grade 2 glioma. Further
histopathologic correlation and characterization of dMRI
characteristics in additional subjects is ongoing.

FIGURE 8 | Uncertainty analysis at two voxels of the healthy subject. Panel (A) shows the positions of the two voxels (circle and diamond, same voxels as in
Figure 3B1–4). (B) Plot of the data points (blue and red dots) and fitting (cyan lines) based on FDTD analysis for the two voxels. The blue data points and the
corresponding fit are shifted up by 200 for clarity. (C) The average and standard deviation ofWiso,Wdisc, andWneedle,Wani−disk andWani−3D. Panels (D–F) and (G–I) are
the average 2D projections of FDTD at the circle and diamond voxels, respectively. The projections are shown as grey map from zero to the maximum of each plot.
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It is interesting to visualize how the K-means method classifies
the diffusion tensors and thus differentiate the tissues. Figure 10
shows a 3D plot of the three components:Wiso,Wdisc, andWneedle

for isotropic, disc-like, and needle-like water signals respectively.
Each cluster is identified by a different color and symbol. As
shown in Figure 10, the clusters occupy distinct regions in this
space, indicating that the three parameters (Wiso, Wdisc, and
Wneedle) reflect different tissue compartments. For example, c5
is characterized by primarily high Wiso signal and low on other
signals, Wdisc, and Wneedle. Furthermore, the clusters appear to
overlap with each other to varying degrees, thus suggesting that
there can be some uncertainties in the assignment of the clusters.

Previous Connectome dMRI data were used to probe the time
dependence in diffusion coefficient typically with many more
scans/diffusion times [34], and averaging the signals with all
gradient directions orthogonal to the fiber direction [34, 39]. In
the current work, the full angular dependence of the signal was
preserved, and we found that the signals with the two diffusion
times are consistent with a FDTD independent of the diffusion
time within the noises. The direct benefit of the two diffusion
times is the resulting high maximum b value.

Recognizing that our multi-shell DTI experiments were
performed on a highly specialized and not commercially
accessible MRI scanner, it is, however, conceivable that the

FIGURE 9 | Uncertainty analysis at two voxels of the glioma Patient 1. (A) The two voxels mark the center (circle) and peripheral (diamond) regions of the tumor. (B)
Plot of the data points (blue and red dots) and fitting (cyan lines) based on FDTD analysis for the two voxels. The blue data points and the corresponding fit are shifted up
by 200 for clarity. (C) The average and standard deviation of Wiso, Wdisc, and Wneedle, Wani−disk and Wani−3D. Panels (D–F) and (G–I) are the average 2D projections of
FDTD at the circle and diamond voxels, respectively. The projections are shown as grey map from zero to the maximum of each plot.
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range of b values may be achieved on select clinical scanners for
certain applications. For example, our data in glioma patients
could theoretically be obtained with a maximum b-value of
6,000 s/mm2. While this b value may not optimally probe
specific structures such as axon diameter, it might be sufficient
to identify tissue heterogeneity within diffuse gliomas. Future
work will focus on implementing a similar acquisition protocol
on the Siemens Prisma scanner which is equipped with 80 mT/m
gradients, which is higher than gradients on conventional clinical
MRI scanners.

The main disadvantage of a multi-shell protocol is the long
data acquisition time. The current protocol using a standard
approach for both angular and b value sampling was about
60 min in duration. Optimization of the sampling pattern can
be studied with a goal to accelerate the measurement. For
example, since most of the angular information is from the
high b-value data, angular sampling can be reduced for low b
values. Also, the distribution of b-shells can be adjusted to match
the relevant range of diffusion coefficients. A recent method to
optimize sampling pattern of similar experiments [68] can be
performed to systematically explore different sampling patterns
with an explicit optimization goal of acceleration. The unique
properties of the Connectome scanner, combined with our FDTD
analysis approach, can be leveraged to improve our
understanding of tissue microstructure in healthy and diseased
brain tissue. Ultimately, this knowledge can be used to develop
and optimize protocols for clinical scanners which are sensitive to
the underlying tissue biology that is being studied.

Other techniques with more complex field gradients have been
developed for characterizing microscopic diffusion anisotropy
using double-PFG sequence [69–72] and recently summarized
Double Diffusion Encoding (DDE) approaches [73]. These
sequences are designed to sensitize diffusion tensor anisotropy
and tensor orientation differently by employing more complex

gradient modulation sequences [1, 74–76]. These novel sequences
and methods represent a significant progress in our
understanding of diffusion in complex tissue structures and
could help resolve uncertainties that arise due to limitations of
single diffusion-encoding methods and FDTD analysis (and DTD
in general) such as the lack of explicit time-dependence of
diffusion [34, 39] and exchanges between compartments (see
review Ref. [72]). On the other hand, the DDE and related
experiments (such as QTI [76]) require complex gradient
modulations resulting in longer gradient pulses and thus a
reduced SNR. It would be exciting to conduct DDE/QTI
experiments on the Connectome scanner [77] and analyze the
results with FDTD to fully evaluate their potential [5] in vivo and
possibly in combination with relaxation measurements [78–84].

5 CONCLUSION

This paper demonstrates the feasibility of the FDTD approach to
analyze in vivo multi-shell DTI data obtained from the
Connectome scanner. In contrast to many prior works on
dMRI, we approached the analysis of dMRI data from a
unconstraint diffusion tensor perspective to reduce human
bias and oversimplification of underlying tissue microstructure.
We significantly expanded the range of diffusion tensor without
constraint on the form of distribution in the data inversion and
used a data-centric method K-means to classify the diffusion
properties of tissues. We show that the FDTD-K-means approach
yields promising results of automated tissue classification in
subjects with diffuse gliomas. Further validation of this
approach in a larger patient cohort is underway.
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