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This research article attempts to investigate anti-invariant Lorentzian submersions and the
Lagrangian Lorentzian submersions (LLS) from the Lorentzian concircular structure [in
short (LCS)n] manifolds onto semi-Riemannian manifolds with relevant non-trivial
examples. It is shown that the horizontal distributions of such submersions are not
integrable and their fibers are not totally geodesic. As a result, they can not be totally
geodesic maps. Anti-invariant and Lagrangian submersions are also explored for their
harmonicity. We illustrate that if the Reeb vector field is horizontal, the anti-invariant and
LLS can not be harmonic.
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1 INTRODUCTION

In 2003, Shaikh [1] studied the properties of Lorentzian manifold M endowed with a concircular
vector field, and he named such manifold the Lorentzian concircular structure manifold (briefly
(LCS)n-manifold), which is the extension of the Lorentzian para-Sasakian (in short, LP-Sasakian)
manifold developed byMatsumoto [2] andMihai and Rosca [3]. Many researchers have looked at the
characteristics of (LCS)n-manifolds, and used them in applied mathematics and mathematical
physics (as an example, see [4–8]). In [9], Mantica and Molinari have proved that the (LCS)n-
manifold coincides with generalized Robertson-Walker (GRW) spacetime, which was introduced by
Alı´as, Romero and Sánchez [10] in 1995. The geometry of semi-Riemannian submersions has
became a fascinating topic for research due to its involvement in physics, particularly in the theory of
relativity (GR) such as Yang-Mills theory, String theory, Kaluza-Klein theory, and Hodge theory, etc.

We can develop more structures, for example, locally trivial fiber spaces include product
manifolds, covering spaces, the tangent and cotangent bundles of a manifold. Thus, we can use
the framework on structure preserving submersions to study the spaces with symmetries. In
particular, the theory can be directly applied to study the black holes of various dimensions,
Lagrangian with symmetries, and simple quantum systems with symmetrical properties.

In 1956, Nash [11] proved the embedding theorem for a Riemannian manifold. According to him,
every Riemannian manifold can be isometrically embedded into some Euclidean space. Thus, the
differential geometry of Riemannian immersions is well-known and available in many textbooks
such as [12, 13]. On the other hand, the Lorentzian submersions are the semi-Riemannian
submersions whose total space is a Lorentzian manifold [14].

The concept of semi-Riemannian submersions was given by O’Neill [15, 16] and Gray [17]. In
1983, Magid [18] described the Lorentzian submersion from anti-de Sitter spacetime. In fact, these
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Lorentzian submersions are generalizations of Lorentzian warped
products. Various spacetimes in general relativity (GR), such as
Robertson-Walker spacetimes and (LCS)4- spacetimes, are
warped products. This study is closely connected to these works.

Watson [19] considered the Riemannian submersions between
almost Hermitian manifolds, and he named almost Hermitian
submersions. Afterwards, the almost Hermitian submersions
between various subclasses of almost Hermitian manifolds are
thoroughly studied in [20–22]. Moreover, paracontact semi-
Riemannian submersions were extensively discussed by Yilmaz
and Akyol [23, 24] and Faghfouri et al. [25]. Recently, Siddiqi
et al. [26, 27] discussed some properties of anti-invariant semi-
Riemannian submersions which are closely related to this work. The
majority of the works on semi-Riemannian, almost contact
Riemannian submersions have been found in the books [12, 13].

Şahin [28] first described anti-invariant Riemannian
submersions and Lagrangian submersions from almost
Hermitian manifolds onto Riemannian manifolds. Since then,
the topics of anti-invariant Riemannian submersions and
Lagrangian submersions have become an active field for
researchers. The extension of anti-invariant Riemannian
submersion as various types of submersions, such as anti-
invariant ξ⊥-Riemannian submersions and Lagrangian
submersions, have been studied in different forms of
structures such as Kähler [28, 29], nearly Kähler [22], almost
product [30], locally product Riemannian [31], Sasakian [32–34],
Kenmotsu [35], cosymplectic [36] and hyperbolic structures [37,
38]. Moreover, a Lagrangian submersion is a specific version of
anti-invariant Riemannian submersion such that the total
manifold (almost complex structure) interchanges the role of
horizontal and vertical distributions [39].

The following is an overview of the paper’s content. In sections
2, 3, and 4, we reveal basic definitions and known results of
(LCS)n-manifolds, Lorentzian submersions, and anti-invariant
Lorentzian and LLS, respectively. In Section 5, we study anti-
invariant Lorentzian submersions from (LCS)n-manifolds onto
semi-Riemannian manifolds admitting the vertical Reeb vector
field (VRVF). Section 6 is concerned with the study of the
properties of anti-invariant submersions with the horizontal
Reeb vector field. We also provide an example of anti-
invariant submersions with the horizontal Reeb vector field
and study its characteristic properties. In Section 7, we
consider LLS admitting VRVF and investigate the geometry of
vertical and horizontal distributions. We give a non-trivial
example of LLS admitting a VRVF. We also give a necessary
and sufficient condition for such submersions to be harmonic.

Note: Throughout the paper we used the following acronyms:
LLS: Lagrangian Lorentzian submersion.
HRVF: Horizontal reeb vector field.
VRVF: Vertical reeb vector field.

2 LORENTZIAN CONCIRCULAR
STRUCTURE MANIFOLDS

Lorentzian manifold L of dimension n = (2m + 1) is a smooth
connected manifold with a Lorentzian metric g, that is, L

admits a smooth symmetric tensor field g of type (0, 2)
such that for each point p ∈ L, the tensor
gp: TpL × TpL → R is a non-degenerate inner product of
signature (−, +, . . .., +), where TpL denotes the tangent
vector space of L at p and R is the real number space. A
non-zero vector v ∈ TpL is said to be timelike, null, and
spacelike, if it fulfills gp(v, v) < 0, gp(v, v) = 0, and gp(v, v) >
0, respectively.

Definition 2.1. [1] Let (L, g) be a Lorentzian manifold, a vector
fieldQ ∈ Γ(TL) satisfying g(E, Q) = P(E), is said to be a concircular
vector field if

∇EP( )F � α g E, F( ) + ω E( )P F( ){ },
for any E, F ∈ Γ(TL), where α is a non-zero scalar function, ω is a
closed 1-form, and ∇ is the Levi-Civita connection corresponding
to the Lorentzian metric g.

Let the Lorentzian manifold L of dimension n admit a unit
timelike concircular vector field ζ, it follows that

g ζ , ζ( ) � −1.
Since ζ is a unit concircular vector field, consequently, there exists
a non-zero 1-form η such that g(E, ζ) = η(E), then the following
equations hold

∇Eη( )F � α g E, F( ) + η E( )η F( )[ ], α ≠ 0( ), (2.1)
∇Eζ � α E + η E( )ζ{ } (2.2)

for all vector fields E, F and α is a non-zero real valued function.
Further, we have

∇Eα � Eα( ) � dα E( ) � ρη E( ),
here ρ is a scalar function defined as ρ = − (ζα). If we write

φE � 1
α
∇Eζ , (2.3)

on using Eqs 2.2, 2.3, we deduce

φE � E + η E( )ζ ,
g φE, F( ) � g E,φF( ).

As a consequence, φ is a symmetric (1, 1) tensor field, which is
known as the structure tensor field of L. Thus, the Lorentzian
manifold L with unit timelike concircular vector field ζ, 1-
form η, and (1, 1) tensor field φ is said to be Lorentzian
concircular structure manifold (LCS)n-manifold). If α = 1,
then the (LCS)n-manifolds become LP-Sasakian manifolds.
The following tensorial equations holds on a (LCS)n-
manifold [1].

φ2E � E + η E( )ζ , (2.4)
φ ζ( ) � 0, η φ( ) � 0, η ζ( ) � −1,
g φE,φF( ) � g E, F( ) + η E( )η F( ),

η R E, F( )G( ) � α2 − ρ( ) g F,G( )η E( ) − g E,G( )η F( )[ ],
R E, F( )ζ � α2 − ρ( ) η F( )E − η E( )F[ ], (2.5)

∇Eφ( )F � α g E, F( )ζ + 2η E( )η F( )ζ + η F( )E{ }, (2.6)
Eρ( ) � dρ E( ) � βη E( ).
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3 LORENTZIAN SUBMERSIONS

We provide the required foundation for Lorentzian submersions
in this section.

A surjective mapping γ: (L, g) → (S, gS) between a Lorentzian
manifold (L, g) and a semi-Riemannian manifold (N, gS) is called
a Lorentzian submersion [15] if γ* is onto it and it satisfies.

(C1) Rank(γ) = dim(S), where dim(L) > dim(S).
In this situation, for each q ∈ S, γ−1(q) � γ−1q is a t-dimensional

submanifold of L termed as a fiber, where t = dim(L) − dim(S).
A vector field E on L is vertical (resp. horizontal) if it is

consistently tangential (resp. orthogonal) to fibers. A vector field
E on L is termed basic if E is horizontal and γ-related to a vector
field E* on S.

Also, γ*(Ep) = E*γ(p) for all p ∈ L, where γ* is the differential
map of γ. Here V and H indicates the projections on the vertical
distribution Kerγ*, and the horizontal distribution Kerγ⊥* ,
respectively. Generally, the manifold (L, g) is said total
manifold and the manifold (N, gN) is said the base manifold
for submersion γ.

(C2) The lengths of the horizontal vectors are conserved by γ*.
This situation is analogous to saying that the derivative map γ*

of γ is a linear isometry when confined toKerγ⊥* . O’Neill’s tensors
T andA, which are formulated as follows, describe the geometry
of semi-Riemannian submersions:

T E1E1 � V∇VE1HE2 +H∇VE1VE2, (3.1)
AE1E2 � V∇HE1HE2 +H∇HE1VE2 (3.2)

for any vector fields E1 and E2 on L, where  is the Levi-Civita
connection of g. T E1 and AE1 are skew-symmetric operators on
the tangent bundle of L inverting the vertical and the horizontal
distributions, as can be shown.

The features of the tensor fields T and A are stated. On M if
V1, V2 are vertical and E1, E2 are horizontal vector fields, we
possess

T V1V2 � T V2V1, (3.3)
AE1E2 � −AE2E1 � 1

2
V E1, E2[ ]. (3.4)

Equations 3.1, 3.2, entail that

∇V1V2 � T V1V2 + ∇̂V1V2, (3.5)
∇V1E1 � T V1E1 +H∇V1E1, (3.6)
∇E1V1 � AE1V1 + V∇E1V1, (3.7)
∇E1E2 � H∇E1E2 +AE1E2, (3.8)

where

∇̂V1V2 � V∇V1V2, H∇V1E1 � AE1V1.

It is easy to see that T operates on the fibers as the second
fundamental form, whereas A operates on the horizontal
distribution and evaluates the restriction to its integrability.
We refer to O’Neill’s work [15] and book [12] for more
information on the semi-Riemannian submersions.

Next, we revisit the theory of map between semi-
Riemannian manifolds with a second fundamental form. Let

(L, g) and (S, gs) be Riemannian manifolds and f (L, g)→ (S, gs)
is a smooth map. Then the second fundamental form h satisfies
the relation

∇h*( ) E1, E2( ) � ∇h
E1
h*E2 − h* ∇E1E2( )

for E1, E2 ∈ Γ(TL), where h is the pull back connection and ,
the Riemannian connection of the metrics g and gS,
respectively. Furthermore, if (h*)(E1, E2) = 0 for all E1, E2
∈ Γ(TL) (see [40], page 119), h is said to be totally geodesic and
if trace(h*) = 0 for all E1, E2 ∈ Γ(TL), h is termed as harmonic
map (see [40], page 73).

4 ANTI-INVARIANT LORENTZIAN AND
LAGRANGIAN LORENTZIAN
SUBMERSIONS FROM (LCS)N-MANIFOLDS
We first recall the definition of an anti-invariant Lorentzian
submersion whose total manifold is an (LCS)n-manifold.

Definition 4.1. ([32, 33]). Let L be an (LCS)n-manifold
(dim(L) = 2m + 1) with (LCS)n-structure (φ, ζ, η, g, α) and
S be a semi-Riemannian manifold with gS as its semi-
Riemannian metric. If there is a Lorentzian submersion γ: L
→ S such that the vertical distribution Kerγ* is anti-invariant
with respect to φ, i.e., φKerγ* ⊆ Kerγ⊥* , then the semi-
Riemannian submersion γ is known as an anti-invariant
Lorentzian submersion.

In this instance, the horizontal distribution Kerγ⊥* is
decomposed as

Kerγ⊥* � φKerγ* ⊕ μ, (4.1)
where μ is an orthogonal complementary distribution of φKerγ*
in Kerγ⊥* and it is invariant with respect to φ.

For an anti-invariant submersion γ: L → S, if the Reeb vector
field ζ is tangential (or normal) to ker γ*, then ζ is said to be
vertical Reeb vector field (VRVF) (or horizontal Reeb vector field
(HRVF)).

More information on anti-invariant Lorentzian submersions
from an (LCS)n-manifold (L, φ, ζ, η, g, α) onto a semi-Riemannian
manifold (S, gN) may be found in [32, 33, 35, 36].

Remark 4.2. Throughout this paper, We consider a (LCS)n-
manifold (L, φ, ζ, η, g, α) as the total manifold of the anti-invariant
Lorentzian submersion.

The notion of Lagrangian submersion is a particular case of
the anti-invariant submersion. Next, we review the definition
of an LLS from (LCS)n-manifold onto a semi-Riemannian
manifold.

Definition 4.3. [34] Let γ be an anti-invariant Lorentzian
submersion from an (LCS)n-manifold (L, φ, ζ, η, g, α) onto a semi-
Riemannian manifold (S, gN). If μ = {0} or μ = Span{ζ},
i.e., Kerγ⊥* � φ(Kerγ*) or Kerγ⊥* � φ(Kerγ*) ⊕< ζ > ,
correspondingly, then we say that the submersion γ is a
Lagrangian Lorentzian submersion (an LLS).

Remark 4.4. This situation has been investigated as a particular
example of an anti-invariant Lorentzian submersion; for
additional information, see [32–36].
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5 ANTI-INVARIANT LORENTZIAN
SUBMERSIONS WITH VERTICAL REEB
VECTOR FIELD
In the present segment, we begin with the anti-invariant
Lorentzian submersions admitting VRVF from (LCS)n-
manifolds (L, φ, ζ, η, g, α). Let γ be an anti-invariant
Lorentzian submersion from an (LCS)n-manifold (L, φ, ζ, η, g,
α) onto a semi-Riemannian manifold (S, gS). For any
E ∈ Γ(Kerγ⊥* ), we write

φE � BE + CE, (5.1)
where BE ∈ Γ(Kerγ*) and CE ∈ Γ(Kerγ⊥* ). We now calculate the
impact of the (LCS)n-structure on tensor fields on L. T and A of
the submersion γ.

Lemma 5.1. Let γ be an anti-invariant Lorentzian submersion
from an (LCS)n-manifold (L, φ, ζ, η, g, α) onto a semi-Riemannian
manifold (S, gS) with VRVF. Then, we have

T UφV − α g U,V( )ζ + 2η U( )η V( )ζ[ ] � BT UV + η V( )U, (5.2)
H∇UφV � CT UV + φ∇̂UV, (5.3)
∇̂VBE + T VCE � BH∇VE,

T VBE +H∇VCE � CH∇VE + φT VE, (5.4)
AEφV � BAEV, (5.5)

H∇EφV + αη V( )E � φ V∇EV( ) + CAEV,

V∇EBF +AECF � BH∇EF + α g E, F( )ζ + 2η E( )η F( )ζ[ ], (5.6)
AEBF +H∇ECF � CH∇EF + φAEF, (5.7)

where U, V ∈ Γ(Kerγ*) and E, F ∈ Γ(Kerγ⊥* ).
Proof For any U, V ∈ Γ(Kerγ*), from (2.6), we infer

∇UφV � φ∇UV + α g U,V( )ζ + 2η U( )η V( )ζ + η V( )U[ ].
Using (3.5), 3.6 and 5.1 in the above equation, we obtain

H∇UφV + T UφV � BT UV + CT UV + φ∇̂VU
+α g V,U( )ζ + 2η V( )η U( )ζ + η U( )V[ ].

(5.8)
In light of the fact that ζ is vertical, equating the vertical and

horizontal components of (5.8), we get (5.2) and (5.3),
correspondingly. By Equation 2.6, we have

∇EφF � φ∇EF + α g E, F( )ζ + 2η E( )η F( )ζ + η F( )E[ ],
for any E, F ∈ Γ(Kerγ*).

On using Eqs 3.7, 3.8, 5.1, we get

AEBF + V∇EBF +H∇ECF +AECF � BH∇EF + CH∇EF
+φAEF + α g E, F( )ζ + 2η E( )η F( )ζ + η F( )E[ ].

(5.9)
If we compare the vertical and horizontal components of (5.9)
and using the fact that ζ is vertical, we get (5.6) and (5.7),
respectively. The rest of the claims may be derived in the
same way

Now, we discuss anti-invariant Lorentzian submersions from
an (LCS)n-manifold (L, φ, ζ, η, g, α) onto a semi-Riemannian

manifold such that the Reeb vector field ζ is vertical. Let us
consider that γ is an anti-invariant Lorentzian submersion
admitting VRVF from an (LCS)n-manifold (L, φ, ζ, η, g, α)
onto a semi-Riemannian manifold (S, gS). Then, using (5.1)
and the condition (S2), we come up with

g γ*φV, γ*CE( ) � 0,

for every E ∈ Γ(Kerγ*⊥) and V ∈ Γ(Kerγ*), this suggests that

T N � γ* φ Kerγ*( )( ) ⊕ γ* μ( ). (5.10)
As a result, we demonstrate:

Theorem 5.2. Let (L, φ, ζ, η, g, α) is an (LCS)n-manifold of
dimension (2L + 1) and (S, gS) is a semi-Riemannian manifold of
dimension s. Let γ (L, φ, ζ, η, g)→ (S, gS) be an anti-invariant such
that φ(Kerγ*) � Kerγ*

⊥. Then the Reeb vector field ζ is vertical
and l = s.

Proof By the assumption φΓ(Kerγ*) � Γ(Kerγ*)⊥, we have
g ζ ,φU( ) � −g φξ, U( ) � 0,

for any U ∈ Γ(Kerγ*), which shows that the Reeb vector field is
vertical. Now, we assume that U1, . . . , Uk−1, ζ � Uk{ } is an
orthonormal frame of Γ(Kerγ*), where k = 2L − s + 1.

Since φΓ(Kerγ*) � Γ(Kerγ*)⊥, then ϕU1, . . ., ϕUk−1 form an
orthonormal frame of Γ(Kerγ*)⊥. Therefore, in view of (5.1) we
get k = s + 1, which implies that l = n.

Theorem 5.3. Let (L, φ, ζ, η, g, α) be an (LCS)n-manifold of
dimension (2L + 1) and (S, gS) is a semi-Riemannian manifold of
dimension s. If γ (L, φ, ζ, η, g) → (S, gS) is an anti-invariant
Lorentzian submersion with VRVF, then the fibers are not totally
umbilical.

Proof Using (2.2) and 3.5, we have

T Uζ � αU

for any U ∈ Γ(Kerγ*). We suppose that the fibers are totally
umbilical, then we have

T UV � g U,V( )H
for any vertical vector fields U and V, where H is the mean
curvature vector field of the fiber. Since T ζ ζ � 0, we have H = 0,
which prove that the fibers are minimal. Hence the fibers are
totally geodesic, which is a contradiction to the fact that
T Uζ � αU ≠ 0, which proves the theorem.

From 2.4 and 5.1, we have following Lemmas.
Lemma 5.4. Let γ be an anti-invariant Lorentzian submersion

with VRVF from an (LCS)n-manifold (L, φ, ζ, η, g, α) to a semi-
Riemannian manifold (S, gS). Then we have

BCE � 0, φBE + C2E � E,

for any E ∈ Γ(Kerγ*⊥).
Lemma 5.5. Let γ be an anti-invariant Lorentzian submersion

with VRVF from an (LCS)n-manifold (L, φ, ζ, η, g, α) to a semi-
Riemannian manifold (S, gS). Then we have

CE � AEζ , (5.11)
g AEζ ,φU( ) � 0, (5.12)
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g ∇FAEξ,φU( ) � −g AEζ , ϕAFU( ) + αη U( )g AEζ , F( ), (5.13)
g E,AFζ( ) � −g F,AEζ( ), (5.14)

for E, F ∈ Γ(Kerγ*⊥) and U ∈ Γ(Kerγ*).
Proof In the light of Equations 3.7, 2.5, we get (5.11). For

E ∈ Γ(Kerγ*⊥) and U ∈ Γ(Kerγ*), Equations 3.2, 5.1, and .5.11
give

g AEζ ,φU( ) � −g φE − BE,φU( )
� −g E,U( ) − η E( )η U( ) − g φBE,U( ). (5.15)

Since φBE ∈ Γ(Kerγ*⊥) and ζ ∈ Γ(Kerγ*), Equation 5.15
implies (5.12). Now, from (5.12) we get

g ∇FAEζ ,φU( ) � −g AEζ ,∇FφU( ),
for E, F ∈ Γ(Kerγ*⊥) and U ∈ Γ(Kerγ*). The geodesic

condition together with Equation 5.15 yield

g ∇FAEζ ,φU( ) � −g AEζ ,φAFU( ) − g AEζ ,φ V∇FU( )( )
+ αη U( )g AEζ , F( ). (5.16)

Since φ(V∇FU) ∈ Γ(φKerγ*) � Γ(Kerγ*
⊥), we obtain

(5.13). Using the skew-symmetry of Aand (3.4), we directly
get (5.14).

6 ANTI-INVARIANT LORENTZIAN
SUBMERSIONS WITH HORIZONTAL REEB
VECTOR FIELD
Example. Let R9 be a 9-dimensional semi-Riemannian space
given by.

R9 � {(�u1, . . . , �un, �v1, . . . ., �vn, �w)|�ui, �vi, �w ∈ R, i � 1, . . . , 9}.
Then we choose an (LCS)9-structure (φ, ζ, η, g) on R9 such as

ξ � 3
z

z �w
, η � 1

3
−d �w +∑n

i

�vid�ui⎛⎝ ⎞⎠,

g � −η ⊗ η + 1
9
∑n
i

d�ui ⊗ d�ui ⊕ d�vi ⊗ d�vi,

φ(z�u1) � z�v1,φ(z�u2) � z�v2,φ(z�u3) � z�u3,φ(z�u4) �
z�v4, φ(z�v1) � z�u1,

φ(z�v2) � z�u1,φ(z�v3) � −z�v3,φ(z�v4) � −z�v4, φ(z �w) �
0,where z�ui, z�vi � Ei ∈ T(R9), 1 ≤ i ≤ 4 are vector fields.
Indeed (R9,φ, ζ , η, g) is an (LCS)9 manifold [6].

Now, we consider the map γ: (LCS)9 �
(R9,φ, ζ , η, g) → (R5, g5) defined by

γ �u1, �u2, �u3, �u4, �v1, �v2, �v3, �v4, �w( ) ⟼ �u1 + �u2, �v1 + �v2,
�u3 − �v3

3
√ ,

�u4 − �v4
3

√ , 3�z( ),
where g5 is the semi-Riemannian metric of R5. Then the Jacobian
matrix of γ is

1 1 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0

0 0
1
3

√ 0 0 0 − 1
3

√ 0 0

0 0 0
1
3

√ 0 0 0 − 1
3

√ 0

0 0 0 0 0 0 0 0 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since rank of the Jacobian matrix is equal to 5, the map γ is
a submersion. On the other hand, we can easily see that γ
satisfies the condition (C2). Therefore, γ is a
Lorentzian submersion. Now, after some computation, we
turn up

Kerγ*( ) � Span V1 � E5 + E6, V2 � E1 + E2, V3 � 1
3

√ E3 + E7( ),{
V4 � 1

3
√ E4 + E8( )},

and

Kerγ*( )⊥ � Span H1 � E1 + E2, H2 � E5 + E6, H3 � 1
3

√ E3 − E7( ),{
H4 � 1

3
√ E4 − E8( ), H5 � ζ}.

In addition, we notice that φ(Vi) = Hi for 1 ≤ i ≤ 4, which
implies that φ(Kerγ*) ⊂ (Kerγ*)⊥. Thus γ is an anti-invariant
Lorentzian submersion and ζ is a HRVF.

Let γ be an anti-invariant Lorentzian submersion from an
(LCS)n-manifold (L, φ, ζ, η, g, α) onto a semi-Riemannian
manifold (S, gN). For any E ∈ Γ(Kerγ⊥* ), we write

φE � BE + CE, (6.1)

where BE ∈ Γ(Kerγ*) and CE ∈ Γ(Kerγ⊥* ). At first, we examine
the behaviour of the tensor fields T and A for the (LCS)n-
manifold submersion γ.

Lemma 6.1. Let γ be an anti-invariant Lorentzian submersion
from an (LCS)n-manifold (L, φ, ζ, η, g, α) onto (S, gS) with HRVF,
then we have

T UφV � BT UV, (6.2)
H∇UφV − α g U,V( )ζ + 2η U( )η V( )ζ[ ] � CT UV + φ∇̂UV,

∇̂VBE + T VCE � BH∇VE − αη E( )V,
T VBE +H∇VCE � CH∇VE + φT VE, (6.3)

AEφV � BAEV, (6.4)
H∇EφV � φ V∇EV( ) + CAEV,

V∇EBF +AECF � BH∇EF,

AEBF +H∇ECF � CH∇EF + φAEF + α g E, F( )ζ[
+2η E( )η F( )ζ + η F( )E], (6.5)

where U, V ∈ Γ(Kerγ*) and E, F ∈ Γ(Kerγ⊥* ).
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Proof. The proof is quite similar to proof of Lemma 5.1. As a
result, we leave it out.

Next, we study the properties of anti-invariant Lorentzian
submersions from an (LCS)n-manifold (L, φ, ζ, η, g, α) onto a
semi-Riemannian manifold (S, gS) if the Reeb vector field ζ is
horizontal. Using (6.1), we have μ � φμ ⊕ ζ{ }.

Now, let V and E denote the vertical and horizontal vector
fields, respectively. In the light of the previous relationship and
(2.6), we arrive at

g φV, CE( ) � 0 0 g γ*φV, γ*CE( ) � 0

0 TN � γ* φKerγ*( ) ⊕ γ* μ( ).
From Eqs 2.6, 6.1, we conclude the following Lemma.
Lemma 6.2. Let γ be an anti-invariant Lorentzian submersionwith

a HRVF from an (LCS)n-manifold (L, φ, ζ, η, g, α) to (S, gS). Then

BCE � 0, φ2E � φBE + C2E,

for any E ∈ Γ(Kerγ*⊥).
Lemma 6.3. Let γ be an anti-invariant Lorentzian submersion

with aHRVF from an (LCS)n-manifold (L,φ, ζ, η, g, α) to (S, gS). Then
BE � AEζ , (6.6)
T Uζ � αU, (6.7)

g AEζ ,φU( ) � 0, (6.8)
g ∇FAEζ ,φU( ) � −g AEζ ,φAFU( ), (6.9)
g ∇ECF,φU( ) � −g CF,φAEU( ) (6.10)

for E, F ∈ Γ(Kerγ*⊥) and U ∈ Γ(Kerγ*).
Proof On using eequations (2.5) (3.8), and (5.1), we obtain

(6.6). Using (3.6) and 2.5, we obtain (6.7). Since AEζ is vertical
and φU is horizontal for E ∈ Γ(Kerγ*⊥) and U ∈ Γ(Kerγ*), we
have (6.8). Also (6.8) gives

g ∇FAEζ ,φU( ) � −g AEζ ,∇FφU( ),
for E, F ∈ Γ(Kerγ*⊥) and U ∈ Γ(Kerγ*). Then using (3.7) and 2.6
we have

g ∇FAEζ ,φU( ) � −g AEζ ,φAFU( ) − g AEζ ,φ ∇FU( )( ).
Since φ(∇FU) ∈ Γ(Kerγ*⊥), we obtain (6.9). From (4.1)

we get

g CF,φU( ) � 0,

0 � g ∇ECF,φU( ) + g CF,∇EφU( )
� g ∇ECF,φU( ) + g CF,φ∇EU( ),
g ∇ECF,φU( ) � g CF,φ AEU( )( ).

Hence, we obtain (6.10).

7 LAGRANGIAN LORENTZIAN
SUBMERSIONS WITH VERTICAL REEB
VECTOR FIELD FROM (LCS)N-MANIFOLD
In this section, the integrability and totally geodesicness of the
horizontal distribution of LLS admitting VRVF from (LCS)n-

manifolds will be determined. The behavior of the O’Neill’s
tensor T of such a submersion is first investigated. From
Lemma 6.1, we obtain the following:

Lemma 7.1. Let γ be an LLS with a VRVF from an (LCS)n-
manifold (L, φ, ζ, η, g, α) onto (S, gS), then we have

T UφV − α g U,V( )ζ + 2η U( )η V( )ζ[ ] � φT UV − αη V( )U,
(7.1)

T VφE � φT VE, (7.2)
T Vζ � −αV, (7.3)
T ζE � −αE,

for U, V ∈ Γ(Kerγ*) and E, F ∈ Γ(Kerγ⊥* ).
Proof. For a Lagrangian submersion, we have

CE � 0, ∀ E ∈ Γ(Kerγ⊥* ). Thus, assertions (7.1) and (7.2)
follow from 5.2 and 5.4, respectively. Eqs 7.3 follows from 3.5
and 5.13.

Remark 7.2. It is known from [41] that the fibers of a semi-
Riemannian submersion are totally geodesic if the O’Neill’s
tensor T vanishes ie., T � 0.

From Lemma 7.1, we can notice that the O’Neill’s tensor
T ≠ 0. Therefore, in view of Remark 7.2, we immediately get the
next result.

Theorem 7.3. Let γ be an LLS with a VRVF from an (LCS)n-
manifold (L, φ, ζ, η, g) onto (S, gS). Then the fibers of γ cannot be
totally geodesic.

Next, we give some results about the characteristic of the
O’Neill’s tensor A of γ.

Corollary 7.4. Let γ be an LLS with a VRVF from an (LCS)n-
manifold (L, φ, ζ, η, g, α) onto (S, gS), then we have

AEφV � φAEV, (7.4)
AEφF � φAEF, (7.5)

AEζ � αE (7.6)
for V ∈ Γ(Kerγ*) and E, F ∈ Γ(Kerγ⊥* ).

Proof. The assertions (7.4) and (7.5) follow from 5.5 and 5.8,
respectively. The last assertion follows from 3.3 and 3.7.

Remark 7.5. In fact in a semi-Riemannian submersion, the
integrability and totally geodesicness of the horizontal
distribution are comparable to each other. This situation can
be noticed from 3.4 and 3.8. In this case, the O’Neill’s tensor A
vanishes.

From Eq. 7.6, we can observe that the O’Neill’s tensor A can
not vanish for γ. Thus, we state the following result.

Theorem 7.6. Let γ be an LLS with a VRVF from an (LCS)n-
manifold (L, φ, ζ, η, g, α) onto (S, gS). Then the totally
geodesicness of horizontal distribution of γ can not be integrable.

Remark 7.7. A smooth map γ (M, g) → (N, gN) between
semi-Riemannian manifolds is said to be a totally geodesic
map if γ* preserves parallel translation. Moreover, Vilms [41]
classified totally geodesic Lorentzian submersions and
verified that a Lorentzian submersion γ (L, g) → (S, gS) is
totally geodesic if and only if both O’Neill’s tensors T and A
vanish.

Thus, in view of Remark 7.7 and from Theorem 7.3 or
Theorem 7.6, we turn up the following theorem.
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Theorem 7.8. Let γ be an LLS admitting a VRVF from an
(LCS)n-manifold (L, φ, ζ, η, g, α) onto (S, gS). Then the submersion
γ can not be a totally geodesic map.

Finally, we exhibit a necessary and sufficient condition for
submersion γ to be harmonic.

Theorem 7.9. Let γ be an LLS with a VRVF from an (LCS)n-
manifold (L, φ, ζ, η, g, α) onto (S, gS). Then γ is harmonic if and
only if traceφT V|Kerγ*

� 0 forV ∈ Γ(Kerγ*), where φT V|Kerγ*
is the

restriction of φT V to Kerγ*.
Proof. From [42], we know that γ is harmonic if and only if γ

has minimal fiber. Let {e1, . . ., ek, ζ} be an orthonormal frame of
Kerγ*. Thus γ is harmonic if and only if ∑k

i�1T eiei + T ζ ζ � 0.
Since T ζ ζ � 0, it follows that γ is harmonic if and only if∑k

i�1T eiei � 0. Now, we calculate ∑k
i�1T eiei. By orthonormal

expansion, we can write

∑k
i�1

T eiei � ∑k
i�1

∑k
j�1

g T eiei,φej( )φej,
where {φe1, . . ., φek} is an orthonormal frame of φKerγ*. Since T ei

is skew-symmetric, we obtain

∑k
i�1

T eiei � − ∑k
i,j�1

g T eiφej, ei( )φej.
Here, from (7.1), we know

T eiφej � φT eiej + α g ei, ej( )ζ + η ej( )ei + 2η ei( )η ej( )ζ[ ].
Thus, we get

∑k
i�1

T eiei � − ∑k
i,j�1

g φT eiej, ei( )φej,
since both η(ej) = 0 and η(ei) = 0. Using (3.3), we arrive

∑k
i�1

T eiei � − ∑k
i,j�1

g φT ejei, ei( )φej. (7.7)

Since φe1, . . ., φek are linearly independent, from (7.7), we see
that

∑k
i�1

T eiei � 05 ∑k
i,j�1

g φT eiej, ei( ) � 0. (7.8)

It is clear to observe that,

∑k
i,j�1

g φT ejei, ei( ) � 05∑k
i�1

g φT Vei, ei( ) � 0 (7.9)

for any V ∈ Γ(Kerγ*). On the other hand,

TraceφT V|Kerγ*
� ∑k

i�1
g φT Vei, ei( ) + g T Vζ , ζ( )

and by (7.3),

TraceφT V|Kerγ*
� ∑k

i�1
g φT Vei, ei( ). (7.10)

Thus Eqs 7.8.10.–.Eqs 7.7.10 complete the proof.
Remark 7.10. Since an LLS is a specific case of an anti-invariant

Lorentzian submersion. Then, in the view of Remark 7.7,
Theorem 7.3, Theorem 7.6 and Theorem 7.8 also hold for
anti-invariant Lorentzian submersions with a VRVF.

Example.
Let R5 � {(�u1, �u2, �v1, �v2, �w)|(�u1, �u2, �v1, �v2, �w) ≠

(0, 0, 0, 0, 0, 0)}, where (�u1, �u2, �v1, �v2, �w) be the standard
coordinates in R5 and R2 be (LCS)n-manifolds as in previous
Example.

Now, let us consider the mapping π: (LCS)5 �
(R5,φ, ζ , η, g) → (R2, g2) defined by the following:

γ �u1, �u2, �v1, �v2, �w( ) ⟼ �u1 − �v2
3

√ ,
�u2 − �v1

3
√( ),

where g2 is the semi-Riemannian metric of R2. Then the Jacobian
matrix of γ is as follows:

1
3

√ 0 − 1
3

√ 0 0

0
1
3

√ − 1
3

√ 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

Since the rank of the matrix is equal to 2, the map γ is a
submersion. On the other hand we can easily see that γ holds the
condition (C2). Then, by a direct computation, we turn up

Kerγ*( ) � Span V1 � 1
3

√ E1 + E4( ), V2 � 1
3

√ E2 + E3( ), V3 � ζ{ },
and

Kerγ*( )⊥ � Span H1 � 1
3

√ E1 − E4( ), H2 � 1
3

√ E2 − E3( ){ }.
It is obvious to recognize that φ(V1) = H1, φ(V2) = H2 and

φ(V3) = 0, which mean

φ Kerγ*( ) � Kerγ*( )⊥,
As a result γ is an LLS such that ζ is a VRVF.

8 LAGRANGIAN LORENTZIAN
SUBMERSIONS WITH HORIZONTAL REEB
VECTOR FIELD FROM AN
(LCS)N-MANIFOLD

In this section, we examine the LLS with a HRVF from (LCS)n-
manifolds (M, φ, ζ, η, g, α) onto a semi-Riemannian manifold.

Theorem 8.1. Let the dimension of (LCS)n-manifold (L, φ, ζ, η,
g, α) be (2m + 1) and (S, gS) be a semi-Riemannian manifold of
dimension n. If γ (L, φ, ζ, η, g)→ (S, gS) is an LLSwithHRVF, then
m + 1 = n.

Proof. Let us consider that U1, U2, . . ., Uk is an orthonormal
frame of (Kerγ*), where k = 2m − n + 1. Since
φ(Kerγ*) � Kerγ*

⊥ ⊕ {ζ}, {φU1, . . ., φUk, ζ} forms an
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orthonormal frame of Γ(Kerγ*⊥). So, from (5.10)we get k = n − 1
which implies that m + 1 = n.

Note that the proof of Theorem 8.1 has also been given in [32],
but we gave it here for clarity.

From Lemma 5.1, we deduce the next corollary.
Corollary 8.2. Let γ be an LLS with a HRVF from an (LCS)n-

manifold (L, φ, ζ, η, g, α) onto (S, gS). Then, we have

T UφV � φT UV, (8.1)
T VφE � φT VE, (8.2)

T Vζ � αV. (8.3)
for U, V ∈ Γ(Kerγ*) and E ∈ Γ(Kerγ⊥* ).
Proof. Assertions (8.1) and (8.2) follow from (6.2) and 6.3,

respectively. The last assertion (8.3) follows from (5.13) and 3.6
or directly from (6.7).

From (8.3), we see that the tensor T can not be zero, so we
have the following results.

Theorem 8.3. Let γ be an LLS from an (LCS)n-manifold (L, φ, ζ,
η, g, α) onto (S, gS). Then, the fibers of γ can not be totally geodesic.

Corollary 8.4. Let γ be an LLS with a HRVF from an (LCS)n-
manifold (L, φ, ζ, η, g, α) onto (S, gS). Then, we have

AEφV � φAEV, (8.4)
AEBF � φAEF + α g E, F( )Hζ + 2η E( )η F( )Hζ + η F( )E[ ],

(8.5)
AζV � αφV, (8.6)
AζE � αφE (8.7)

for V ∈ Γ(Kerγ*) and E, F ∈ Γ(Kerγ⊥* ).
Proof. Assertions (8.4) and (8.5) follow from (6.4) and (6.5),

respectively. The third assertion (8.6) follows from (3.3) and
(3.7). The last one comes from (8.7).

From (8.4) and (8.5), it can be easily seen that the tensorA can
not be zero. Thus, by Remark 7.5, we have the following result.

Theorem 8.5. Let γ be an LLS with a HRVF from an (LCS)n-
manifold (L, φ, ζ, η, g, α) onto (S, gS). Then, the horizontal
distribution of γ can not be integrable.

In view of Remark 7.7 and Theorem 8.3 or Theorem 8.5, we get
the following result.

Corollary 8.6. Let γ be an LLS with a HRVF from an (LCS)n-
manifold (L, φ, ζ, η, g, α) onto (S, gS). Then, the submersion γ can
not be a totally geodesic map.

Finally, we give a result concerning the harmonicity of such
submersions.

Theorem 8.7. Let γ is an LLS with a HRVF from an (LCS)n-
manifold (L, φ, ζ, η, g, α) onto (S, gS). Then γ can not be harmonic.

Proof. Let {e1, . . ., ek} be an orthonormal frame of Kerγ*. Then
{φe1, . . ., φek, ζ} forms an orthonormal frame ofKerγ⊥* . Hence, we
have

∑k
i�1

T eiei � ∑k
i,j�1

g T eiei,φej( )φej + g T eiei, ζ( )ζ{ }.
Using the skew-symmetricness of T ei and (8.1), we obtain

∑k
i�1

T eiei � ∑k
i,j�1

−g φT eiej, ei( )φej + g T eiζ , ei( )ζ{ }.
By (3.3) and (8.3), we get

∑k
i�1

T eiei � ∑k
i,j�1

g φT ejei, ei( )φej. (8.8)

Now, we assume that γ is harmonic. Then ∑k
i�1T eiei � 0. From

(8.8), it follows that ∑k
i,j�1g(φT ejei, ei)φej � 0. This implies that

the set {φe1, . . ., φek, ζ} is linearly independent.
Remark 8.8. In view of Remark 7.7, Theorem 8.3, Theorem 8.5

and Corollary 8.6 also hold for anti-invariant Lorentzian
submersions with a HRVF.
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