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As an autonomous mobile robot, the unmanned intelligent vehicle is often installed with
sensors to collect the road environment information, and then process the information and
control the speed and steering. In this study, vehicle-mounted camera, laser scanning
radar and other sensors were equipped to collect real-time environmental information to
efficiently process and accurately detect the specific location and shape of the obstacle.
This study then investigated the impact of two In-Vehicle Information Systems (IVISS) on
both usability and driving safety. Besides, the laser perception sensing technology was
applied to transmit the information of the surrounding around the real-time driving area to
the vehicle system. Simulating vehicle checkerboard and hierarchical IVIS interface layouts,
we also examined their usability based on task completion time, error rate, NASA-TLX, and
System Usability Scale (SUS). It was suggested that the results offer a supporting evidence
for further design of IVIS interface.
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1 INTRODUCTION

With the ongoing economic and social development, vehicles on the road have soared
dramatically in the recent decades, which created various problems such as traffic
congestion, excessive energy consumption, environmental pollution, property damage and
heavy casualty, and exposed the conflict between the existing transport infrastructure and the
vehicles [1]. Many countries have thus initiated research projects to develop intelligent
transportation systems [2] based on the latest technologies in the fields of information,
automation, computer and management. Their common goal is to improve the efficiency of
vehicles and transportation, enhance safety, minimize environmental pollution and expand the
capacity of existing traffic [3]. The research of intelligent vehicle targets to address the
abovementioned problems by reducing the human workload in driving tasks with the
adoption of new technologies in lane warning monitoring, driver fatigue detection,
automatic speed cruise control, etc. [4].

The key technology for driverless intelligent vehicles is the recognition and detection of obstacles
[5], and the result of the detection determines the stability and safety of the intelligent vehicle driving
[6]. Current obstacle detection methods include vision-based detection, radar-based detection and
ultrasonic-based detection [7], which differentiate each other in their detection accuracy. Vision-
based detection simply uses vehicle-mounted HD cameras to capture images of obstacles and
environments. The exact location of an obstacle can then be calculated according to its position in the
image, and its parameter values estimated by the camera. Vision-based detection is robust, allowing
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real time analysis, but susceptible to light and other external
factors [8]. Radar-based detection is just the opposite, having
fairly strong resistance to external influences [9]. For example,
three-dimensional LIDAR, though expensive, provides three-
dimensional information about the obstacle during scanning
and imaging, while 2D LIDAR, with a simple and stable system
and fast response time, only scans a flat surface [10].
Ultrasound-based detection technology, with low resolution
and accuracy, is seriously limited in providing comprehensive
boundary data and obtaining environmental information, thus
scarcely used in driverless intelligent vehicles [11].

However, there is no one-size-fits-all sensor perfect for
obstacle detection by intelligent vehicles [12], although the
commonly used sensors in intelligent vehicles contain inertial
navigation, laser scanning radar, millimeter wave radar and on-
board cameras [13]. Single sensors are unstable and
incomprehensive when it comes to obtaining information
about their surroundings. They need to complement each
other [14], and now multi-sensor-based technology fusion has
become a trend in intelligent vehicle research [15], which shows
its advantages in obtaining target information, extracting the
sensing area and finally completing the detection of obstacles
[16]. Currently, convergence-based detection has developed to
converge the data of multiple sensors. Reviewing the literature
concerning the sensors used in unmanned intelligent vehicles that
are developed in different countries as shown in Table 1, we
found that the countries had made different trade-offs and
improvements in technology selection based on their existing
problems. Nevertheless, in China, the technology of this type of
sensors still falls behind the developed countries.

In this study, we used a vehicle-mounted camera in
conjunction with a laser scanning radar for obstacle
recognition and detection [17], and developed a
computational model for a theoretical framework to cognize
visual and auditory information that allows high-speed real-
time computation. This framework converged the information
from multiple sensors, including the vision system, the Global
Positioning System (GPS), the speed detection system and the
laser scanning radar system, and endowed a driverless vehicle
platform with natural environment perception and automatic
decision-making capabilities in various road conditions.
Aiming for the application in the driverless intelligent
vehicle platform, this study also expects to achieve 1)
autonomous driving along prescribed routes, 2) driving
along lanes according to road signs and markings, as well as

3) autonomous obstacle avoidance, acceleration, and
deceleration [18].

2 METHODS, EXPERIMENTS AND RESULT
ANALYSIS

The collection of information about the external environment is
the key to designing an unmanned intelligent vehicle, and the
various data collection sensors installed on the vehicle are
equivalent to the driver’s eyes [19]. Only the timely and
proper acquisition and processing of external environment
data can ensure the safe and stable driving [20]. Considering
that a single sensor cannot be complete or reliable for external
environment information collection, this study thus used two
sensors equipped with a laser scanning radar and on-board
cameras to detect and recognize obstacles, and combined the
data from both sensors, which is conducive to improving the
accuracy and reliability of obstacle recognition [21].

2.1 Data Collection and Processing
In this study, the image processing was mainly implemented
using the algorithmic functions of OpenCV, which is an open-

TABLE 1 | Sensors used in unmanned intelligent vehicles.

Name Country Era Sensor

HILARE France 1979 Machine vision, LIDAR
NAVLAB-1 United States 1986 Grayscale cameras, sonar, LIDAR
NAVLAB-5 United States 1996 Colour cameras, LIDAR, GPS
ARGO Italy 1998 Dual cameras, odometer
ANFM Sweden 2001 Camera, ultrasound, radar
SANDSTORM United States 2004 Colour cameras, LIDAR
STANLEY United States 2005 Multi-lidar, monocular vision systems
BOSS United States 2007 Multi-single-line LIDAR, 64-line LIDAR

FIGURE 1 | Data convergence chart.
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source computer vision library based on the Open Source
Computer Vision Library developed by Intel Corporation.
Composed of a series of C functions and some C classes,
OpenCV supports the execution of different common
algorithms in digital image processing and computer
vision systems, which are highly portable and accessible to
multiple operating systems without code modification
and thus widely used in object recognition, image
segmentation and machine vision. Besides, it runs in real
time and can be compiled and linked to generate executable
programs [22]. The modules of OpenCV adopted in this
study are listed as follows:

• OpenCV_core: Core functional modules, including basic
structures, algorithms, linear algebra, discrete Fourier
transforms, etc. OpenCV_imgproc: Image processing module,
including filtering, enhancement, morphological processing, etc.

• OpenCV_feature2d: 2D feature detection and description
module, including image feature value detection,
description matching, etc.

• OpenCV_video: Video module, including optical flow
method, motion templates, target tracking, etc.

• OpenCV_objdetect: Target detection modules.
• OpenCV_calib3d: 3D module, including camera

calibration, stereo matching, etc.

2.2 Multi-Sensor Data Convergence
Data convergence from multiple sensors in the research of
unmanned intelligent vehicles is a technology for
comprehensive analysis, processing and optimisation of
the information acquired by multiple sensors [23]. Under
certain guidelines, the collected data was integrated,
utilized and synthesized in time and space to refine the target
information and then improve the control system. Data
convergence brings a linkage of each other in a certain way
and then the optimization of all the collected data [24]. The
process of data convergence is shown in Figure 1.

In this study, laser scanning radar and vehicle-mounted
camera sensors were used for obstacle detection, and the
information collected by the two sensors was converged and
matched in time and space to maintain consistency in the
collected data. Data convergence has a number of advantages
in intelligent control as follows:

1) Providing the data collected by the whole system with a higher
accuracy and reliability;

2) Enabling the system to obtain more information in the same
amount of time;

3) Reducing the impact of natural external factors on the multi-
sensor system;

4) Accelerating data processing and increasing
information reuse.

2.2.1 Principle of Multi-Sensor Data Convergence
To fully utilize the information collected by multiple sensors, and
then rationally process and analyze the collected data, this study

formulated some principles to converge andmatch the redundant
or complementary information of multiple sensors in space or
time. The principles are as follows:

1) Multiple sensors of different types are used to collect data
information of the detection target;

2) Feature values are extracted from the output data of the
sensors;

3) The extracted feature values (e.g., clustering algorithms,
adaptive neural networks or other statistical pattern
recognition methods that can transform feature vectors
into target attribute judgments, etc.) are processed by
pattern recognition to complete the recognition of the
target by each sensor;

4) The data from each sensor are converged using data
convergence algorithms to maintain consistency in the
interpretation and description of the detection target [25].

2.2.2 Multi-Sensor Data Convergence Algorithms
The selection of an effective data convergence method in a study
is determined by the specific application context. The frequently-
employed methods for multi-sensor data convergence include
weighted averaging, Kalman filtering and multi-Bayesian
estimation [26].

1) Weighted averaging

The weighted averaging method is the simplest and most
intuitive of the algorithms for data convergence. It takes the
redundant information provided by a group of sensors and
weights the average, with the result being the data
convergence value, which is a direct manipulation of the data
source.

2) Kalman filtering

The Kalman filtering method is primarily used to converge
redundant data from low-level real-time dynamic multi-sensors.
The algorithm uses recursion of the statistical properties of the
measurement model to determine the optimal convergence and
data estimation in a statistical sense. In the model, the dynamical
equations, i.e., the state equations [27], are used to describe the
dynamics of the detection target. If the dynamical equations are
known and the system and sensor errors fit the Gaussian white
noise model, the Kalman filter will provide the optimal estimate
of the converged data in a statistical sense. The recursive nature of
the Kalman filter allows the system to process without the need
for extensive data storage and computation.

3) Bayesian estimation

Bayesian estimation is one of the common methods for
synthesizing high level information from multiple sensors in a
static environment. It enables sensor information to combine
according to probabilistic principles, with measurement
uncertainties expressed as conditional probabilities.
Bayesian estimation is adopted in the case that sensor
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measurements have to be converged indirectly [28]. Treating
each sensor as a Bayesian estimate, Multi Bayesian estimation
synthesizes the associated probability distribution of each
individual object into a joint posterior probability
distribution function. It provides a final fused value of the
multi-sensor information by using the likelihood function of
the joint distribution function as the minimum and
synthesizing the information with a prior model of the
environment providing a characterisation of the whole
environment.

In this study, Bayesian estimation was employed, based on the
fact that n sensors of different types were involved to detect the
same target. To ensure the target to identify m attributes, we
proposedm hypotheses or propositions Ai, i = 1...m. The steps for

the implementation of the Bayesian convergence algorithm are
explicated as follows (Figures 2–4): Firstly, to n times observe B1,
B2...Bn given by n sensors; secondly, to calculate the probability
of each sensor’s observation under each hypothesis being true;
thirdly, to calculate the posterior probability of each hypothesis
being true under multiple observations according to Bayesian
formula; finally, to determine the result.

2.3 Radar and Camera Data Matching
2.3.1 Temporal Matching
Temporal matching of data is the process of synchronising the
data collected by each sensor. The sampling frequency of different
sensors is different, thus causing a variation among the collected
data even although synchronously acquired. With the time
variable as a parameter, the process of data synchronisation
can be completed by granting different GPS times to different
sensors, which is featured by a relatively high accuracy
convergence of data and a strong impact on the real-time
nature of data.

Considering that the sensors selected in this study differ
greatly from each other in their sampling frequency, the firstly
ensured was the synchronization of the information from LIDAR
with that from camera during the data acquisition [29]. Then, two
separate data collection threads were produced for the two
sensors (the laser scanning radar and the camera) to collect
the data from the two sensors at the same interval each time
and then synchronise the two sets of data in time, i.e., matching
the data.

2.3.2 Spatial Matching
Data matching in space is a multi-level and multi-side processing
of the collected data, including the steps of automatic detection,
correlation, estimation and combination of data and information
from multiple sources. It aims to obtain more reliable and
accurate information as well as most reliable information-
based decision, i.e., to optimize the value of the target location
based on the multi-source observations. Spatial matching of data
is to unify the transformation relationship between the sensor
coordinate system, image coordinate system and vehicle
coordinate system in space. Once the constraint of equations
for the camera parameters is removed, the interconversion
relationships of the four coordinate systems can be
determined, and then the data points scanned by the LIDAR
can be projected onto the image coordinate system using the
established camera model. Based on the previous theoretical
model, the conversion relationship between the point in space
p(xs, ys, zs) and the corresponding point in the image coordinate
system p(xt, yt) is expressed as:

Where ρ is the distance from the LIDAR laser beam to the
spatial point (xs, ys, zs), β is the angle swept by the LIDAR, α is the
pitch angle of the LIDAR installation, h is the LIDAR installation
height and p is a 3 × 4 matrix. This change allows the data
collected by the LIDAR to accurately mirror in the image data
space, thus enabling the spatial conversion between the two sets
of data.

Spatial matching of data have some advantages. First, it is
conducive for the control system to making the most accurate

FIGURE 2 | Bayesian data convergence process.

FIGURE 3 | Raw data collected by radar.

FIGURE 4 | Pre-processed data.
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judgment on the specific distance and location of the obstacle.
Second, data matching in space facilitates the LIDAR scanned
data to converge the image, then to form the target area on the
image coordinate system in real time, and finally the recognition
of the obstacle [30].

2.4 Radar-Based Obstacle Detection
2.4.1 Radar Data Pre-Processing
UXM-30LX-EW laser scanning radar was employed to pre-
process the data in this study. It has the advantages of great
detection range, large measuring range, high measurement
accuracy and angular resolution. As the range of the laser
scanning radar increases, the measurement accuracy will
decrease. The scanning plane angle of the LIDAR was set at
190° horizontally, greater than the maximum angle captured by
the camera. Unnecessary laser points have to be removed during
the data convergence process to ensure the accuracy of the final
results. Thus, in this study, we first removed the laser beam falling
outside this angle according to the camera’s shooting angle, which
accelerates the operating, and then made judgment and analysis
using the pre-processed radar data.

2.4.2 Obstacle Detection
The detection and identification of obstacles was performed in
this study by the LIDAR installed in the front of the vehicle and
the camera on the roof. To ensure the safety in roads, the control
system of a vehicle must be able to control the braking or steering
in an emergency when an obstacle such as a vehicle and
pedestrian is found. However, when the vehicle is turning or
travelling in a straight line, the scope for determining the presence
of an obstacle in the area in front of the vehicle will change. For
example, when a vehicle turns according to the traffic light, the
obstacles in the area directly in front of the vehicle are not easy to

be detected and thus mistreated, leading to a sharp braking by the
driverless intelligent vehicle and even a failure in fulfilling the
required tasks such as turning [31]. Hereby, three actual road
conditions were analysed and discussed.

1) When an unmanned vehicle is travelling straight ahead

In this situation, the area to be determined in this case is well
defined. As shown in Figure 5, a rectangular area with length of a
and width of k in front of the vehicle is the detection area, divided
into three blocks marked as I, II and III.

2)When no one is turning right

Figure 6 shows the smart car right turn schematic. As is seen,
the shaded part of the vehicle is the area through which the
steering wheel of the unmanned vehicle turns to the right at a
certain angle through an all-round corner, where the sensing area
detected by the LiDAR is located. The quadrilateral ABCD was
chosen as the sensing area in order to maximise the overlapping

FIGURE 5 | Smart car front area in straight ahead.

FIGURE 6 | Smart car right turn schematic.

FIGURE 7 | Collected raw images.
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area between the sensing area and the shaded area. The distance
between AD and BC is marked as s, which on the one hand
determines the size of the shaded area, and on the other hand is a
function of the speed (marked as v) and determined by it, i.e., s = f
(v). Thus, it can be concluded that the shape of the quadrilateral
ABCD obtained varies with the angle of rotation of the front
wheels, and the area of this quadrilateral is the manifestation of
the function of the speed and the angle of rotation of the front
wheels.

2.5 Camera-Based Vision Detection of
Obstacles
2.5.1 Image Data Preprocessing
During the capture and transmission of images, the data signal
is very susceptible to the external environment, which brings
image noise, variations in the quality of the captured images,
and finally a direct influence on the recognition of obstacles

and the convergence of other data. Therefore, the captured
image in this study was pre-processed, such as image
denoising, to provide a clear depiction of the real road

FIGURE 8 | Pre-processed images.

FIGURE 9 | Interested obstacle Areas.

FIGURE 10 | Retaining images of the sensing area.

FIGURE 11 | Image segmentation process.

FIGURE 12 | Obstacle infographic.
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conditions and then improve the accuracy of the obstacle
detection recognition. The main methods for image pre-
processing adopted in this process include image
greyscaling, image denoising, image segmentation and the
application of image morphology [32], for noise removal in
image processing neighbourhood averaging, and median
filtering, and for image segmentation threshold-based
segmentation, region-based growth and merge
segmentation, and eigenvalue space clustering-based
segmentation.

2.5.2 Identification of Road Environment
Nowadays, the road system is very complicated especially
after lane lines marked, thus becoming a great change for the
vision system of driverless intelligent vehicles. Road
recognition becomes a key to the obstacle detection system
of these vehicles. It then necessitates the collection of lane
recognition images and the identification of real obstacles in
the lanes [33]. Considering this as well as the requirement for
a high degree of accuracy in time and obstacle description,
this study employed two main algorithms for lane
recognition: 1) The overall road surface algorithm, mainly
for the entire road surface gray detection and achieved using
the area detection method; 2) the lane detection algorithm,
achieved through the recognition of the edge or lane
separation.

2.5.3 Extraction of Interested Obstacle Areas
For the images acquired by the camera, we only extracted
the sensing area to avoid processing unnecessary parts of the
image, then reduce the processing time of the system, and
finally ensure the real-time performance of the system.
Based on the data transmitted by the LIDAR, a fixed
value was set to detect the location of the general area
where the cone ahead was located, and the results are
shown in Figures 7–9.

2.5.4 Obstacle Detection
The image segmentation technique is to segment the target
from the image and contributed to providing convenience for
the subsequent image processing. Spatial eigenvalues were
adopted to extract the obstacle from the image during the
obstacle detection of the captured by camera. Figure 10 shows
the image of the identified obstacle in the sensing area, where
the grey scale value of the other parts of the image was placed
at 0, and Figure 11 the final results after image segmentation.
As is seen in Figure 11, on the edge of the image exist some
burrs and unsmooth points. Hereby, the image morphology of
the open operation was introduced to remove the burrs and
points, and then the region growth segmentation to segment
the image, identify the information of the obstacle
segmentation and finally recognize the basic information of
the real obstacle, as shown in Figure 12. It is noted that when
the specific information is detected, the system will transmit it
to the planning and decision-making part of the intelligent
vehicle, which then will plan a safe route to bypass the

recognized obstacle and command the control system to
follow the planned.

3 CONCLUSION

Multi-sensor technology is becoming more efficient, and has been
increasingly employed in driverless intelligent vehicles in recent
years. Multi-sensor data convergence includes the integration of
vision systems with ultrasonic technology and laser scanning
radar with vision systems. This technology in the study of
unmanned intelligent vehicle obstacle detection effectively
solved the problems of insufficient data collection by a single
sensor and unstable unmanned intelligent vehicle [33]. OpenCV
algorithm functions were proposed to achieve the detection of
obstacles as well as the principle and algorithm of multi-sensor
data convergence. This paper firstly introduced the method of
obstacle identification and detection by laser scanning radar
during the process of obstacle detection, including the pre-
processing of laser data, and then elaborated the process of
obstacle identification based on camera, the acquisition of the
pre-processing of images, road recognition and finally detection
of lane edges and obstacle detection [34].

The technical approaches to obstacle detection in this study
can be summarised as follows: e current commonly used
technology in driverless intelligent vehicles: LIDAR-based
detection, vision system-based detection, ultrasonic-based
detection and multi-sensor-based data convergence detection.
The technical solution was proposed to determine according to
the actual situation.

1) The multi-sensor data convergence involves the conversion of
coordinates and data between sensors. In this study, the
vehicle body coordinate system, sensor coordinate system
and image coordinate system were designed as three
separate coordinate systems, and the interconversion
relationship among them was analysed, laying a foundation
for the later processes.

2) In the radar obstacle detection, the collected data was firstly
pre-processing to eliminate some camera shooting range
outside the point, thereby improving the efficiency of the
processing. Then, based on the driving condition of the vehicle
in straight, left- and right-turn, three situations of the
intelligent vehicle in front of the sensing area were
discussed to determine the location of the obstacle in the
sensing area, which is the preparation for the subsequent
obstacle target extraction.

3) In view of the enormousness of the amount of the information
contained in the camera-captured images of the road
environment, it is a great challenge to reduce the
processing time and enhance the efficiency of the system.
Thus, in this study image pre-processing was first performed
on the collected original pictures, the process of which
includes image greyscaling, image denoising and other
processing to retain the original information. Besides, the
data from the laser scanning radar and the on-board camera
were converged temporally and spatially, then the sensing area
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extracted and the obstacle detection completed in the sensing
area, which reduces the amount of and ensures the real-time
performance of the algorithm and the robustness of the
system.

Based on the above analysis, LIDAR or camera feature
oriented data convergence is suggested to realize a more
accurate identification and detection of obstacles.
Moreover, a joint calibration of the radar and camera and
error analysis will be helpful to improve the accuracy of the
data acquisition [35, 36].
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