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Carroll symmetry arises fromPoincaré symmetry upon taking the limit of vanishing speed of light.
We determine the constraints on the energy-momentum tensor implied byCarroll symmetry and
show that for energy-momentum tensors of perfect fluid form, these imply an equation of state
E + P � 0 for energy density plus pressure. Therefore Carroll symmetry might be relevant for
dark energy and inflation. In the Carroll limit, the Hubble radius goes to zero and outside it
recessional velocities are naturally large compared to the speed of light. The de Sitter group of
isometries, after the limit, becomes the conformal group in Euclidean flat space. We also study
the Carroll limit of chaotic inflation, and show that the scalar field is naturally driven to have an
equation of state withw = − 1. Finally we show that the freeze-out of scalar perturbations in the
two point function at horizon crossing is a consequence of Carroll symmetry. Tomake the paper
self-contained, we include a brief pedagogical review of Carroll symmetry, Carroll particles and
Carroll field theories that contains some new material as well. In particular we show, using an
expansion around speed of light going to zero, that for scalar andMaxwell type theories one can
take two different Carroll limits at the level of the action. In theMaxwell case these correspond to
the electric and magnetic limit. For point particles we show that there are two types of Carroll
particles: those that cannot move in space and particles that cannot stand still.
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1 INTRODUCTION

In cosmology, the equation of state of a perfect fluid determines the evolution of the Universe. The
parameter w relating the pressure and energy density, P � wE, of the fluid, fixes the scale factor a(t)
in the Friedmann-Lemaître-Robertson-Walker (FLRW) metric via the Einstein equations. For
instance, w = 1/3 and w = 0 correspond to ultra-relativistic matter and non-relativistic matter
respectively. Generically we have a(t)∼ t

2
3(1+w) for a spatially flat Universe (which is what we will

consider in this paper). The case w = − 1 is special and produces an exponentially expanding
Universe a(t)∼ eHtwithH the Hubble constant. In cosmological models based on a single scalar field
of which the energy-momentum tensor takes the form of a perfect fluid, we have

w �
1
2c2

_ϕ
2 − V ϕ( )

1
2c2

_ϕ
2 + V ϕ( ), (1)

where we suppressed the spatial derivatives ziϕ as they are treated as inhomogeneous fluctuations in
perturbation theory. According to the inflationary paradigm, at early times the inflaton field moves slowly
and one gets w = − 1 since the time derivatives _ϕ are small compared to the potential energy V(ϕ).
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There is a different way of saying the same thing, but it relates
to the Carroll limit1 that we discuss in this paper. Using the
conjugate momentum fields πϕ � 1

c2
_ϕ, we can rewrite (1) as

w �
1
2c

2π2
ϕ − V ϕ( )

1
2c

2π2
ϕ + V ϕ( ) � −1 + π2

ϕ

V
c2 +O c4( ). (2)

In the last equation we have taken c→ 0 and assumed that the
potential is non-zero and stays finite in the c→ 0 limit, otherwise
w = + 1. The leading term in the c→ 0 expansion corresponds to a
perfect fluid with w = − 1 and the other terms are suppressed in
terms of higher powers in c. It is important that in this limit the
momentum πϕ stays finite instead of the quantity _ϕ. Keeping πϕ
finite when c → 0 can only happen when _ϕ → 0, in other words,
the field is slowly varying. This is precisely the regime in which
inflation works, and we will work out the example of chaotic
inflation in the last section of this paper.

There is an intuitive argument as to why we might want to
consider small values of the speed of light. According to the
Hubble-Lemaître law, the recessional velocity v of an object with
respect to an observer separated by proper distance d, is given by
v = Hd. If the object is far outside the Hubble sphere defined by
the Hubble radius RH = cH−1, its recessional velocity satisfies v≫
c. For a nice discussion and review of this argument, see e.g. [3].
Thus we are in an opposite limit of the Newtonian, or non-
relativistic, regime. In cosmological terms, these super-Hubble
scales define the regime in which Carrollian symmetry will arise,
that is our claim. As we send the speed of light to zero, the Hubble
radius goes to zero, so essentially the entire Universe becomes
super-Hubble and hence Carrollian. The Hubble radius defines
the causal patch of an observer, and as the Hubble radius goes to
zero, the theory becomes ultralocal, one of the main
characteristics of Carrollian physics.

As we will show in this paper, Carroll symmetry applied to an
energy-momentum tensor that takes the form of a perfect fluid
implies E + P � 0, a necessary condition for dark energy. It is not
a sufficient condition since both E and P could vanish in the
Carroll limit. The case of a free relativistic scalar field without
potential (sow = + 1) is a concrete example of a situation in which
both energy and pressure vanish when c → 0. What we show in
this paper is that Carroll fluids (energy-momentum tensors of the
form of a perfect fluid) with nonzero energy density must satisfy
w = − 1 and therefore model dark energy. When w is time
dependent, as e.g. with scalar field inflation, it will be driven to
w = − 1 in the Carroll limit. Another consequence of Carroll
symmetry is that scalar perturbations freeze out when they cross
the horizon, as we demonstrate at the end of this paper.

The general philosophy we advocate is not only to understand
the Carroll point itself, but to understand properties of the
Universe in an expansion in c around the value c = 0. We
build up spacetime in terms of small Hubble cells, with radius
cH−1, the Hubble horizon, and as we expand away from c→ 0, we
make the Hubble cells local patches in which observers live. For

small values of c, the physics is ultralocal, and lightcones close up,
which is the hallmark of Carroll spacetime geometry. As c
increases the Hubble radius grows, so that more and more
degrees of freedom can enter the Hubble horizon and we
build up the relativistic properties of the Universe.

A remark is in order on what we mean when we send the speed
of light to zero, since only dimensionless parameters have
physical meaning. Thus in practice we take limits in which the
ratio c/vc goes to zero with vc a characteristic velocity of the setup
in question2. When considering the dynamics of particles in the
Carroll limit, vc is obviously the velocity of the particle, while in
e.g. Carrollian electrodynamics it will be an appropriate
combination of the size of the electric and magnetic fields. As
explained above, in the context of cosmology we can consider the
recessional velocity vc = Hd of an observer at some distance d
outside the de Sitter horizon. There might also be interesting
situations in condensedmatter models, in which c is not the speed
of light but instead a Fermi-velocity, or a sound velocity.
Supersonic phenomena should then obey the constraints
imposed by Carroll symmetry, we expect.

The Carroll symmetry of the limiting point where c = 0 may
provide an organizing principle in the study of the perturbative
expansion around it. For instance, this vantage point has recently
proven to be beneficial in the study of the opposite limit, namely
the non-relativistic limit c → ∞. More concretely, a non-
relativistic expansion of the relativistic Lie algebra reveals the
underlying structure of the 1/c2 expansion in general relativity
coupled to matter [4–6]. Although we will not address
exhaustively the c2 expansion in the present work, we do
adopt this approach to obtain useful insights into Carroll
scalars and electrodynamics. Notably, we construct a
Lagrangian that reproduces the magnetic sector of Carroll
electrodynamics, which was previously unknown. More
generally, before turning to these field theory considerations,
we briefly review as an aid to the reader Carroll symmetry and
Carroll particles. This part will also include some new results. In
particular, we show that a zero energy particle always moves while
a nonzero energy particle cannot move in space.

The Carroll limit and corresponding symmetry algebra were
initially studied in [1, 2]. It turns out that this limit is also non-
trivial from the following points of view, e.g., in [7] it was
demonstrated that non-trivial dynamics for coupled Carroll
particles can be realized and in [8–11] Carrollian field theories
were studied. Models with tachyonic aspects respecting
Carrollian symmetries were considered in, e.g. [12–14], and
will furthermore feature in this work. Aspects of Carrollian
gravity have received attention in e.g. [15–29].

As has been argued in this introduction, in the context of
cosmology, the manifestation of Carroll symmetry in
hydrodynamics can be important. Carroll fluids have
previously been addressed in [30–33].

1The c → 0 Carroll limit of the Poincaré group, being the opposite of the c → ∞
Galilean (non-relativistic) limit, was first considered in [1, 2].

2This is not the same as an ultra-relativistic limit, where c/vc→ 1. The Carroll limit,
which we consider in a given spacetime dimension, is therefore not an ultra-
relativistic limit, a terminology that is sometimes inappropriately used in the
literature.
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The outline of this article is as follows. In Section 2 we review
some basics of Carroll transformations and representations of the
Carroll algebra.We furthermore investigate the Carroll limit of de
Sitter space. In Section 3 we treat Carroll particles and their
realisation from an extended phase space approach. We
delve into Carroll field theory in Section 4 and
through an expansion in small c we systematically obtain
Carroll boost invariant field theoretical realisations of scalar
fields and Maxwell fields. We notably present an action that
yields the equations of motion for the magnetic Carroll
section. In Section 5 we establish the general equation of
state E + P � 0 for perfect Carroll invariant fluids. The
Carroll limit of the Friedmann equations is investigated
in Section 6 and in Section 7 we analyze what happens
to inflation in the Carroll limit. Finally, in Section 8 we
study scalar perturbations during inflation and consider
freeze out in the context of the Carroll limit. We
conclude with an outlook in Section 9.

1.1 Note Added
As this work was nearing its completion the preprint [34]
appeared. In that work the authors consider a method to
obtain inequivalent Carroll contractions of Poincaré invariant
field theories at the level of the action. Our results of the Carroll
‘magnetic’ and ‘electric’ contractions of the scalar action and the
Maxwell action, presented in Section 4, overlap and agree with
their results. However, rather than adopting a Hamiltonian
perspective, we employ a complementary approach as we view
these contractions as arising in the context of an expansion
around c → 0.

2 CARROLL TRANSFORMATIONS AND
CARROLL LIMITS

2.1 Carroll Transformations and Algebra
It might seem counter-intuitive that the limit c → 0 gives
something non-trivial, but it is well-documented in the
literature (see e.g. Refs. [1, 7–9]) that such a limit can be
taken on the Lorentz boosts to yield

t′ � t − �b · �x , �x ′ � �x. (3)
This can easily be derived from the Lorentz boost generators

Li ≡ 1
cx

izt + ctzi. In the limit of c → 0, and redefining the
generators Ci ≡ cLi, we find that Ci → xizt, which generate the
Carroll boost transformations given in Eq. 3. We will take a
detailed look at the Carroll limit in the next subsection.

An interesting consequence is that velocities transform under
Carroll boosts as rescalings,

v′ i � dx′i

dt′ �
vi

1 − �b · �v. (4)

This implies one has to consider the cases of zero and nonzero
velocities separately, as they are not related by Carroll boosts,
contrary to the Lorentzian and Galilean cases. A useful quantity is
the unit-norm velocity vector

ni ≡
vi

| �v| , n′ i � ± ni, (5)

which has the property that it stays finite in the zero velocity limit.
It is boost invariant, up to a possible sign flip that can arise if the
boost parameter is large enough, i.e. for �b · �v> 0. In fact, there is a
discontinuity at �b � �v/v2 above which the velocity changes
direction under boosts. Actually there is a discontinuity for
any �b � �v/v2 + �b⊥ where �b⊥ is orthogonal to �v.

The Carroll boosts together with the translations and spatial
rotations form the Carroll algebra. The Hamiltonian in the
Carroll algebra is a central charge. It commutes with all
generators, and appears as a central charge in the commutator
of translations and boosts:

Pi, Cj[ ] � δijH , i � 1, . . . , d, (6)
with H = zt and Pi = zi. Observe that the Hamiltonian is Carroll
boost invariant since zt′ � zt. This is to be contrasted with
Lorentzian or Newtonian notions of energy, which transform
under boosts.

Because of translation symmetry in space and time, there will
exist a conserved energy-momentum tensor. In the case of
Lorentz symmetry, the energy-momentum tensor of a
relativistic system is symmetric in the indices, and so the
question arises: what is the equivalent for Carroll symmetry?
The rotation symmetry of course still requires symmetry in
spatial indices, but the Carroll boost will give something new.
Writing the generators of the Lorentz and Carroll boosts as
Li ≡ Lμi zμ and Ci ≡ Cμ

i zμ respectively, we find from the
Lorentz symmetry that the energy-momentum tensor is indeed
symmetric

zμ Tμ
]L

]
i( ) � 0 → 1

c
Ti

t + cTt
i � 0, (7)

whereas from imposing Carrollian symmetry we get3

zμ Tμ
]C

]
i( ) � 0 → Ti

t � 0. (8)
Notice that (Eq. 8) follows from (Eq. 7) by taking c→ 0 while

keeping Tt
i, finite. So the hallmark of Carroll symmetry is that

Ti
t � 0. In Section 5, we prove that for a perfect fluid, this implies

E + P � 0.
It will be useful to have the Carroll-covariant transformation

law on the energy-momentum tensor. Under a general coordinate
transformation xμ → x′μ = x′μ(x) we have, T′ μ

] � zx′μ

zxρ
zxλ

zx′]
Tρ

λ.
Under a Carroll boost, we find T′i

t � Ti
t and for the other

components

T′t
t � Tt

t − biT
i
t , T′i

j � Ti
j + bjT

i
t ,

T′t
i � Tt

i + biT
t
t − bjT

j
i − bibjT

j
t, (9)

where we used the Carroll boost transformations (3) and one can
further simplify these expressions by setting Ti

t � 0.

3This is an on-shell constraint, i.e. Ti
t should only vanish upon using the equations

of motion.
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The fact that in Carroll spacetime Ti
t � 0, implies that there is

no energy flux possible and that the energy enclosed in any fixed
volume is necessarily conserved. This is very strange, but as we
shall see, it means that if the energy of a particle is non-zero, this
particle cannot move (and there is only rest-energy), but if the
particle can move, its energy must be zero. So it is possible to have
momentum Tt

i, but no energy flux Ti
t. We illustrate this further

in Figure 1.

2.2 Carroll Transformations From Lorentz
Transformations
In this subsection, we derive the Carroll transformations from the
Lorentz transformations by taking the limit of vanishing speed of
light. We denote the Lorentz boost transformation parameter by
�β with 0≤ | �β|< 1 and under a Lorentz boost we have

ct′ � γβ ct − �β · �x( ) , �x
′
‖ � γβ

�x‖ − �βct( ) ,

�x
′
⊥ � �x⊥ , γβ �

1������
1 − �β

2
√ , (10)

with �x � �x‖ + �x⊥ the decomposition into components parallel
and perpendicular to the boost parameter �β. To get the Carroll
transformations from this, we consider the scaling limit
(following [8])

�β ≡ c �b , c → ϵc , ϵ → 0. (11)
The parameter �b becomes the Carroll boost parameter, and its

norm runs from zero to infinity. We keep it fixed in the limit ϵ→
0, and get

t′ � t − �b · �x , �x ′ � �x. (12)
These are the Carroll boosts. Under two consecutive

Carroll boosts with parameters �b1 and �b2, we generate
another one with boost parameter �b3 � �b1 + �b2. Notice the
difference with the non-relativistic Galilei limit which is
obtained by setting �β � c−1 �b and then sending c → ∞. This
gives the Galilei algebra as one can easily check. In a Galilei
Universe, time is absolute, whereas in a Carroll Universe,
space is absolute. Since the Lorentz boost factor γβ → 1 in the

Carroll limit, there is no Lorentz length contraction. There is
no time dilation in a Carroll spacetime, but there is a time
shift for events that are spatially separated. If a Carroll
observer measures a time difference Δt between two
events separated by Δ �x, then a boosted Carroll observer
measures the same distance, but a shifted time difference
given by

Δt′ � Δt − �b · Δ �x. (13)
In other words, in a Carroll world time is relative, in contrast

to the Galilean case, where space is relative. If a particle travels
over a distance Δ �x in a time Δt, then after a boost with �b · �v> 1
with �v � Δ �x/Δt, we get Δt′ < 0. What this all really means is that
the coordinate time is not a good clock to describe the motion of a
particle. Instead we will in the next section introduce a proper
time, the affine parameter along the worldline of the particle. This
proper time serves as an evolution parameter describing the
motion of a particle.

Since we can have Δt > 0 and Δt′ < 0, two Carroll observers
do not necessarily agree on which event happened first. This
sounds like a violation of causality, but it is not because for it
to be a violation of causality physical information would have
to be sent from one event to the other and since they are
outside each other’s Carroll light cone (as a result of the
physical separation and the fact that light cones are lines at a
fixed point in space) this would require a particle with a
nonzero velocity. In a Carroll Universe the latter is
tantamount to a tachyonic particle. We will show further
below that such particles exist and they in principle can lead
to a violation of causality.

Spacetime distances become spatial distances in the c → 0
limit. The Minkowski metric degenerates as
ds2 � −c2dt2 + d �x 2 → d �x 2. Spatial distances are invariant
under the Carroll group. Notice also that the Lorentz invariant
−c2t2 + �x 2 becomes the Carroll invariant �x 2 in the limit.
Lightrays, for which this invariant is zero, in Carroll spacetime
become �x � 0 and t arbitrary. Therefore, the coordinate t
parametrises the light cone. If �x � 0, this means that light is
not moving in space and the light cone has closed up.

Now we consider the contraction for the Lorentz
transformations on energy and momentum

FIGURE 1 |Consequences of a zero energy flux. Left: consider a particle with energy E enclosed by a volume V. If the particle canmove, it could leave V and energy
inside V is not conserved unless E = 0. If the particle cannot move, then there can be a non-zero rest energy E0 which stays inside V. Particle decay of a particle with non-
zero rest energy can also not happen. Right: interactions are possible, but only between particles of zero and non-zero energy, or between particles with zero energy. In
this figure, particle 2 is attracted to particle 1, but to be consistent with zero-energy flux through V2, it must have vanishing energy E2 = 0. When it enters V1, the total
energy inside V1 is then still conserved. Particle 1 is all the time at rest with rest energy E1. Under Carroll boosts, energies stay the same, but velocities are rescaled.
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�p‖′ � γβ
�p‖ − �β

E

c
( ) , �p⊥′ � �p⊥ ,

E′
c
� γβ

E

c
− �β · �p( ),

(14)
with �p � �p‖ + �p⊥. In the Carroll limit we get

�p′ � �p − �b E , E′ � E. (15)
These are indeed the correct transformation rules in Carroll

spacetime (as dictated by the Carroll algebra), and we have
rederived that the Hamiltonian is Carroll boost invariant.

We can also look at the velocity of a particle, �u ≡ d �x/dt. Under
Lorentz boosts, the parallel and perpendicular components
transform as

�u‖′ t′( ) � �u‖ − �βc

1 − �β· �u
c( ) , �u⊥′ t′( ) � �u⊥ t( )

γβ 1 − �β· �u
c( ). (16)

Taking the limit of (Eq. 16) yields

�u′ t′( ) � �u t( )
1 − �b · �u( ), (17)

which was also obtained directly in Carroll spacetime, see
(4). As we mentioned there, the transformation law of
velocity is quite strange. If the velocity was zero, it
remains zero after a (finite) Carroll boost. These are the
particles, considered e.g. in [7]. If it was non-zero, we can
boost it to any other value, as large as we want. Hence we
have two distinct classes, not related by Carroll boosts:
particles with zero velocity and particles with non-zero
velocity. We can even change the direction of the
velocity vector under a large enough Carroll boost. That
is by itself not surprising, but for small enough boost
parameters with �b · �v< 1, this will not happen.

Particles with non-zero velocity in the Carroll limit, satisfy
v > c → 0, and hence they are tachyonic. As discussed above,
they can cause violation of causality. Clearly this is
unphysical. The strict c = 0 limit is unphysical. But this is
not so different from the opposite limit, c → ∞. The strict c =
∞ limit is an unphysical theory as well, as it causes action at a
distance. It nevertheless is useful to study the symmetries and
dynamics that emerge in this limit. The proper way of
thinking about both Carrollian and Galilei limits is to
consider them as expansions in c/v and v/c respectively.
We will discuss in more detail the dynamics of Carroll
particles in the next section.

2.3 Representations of the Carroll Algebra
We will next discuss representations of the Carroll algebra in
analogy with the massive and massless representations of the
Poincaré algebra that are characterised by the eigenvalues of the
momentum squared and the norm of the Pauli–Lubanski vector.
Our results agree with those of [35].

The Carroll algebra consists of the generators H
(Hamiltonian), Pi (spatial momenta), Ci (Carroll boosts), and
Jij = − Jji (spatial rotations). The nonzero commutators are
given by

Pi , Cj[ ] � δijH, (18)
Jij , Pk[ ] � δikPj − δjkPi, (19)
Jij , Ck[ ] � δikCj − δjkCi, (20)
Jij , Jkl[ ] � δikJjl − δjkJil + δjlJik − δilJjk, (21)

where i, j, k, l run over 1, . . ., d. Representations are labelled by the
eigenvalues of the central element H and the quartic Casimir
M2 � 1

2MijMij where

Mij � HJij + CiPj − CjPi. (22)
We will momentarily specialize to d = 3 and be quite explicit.

Before doing so, we can describe the representations for general d
a bit more heuristically. There are basically two cases, H = 0 and
H ≠ 0. When H = 0, P and C commute and so they can be
simultaneously diagonalized and states can be labeled by their
eigenvalues. Rotations act on these eigenvalues and, possibly,
simultaneously on an internal vector space. Once we extract an
irreducible representation of the rotation algebra we can
construct an irreducible representation of the Carroll algebra.
In the absence of the internal vector space the zero energy
irreducible representations can be labeled by PiPi, PiCi, and CiCi.

For H ≠ 0 the commutation relations of Pi and Ci are just like
those of coordinates and momentum and can be represented by
wave functions of Pi or equivalently Ci. We can combine these
wave functions with a representation V of the rotation group, and
then the rotation group acts simultaneously on this
representation and by rotating Pi and Ci. States in the
irreducible representation take the form |Pi〉 ⊗ |ψ〉 with
|ψ〉 ∈ V.

We now describe the case of d = 3 spatial dimensions more
explicitly. For further details we refer to Supplementary
Appendix SA. Here we summarise the main points.

For d = 3 it is useful to define Wk and Sk via

Mij � εijkWk , Jij � εijkSk, (23)
where εijk is the Levi-Civita symbol. In d = 3 we can also define the
operator L = SiPi (which is closely related to the helicity operator).
The Carroll algebra is a semi-direct sum of the Abelian ideal
spanned by {H, Pi} and the Euclidean algebra iso(d) spanned by
{Jij, Ci}, so one can consider induced representations using the
little group method. Our findings are:

• When E ≠ 0 we can always go to a frame where pi = 0 by
performing a Carroll boost. In this case the little group is
SO(3) and the eigenvalues ofWiWi are E

2s(s + 1) with s = 0,
1/2, 1, . . .. We can always go to a frame in which the states
are of the form |E ≠ 0, �p � 0, s, m〉 where m = − s, − s + 1,
. . ., s is the eigenvalue of S3, the spin along the z-axis.

• When E = 0 the momentum pi is Carroll boost invariant.
Using a rotation we can without loss of generality set �p �
pê3 where ê3 is the unit vector along the z-axis. On such
statesWi = εijkCjPk so thatW3 = 0. The little group is ISO(2)
and is generated by W1, W2, L. This case splits into two
subcases. One for whichWiWi = 0 and one for whichWiWi

> 0. We will always only consider the former. WhenWiWi =
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0 we can always go to a frame in which the states are of the
form |E � 0, �p � pê3, λ〉 where the helicity λ is the
eigenvalue of S3.

Further below we will see examples of either of these two
representations.

2.4 Carroll Limit of de Sitter Space
In gravity, spacetime is curved, so it is important to study the
Carroll limit of Lorentzianmetrics. For the purposes of this paper,
we look at one particular example relevant for cosmology, namely
de Sitter space consisting of pure dark energy. The exponentially
expanding Universe is described by the de Sitter metric, which in
planar coordinates takes the form

ds2 � −c2dt2 + e2Htd �x 2, (24)
with H the Hubble constant and with isometry group SO(4, 1) in
four spacetime dimensions. The isometry group contains three
rotations and three spatial translations, and furthermore the
isometries corresponding to scale and special conformal
transformations which infinitesimally take the form

δt � − α

H
, δ �x � α �x , (25)

δt � −
�b · �x
H

, δ �x � �b · �x( ) �x +
�b

2
c2

H2e
−2Ht − �x 2( ). (26)

All factors of c are made explicit here, and so in the limit c→ 0,
keeping H fixed, the b-isometry becomes the Carroll isometry

δCt � −
�b · �x
H

, δC �x � �b · �x( ) �x −
�b

2
�x 2, (27)

leaving the Carroll metric4 ds2 � e2Htd �x 2 invariant.5 In fact, this
isometry is the infinitesimal special conformal transformation on
R3, and the complete isometry group of this Carroll metric is the
conformal group on R3. This hints towards a holographic
description of (3 + 1)-dimensional de Sitter cosmology in
terms of a three-dimensional Euclidean conformal field theory
[38, 39] (see also [40, 41]), and generalizes straightforwardly to
other dimensions. We obtained it here in the limit c→ 0, but one
finds the same conformal transformations at late times, t → ∞.
This suggests that late time de Sitter cosmology is governed by
Euclidean conformal correlators, and this conformal symmetry
can be understood from the Carroll symmetry that is present at
super-Hubble scales.

The metric in (Eq. 24) is written in planar coordinates and
they fit into the FLRW ansatz. One can also use conformal time, τ
= − 1/(aH), then we obtain the Carroll metric

ds2 � −c2dτ2 + d �x2

H2τ2
→c → 0

c → 0
1

H2τ2
d �x2, (28)

which is again the metric on three-dimensional Euclidean space,
up to a conformal factor.

3 CARROLL PARTICLES

In this section we consider various aspects of Carroll particles.
Point particles can conveniently be described in an extended
phase space system, which is useful for Carroll particles (see e.g.
also [7]) as generic Carroll systems do not seem to have a well-
defined initial value problem with respect to coordinate time.
This follows from the fact that, as discussed in the previous
section, Carroll transformations can change the direction of
trajectories and even make them frozen in time. To have a
well-defined initial value problem one can employ particles
which use some internal clock time (cf. proper time) which
can be used to define dynamics.

3.1 Extended Phase Space
We first briefly recap how the extended phase space formulation
works for ordinary particles. Consider the worldline action for a
particle given by

S0 � −∫ ds (E · _t − �p · _�x) , (29)

which describes an extended phase space with d + 1 coordinates
and d + 1 momenta (d equals the number of spatial coordinates)
and zero Hamiltonian. Notice that the combination E · _t − �p · _�x is
invariant under both Lorentz and Carroll boosts.

To reproduce some familiar systems from this we consider the
class of actions

S � −∫ ds (E · _t − �p · _�x − λαOα +H) , (30)

where Oα are some constraints with Lagrange multipliers λα and
H is some Hamiltonian on the extended phase space. In order
for this to make sense we need that {H, Oα} = cαβOβ so that
time evolution preserves the constraint surface. We can have
first class (commuting on the constraint surface) or second
class constraints. In the first case the Lagrange multipliers
will not be fixed as a reflection of the gauge symmetry which
first class constraints typically generate. In the second case
the Lagrange multipliers will typically be fixed by the
constraints and the equations of motion, and we can pass
to the reduced phase space. One way to find the actual
dynamics of the system, is by examining the resulting field
equations.

If the system has a set of symmetry generators on the extended
phase space, the constraints and Hamiltonian must be compatible
with these symmetries in order to preserve them. This can be
studied canonically (i.e. through Poisson brackets of Oα and H
with the symmetry generators) but also through the action (i.e.
verifying that it is invariant under these symmetries). Now, let us
consider some cases:

4More precisely, this is the spatial metric hμ] of Carrollian geometry. The latter
includes in addition the timelike vector (or inverse vielbein) vμ, satisfying vμhμ] = 0.
See e.g. [18, 36]. Correspondingly, an isometry ξμ of a Carrollian geometry is
defined by the conditions Lξhμ] � Lξv

μ � 0, where Lξ is the Lie derivative.
5This Carrollian spacetime is a homogeneous spacetime, referred to as the light
cone in [37].
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1) O1 = E − p2/2m, H = 0. This includes a first class constraint.
The field equations are

_t � λ1, _E � 0, _�p � 0, _�x � λ1
m

�p , (31)

and one sees that these still depend on λ1. The action is s-
reparametrization invariant, where one also needs to
transform λ1. We can eliminate λ1 to obtain dE/dt � d �p/dt � 0
and �p � md �x/dt where everything depends on t rather than s.
Moreover E = p2/2m. This describes a standard free massive non-
relativistic particle. Eliminating the constraints in the action gives
the usual form

S � ∫ dt
p2

2m
� m

2
∫ dt _�x 2

, (32)

where the dot in the last equation now stands for the derivative
with respect to t.

2) O1 = E − p2/2m, O2 = t − s; H = 0. We now have second class
constraints and the field equations are

_t � λ1, _E � −λ2, _�p � 0, _�x � λ1
m

�p . (33)

If we combine these with the constraints we find λ2 = 0 and λ1 = 1,
so the Lagrange multipliers are completely fixed. Again, one finds
a standard non-relativistic particle, since the extra constraint
simply relates t to s but does not have any essential impact.

3) O1 = E, H = p2/2m. This includes a first class constraint plus a
non-trivial Hamiltonian. The field equations are

_t � λ1, _E � 0, _p � 0, _�x � �p/m , (34)

which is once more a standard particle. However, t is no longer
the usual time variable, as this role has been taken over by s. In
fact the dynamics in t and E completely decouples. The energy is
not given by E but by the Hamiltonian H.

4) O1 � E −H(p, x), H � 0. This is a another first class
constraint and case 1 above is a special case of this. Rather
than looking at the field equations, we integrate out E and λ1
which yields _t � λ1 and E � H(p). Plugging this into the
action we obtain

S � ∫ dt �p · d
�x

dt
−H(p, x)( ) , (35)

which is just the Lagrangian in first order form. So such a first
class constraint corresponds to standard dynamics in general.

3.2 Carroll Symmetry and Single Carroll
Particles
We now apply the extended phase space technique to the
dynamics of Carroll particles, starting with a single particle.
The standard Carroll algebra has generators

E , Exi , pj , x[ipj] , i, j � 1, . . . , d , (36)
for time translations, Carroll boosts, space translations and
rotations respectively. It follows again that E commutes with
the other generators, and hence is a central charge. One could
imagine more complicated realizations of this algebra on a given
phase space, but we will restrict to this simple choice.

To add a constraint consistent with Carroll symmetry, it must
Poisson commute with these generators. Because of time and
space translational invariance (or Poisson commutability with E
and �p) the constraint can only depend on E and �p, and rotational
invariance restricts it to a function of E and p2. But this can only
commute with the generators E �x if it does not depend on p2. It
follows that E − E0 is the only constraint that we can introduce.
This produces the rather trivial case of a particle with energy E0
and unconstrained momenta, which is also seen in the
representation theory in section 2.3. The extended phase space
action based on this constraints reads

S � −∫ ds E · _t − �p · _�x − λ E − E0( )( ), (37)
giving rise to the equations of motion

_t � λ , _E � 0 ,
_�x � 0 ,

_�p � 0 . (38)
This corresponds to the Carroll particle at rest. It has zero

velocity and constant energy E0. This is to be expected since in the
Carroll limit, the light-cone closes and only particles with zero
velocity can survive the c → 0 limit.

There is, however, an interesting alternative choice
corresponding to the introduction of two constraints, E = 0
and p2 � p2

0. This is consistent because the commutator of the
constraint p2 − p2

0 with E �x is proportional to the first constraint.
This possibility was not included in the phase space analysis of
[7]. It is easy to write down an action for this case. Using the
extended phase space action (30) with constraints O1 � E,O2 �
p2 − p2

0 and H = 0 for some constant p0. One can subsequently
eliminate the Lagrange multipliers to get λ1 � _t and

λ2 � − 1
2p0

��
_�x
2

√
, (39)

such that the action becomes

S �x[ ] � p0 ∫ ds

����
_�x · _�x

√
, L �x,

_�x( ) � p0

����
_�x · _�x

√
. (40)

Indeed, from the Lagrangian follows the momentum

�p � zL

z
_�x
� p0

_�x���
_�x
2

√ � p0
�n, (41)

which satisfies the contraint

O2 ≡ �p 2 − p2
0 � 0, (42)

as it should. The equation of motion says that �p and therefore �n is
constant in time. E and t decouple from the dynamics and there is
still reparametrization symmetry on the worldline. One can use
this to fix a gauge | _�x| � p0. Then the particle trajectories are of the

Frontiers in Physics | www.frontiersin.org April 2022 | Volume 10 | Article 8104057

de Boer et al. Carroll Symmetry

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


form �x(s) � �p0s + �x0 for some vector �p0 with | �p0| � p0. The
solution for the momentum then becomes �p � �p0, and we recall
that the energy is zero.

We thus confirm the properties concluded in the previous
section as a consequence of having a zero energy flux: If particles
can move, they must have zero energy, and if they have non-zero
energy, they cannot move and there is only rest energy. Having
established this, we now turn to the question of how these
particles can arise from a relativistic theory by taking the
limit c → 0.

3.3 Carroll Particles From Relativistic
Particles
Let us consider a free relativistic particle with energy E, mass m
and momentum �p. We denote the velocity of the particle by �u �
d �x/dt and u2 � �u · �u. The relations between them are given by

�p � m �u�����
1 − u2

c2

√ , E � mc2�����
1 − u2

c2

√ , E2 � �p 2c2 +m2c4, (43)

and hold in any Lorentz frame.
We now encounter a subtlety when taking the Carroll limit.

The gamma-factor associated with the particle with velocity �u
does not seem to have a well-defined limit

γu �
1�����

1 − u2

c2

√ c→0
→

? (44)

Notice that this is a different object compared with the
gamma-factor in the Lorentz transformation that contains the
boost parameter �β, which always goes to unity in the Carroll limit:
γβ → 1. Here we are not contracting the boost parameter, instead
we are searching for a consistent limit of physical quantities under
a Carroll contraction.

If we keep u fixed and non-zero, this expression becomes
imaginary in the Carroll limit. It seems there are two options:
either we require that the Carroll velocity identically vanishes, u =
0, and then γu → 1, or we allow for imaginary values

γu → ∓ i
c

u
, u ≡ | �u|, (45)

where we allow for the two branches of the square root. This
expression for γu vanishes in the strict Carroll limit, but this is the
leading term in the small c expansion.

The case of zero velocity, �u � 0 corresponds to the Carroll
particle at rest. The limit c → 0 is rather trivial, but we take the
limit such that there is still rest energy E0. To achieve this we keep
the combination mc2 fixed in the Carroll limit. The energy and
momenta for these particles then are

E � E0 � mc2 , �p � 0. (46)
We now consider the more interesting case in which

γu � ∓ i c
u. Substituting this into the expression for the

momentum, we find

�p � ∓ imc( )
�u

u
� ∓ imc( ) �n. (47)

This can only make sense and yield real and non-zero values of
the momentum if we keep mc fixed and the original relativistic
particle was a tachyon, so

p0 ≡ − imc, (48)
for some real p0 and therefore m2 < 0. That tachyons enter into
the picture is not so surprising since (45) also follows from u2 > c2.
Notice furthermore that the scaling law on the massm is different
as compared to the case of the relativistic massive particle with
zero velocity, where the massm scales like ϵ−2 in the Carroll limit.
The momentum of these tachyon-like particles satisfies the
constraint p2 � p2

0 since �n is of unit norm. Furthermore, we
find that the Carroll particle has zero energy because of the
cancellation �p

2
c2 +m2c4 � �p

2
c2 − p2

0c
2 � 0 (thanks to the

tachyon!), and hence the energy and momenta for these
particles are

E � 0 , �p � ± p0
�n. (49)

Notice the ± sign in the momentum, which is a consequence of
the fact that the momentum as a function of the velocity is no
longer single-valued (as follows from (Eq. 45)). The velocity u is
undetermined and arbitrary but non-vanishing. These Carroll
particles, for p0 ≠ 0, cannot be put to rest by a boost, they
always move.

It is interesting to contrast Eq. 49with (Eq. 41). The latter does
not have a sign ambiguity. To go from (41–49) we need to divide
the numerator and the denominator of (Eq. 41) by _t. However _t
can have either sign which is the origin of the sign ambiguity of �p
when expressed in terms of the velocity �u � _�x/ _t. This illustrates
what was stated previously, namely that the more convenient
evolution parameter is the proper time s as opposed to coordinate
time t.

A similar representation with zero energy can be found from
the Carroll limit of massless particles. These have dispersion
relation E = pc, and for fixed p, we have E→ 0 in the Carroll limit.

3.4 Many-Particle Carroll Systems
It is relatively easy to generalize the extended phase space
approach to many particles which we label by a = 1, . . ., N.
The action on extended phase space is now

S � −∫ ds Ea _ta − �pa · _�xa − λαOα +H( ), (50)

where we sum over a (the number of particles) and α (the number
of constraints). To get a standard classical mechanical system of
many particles, we can either choose a set of first class constraints
Ea −H( �xa, �pa) � 0 for all a with H the total Hamiltonian (that
we assume to be time independent) andH = 0, or choose first class
constraints Ea = 0 and add an explicit Hamiltonian H just as we
did for the single particle case. In either case, using the gauge
symmetries, this leads to standard actions for multiple particles
with a single time variable t � ∑N

a�1ta.
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We now apply this to a system of many Carroll particles, as
was also considered in Ref. [7]. In the case of N particles, and can
realise the generators of the Carroll algebra as∑

a

Ea , ∑
a

Ea
�xa , ∑

a

�pa , ∑
a

x k[
a p

l]
a , a � 1, . . . , N. (51)

Apart from rotations, the following set of building blocks
commute with the Carroll algebra:

Ea , �xa − �xb , Ea
�pb − Eb

�pa , (52)
but also the combinations

Eatbc − �pa · �xbc , (53)
with tab = ta − tb and �xab � �xa − �xb. The building blocks (52) and
(53) form a closed algebra under the Poisson bracket6 and are
thus first class.

To construct an interacting Carroll system, we need to find a
set of commuting constraints, or as shown above, a set of
commuting constraints plus a Hamiltonian. In fact, we only
need that the variation of the Hamiltonian and the
constraints is proportional to the constraints, as in that
case we can make the theory invariant by letting the
Lagrange multipliers transform.

For Carroll symmetry this means that we can take first class
constraints of the form Ea −H whereH is now some rotationally
invariant function of the invariants (52). Any H which is a
function of (Eq. 52), and rotationally invariant, can in
principle be used, giving rise to a fairly rich spectrum of
possible interacting Carroll particles. This does not
contradict the representation theory as that only applies to
the center of mass degree of freedom. These examples were
studied in [7].

It is also possible to take the other point of view where we for
example impose first class constraints Ea = 0 for all a and add
an explicit Hamiltonian H. But now something interesting
happens. As long as the Hamiltonian does not involve the
time coordinates, its Poisson bracket with the generator of
Carroll boosts will be proportional to a linear combination of
the Ea. This is not zero, but we can compensate for this by a
suitable transformation rule for the Lagrange multipliers.
Therefore, we need not worry about boost invariance of H,
and in fact any H which preserves translations and rotations
is admissible. This is no different from standard many-
particle dynamics. It looks like any many-particle
Hamiltonian can be dressed with a Carroll symmetric
center of mass degree of freedom to provide a Carroll
invariant system of particles each with zero energy. This
case was not considered in [7], and it might be instructive
to get these systems directly as a c → 0 limit of a relativistic
many-particle system.

4 CARROLL FIELD THEORY

In this section, we switch to field theory, and prepare for the
application to cosmology we have inmind. The starting point is to
construct Lagrangians that are Carroll invariant and can be
obtained from a c → 0 limit of a relativistic theory or through
an expansion in small c. We treat here the real scalar field and the
Maxwell field as examples.

4.1 Scalar Field
Consider a relativistic real scalar field ϕ. Under a Lorentz boost, it
transforms as

δϕ � ct �β · �zϕ + 1
c
�β · �x ztϕ. (54)

The relativistic scalar field lagrangian density

L � 1
2c2

ztϕ( )2 − 1
2
ziϕ( )2 − V ϕ( ). (55)

transforms into a total derivative, as is well known. The conjugate
momentum is

πϕ � 1
c2
ztϕ. (56)

The relativistic energy-momentum tensor is

Tμ
] � δμ] −1

2
zρϕz

ρϕ − V ϕ( )( ) + zμϕz]ϕ, (57)

and is symmetric when raising the indices.
For a quadratic potential of the form V(ϕ) � 1

2
m2c2

Z2
ϕ2 (in SI

units), we get the usual relativistic dispersion relation from a
plane wave ansatz ϕ∝ ei

�k· �x+iωt,

E2 ≡ Z2ω2 � c2 �p 2 +m2c4, (58)
with �p � Z �k.

We now make an expansion around c = 0 so we write7

ϕ � cΔ ϕ0 + c2ϕ1 + c4ϕ2 +/( ) � cΔ ∑∞
n�0

ϕnc
2n, (59)

for some Δ. Defining as before �β � c �b, with �b the Carroll boost
parameter, one finds the Carroll transformations8, for n > 0,

δϕ0 � �b · �x ztϕ0 , δϕn � �b · �x ztϕn + t �b · �zϕn−1. (60)
The field ϕ0 is a scalar field with respect to Carroll

transformations, as the Carroll generator for boosts is Ci =
xizt. The higher order modes in the expansion are not Carroll
scalars, and transform into each other under boosts.

6The basic Poisson brackets on extended phase space are {t, E} = − 1 and
{xi , pj} � δij.

7Odd powers of c do not play a role in all examples we consider.
8In principle, one could generate an algebra expansion by writing �β � c[ �b0 + c2 �b1 +
/ , ] where at each order, there is a new symmetry generated by �bn , but we simply
restrict here to the leading order Carroll algebra, in which only �b0 is non-zero. For
example, at the next-to-leading order the symmetry transformation corresponding
to b1 is δϕ1 � �b1 · �xztϕ0 and δϕ0 = 0.
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Using this expansion, it is rather straightforward to construct
Carroll invariant Lagrangians. For free fields, we find, for the two
lowest orders in the small-c expansion,

L0 � 1
2
_ϕ
2

0 , L1 � _ϕ0
_ϕ1 −

1
2
ziϕ0ziϕ0, (61)

where we defined L0 and L1 via L � c2Δ−2(L0 + c2L1 + O(c4)).
One can explicitly check that both L0 and L1 transform into
total derivatives so their corresponding actions are invariant
with the appropriate boundary conditions. Note that L1

contains the field ϕ1 which does not transform as a scalar
field under Carroll transformations. As we discuss in more
detail below L1 is not Carroll boost invariant but can be made
to be by adding a Lagrange multiplier that sets _ϕ0 equal to
zero on shell.

It is easy to add interactions, starting from a Lorentz invariant
potential by simply substituting the expansion 59) in the
potential. Different choices can be made however, depending
on how the coupling constants in the potential scale with c. We
consider here the simplest example of a quadratic potential.
Assuming the parameters depend homogeneously on c there
are still two choices, namely keeping E0 ≡ mc2 (or ω0 = E/Z)
fixed, or keeping the Compton wavelength λ−1 = μ ≡ mc/Z fixed,
similar to the analysis of the relativistic particle in Section 3.3.

For fixed ω0, we get

L0 � 1
2
_ϕ
2

0 −
1
2
ω2
0ϕ

2
0 ,

L1 � _ϕ0
_ϕ1 −

1
2
ziϕ0ziϕ0 − ω2

0ϕ0ϕ1.
(62)

The equation of motion associated to L0 is

€ϕ0 + ω2
0ϕ0 � 0. (63)

For L1 the equation of motion for ϕ1 is the same as in (Eq. 63)9,
but we get a second equation by varying ϕ0,

€ϕ1 + ω2
0ϕ1 � z2ϕ0. (64)

The solutions to the response of ϕ1 to ϕ0 can be found in terms
of plane waves,

ϕ0 � ei
�k· �x+iω0t + c.c. , ϕ1 �

i

2ω0

�k
2
t ei

�k· �x+iω0t + c.c. (65)

Both ϕ0 and ϕ1 are fields arising in the expansion around c = 0,
and we can use them to reconstruct the relativistic scalar using
(59): ϕ = ϕ0 + c2ϕ1 +/ , where we put Δ = 0 for simplicity. Then
the full relativistic plane wave solutions are known of course, and
involve the frequency in (58). We can expand the relativistic
dispersion relation around c = 0 using

ω � ω0 + c2
�k 2

2ω0
+/ , eiωt � eiω0t 1 + i c2

�k 2

2ω0
t +/( ),

(66)
where we remind that ω0 = mc2/Z which we kept fixed in the
Carroll limit. One now sees that this expansion is reproducing the
expansion in ϕ using (Eq. 65), as it should. Furthermore, if we
perform an infinitesimal Carroll transformation on the right
hand side of the dispersion relation, we find
δω � −c2 �k · �b � −c �k · �β, which is the first term in the
expression for an infinitesimal Lorentz transformation on the
energy or frequency. If we keep expanding further in the ϕn, we
will reconstruct the full relativistic solution.

Now we consider the second possibility, in which we keep μ =
mc/Z fixed in the Carroll limit. Then we find

L0 � 1
2
_ϕ
2

0 ,

L1 � _ϕ0
_ϕ1 −

1
2
ziϕ0ziϕ0 −

1
2
μ2ϕ2

0.
(67)

The equations of motion for L0 is

€ϕ0 � 0 0 ϕ0 � f �x( ) + g �x( )t. (68)
ForL1 the equation of motion for ϕ1 is the same as in (Eq. 68),

but we get a second equation

€ϕ1 � z2ϕ0 − μ2ϕ0. (69)
If €ϕ1 � 0, and upon taking plane spatial waves for ϕ0 (i.e.

f( �x) � ei
�k· �x + c.c.), one arrives at the tachyonic modes for a single

particle again, with �k
2 + μ2 � 0. However, the interaction

between ϕ0 and ϕ1 provides non-trivial solutions with �k
2 +

μ2 > 0.
The relativistic dispersion relation in this case is written as

ω � ± c
������
�k
2 + μ2

√
and vanishes in the strict Carroll limit. This

corresponds to Carroll representations with vanishing energy, E =
0. The first correction is linear in c and gives already the exact
result for ω.

To conclude this part of the discussion, we find again, just as
for the relativistic particle, two representations in the Carroll
limit, those with non-zero energy E0 = Zω0 = mc2 and those with
zero energy where we kept mc/Z fixed.

We now consider some further properties of L0 and L1.

4.1.1 Energy-Momentum Tensor
We start with the Carroll invariant Lagrangian

L0 � 1
2
_ϕ
2

0 − V ϕ0( ). (70)

The corresponding energy-momentum tensor is10,

9This is a special case of a general result that states that the equations of motion of a
Lagrangian at order N, say, contain all the equations of motion of the Lagrangians
at orders n < N via the dependence of the Nth order Lagrangian on the subleading
fields, see [5] (section 2.5).

10We compute the energy-momentum tensor from the Noether procedure,

Tμ
] � δμ]L − zL

z(zμϕ)z]ϕ. (71)
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Tt
t � − 1

2
_ϕ
2

0 + V( ) , Ti
t � 0,

Tt
i � − _ϕ0ziϕ0 , Ti

j � 1
2
_ϕ
2

0 − V( )δij. (72)

This energy-momentum tensor obeys the Carroll
transformation laws (Eq. 9) and the constraint that Ti

t � 0.
Notice that spatial derivatives ziϕ are absent in L0 but they do
appear in the energy-momentum tensor. Their appearance is
important for showing that the energy-momentum tensor is
conserved on shell. Notice furthermore that this energy-
momentum tensor arises as the leading order term in the
expansion

Tμ
] � Tμ

0( )] + c2Tμ
1( )] +/ , (73)

where the left-hand side stands for the relativistic energy-
momentum tensor which transforms as a tensor under
Lorentz transformations. On the right-hand side, the leading
term Tμ

(0)] transforms as a Carroll tensor and in particular it
should obey Ti

t � 0. The first order correction to it, T(1) does not
transform as a tensor under the Carroll group (it will transform
into T(0) as well), just like ϕ1 does not transform as a scalar under
Carroll boosts. Therefore T(1) is not expected to satisfy the Carroll
identity Ti

t � 0, as we will explicitly see below.
The theory described by the next-to-leading order action has

the Lagrangian

L1 � _ϕ0
_ϕ1 −

1
2
ziϕ0ziϕ0, (74)

where we ignored possible potential terms. Using (71), adapted to
a theory containing two scalar fields, the energy-momentum
tensor components now read

Tt
t � − _ϕ0

_ϕ1 −
1
2
ziϕ0( )2 , Ti

t � _ϕ0ziϕ0 ,

Tt
i � − _ϕ1ziϕ0 − _ϕ0ziϕ1 , Ti

j � δijL1 + ziϕ0zjϕ0.
(75)

One can check that it is conserved, but it does not satisfy the
Carroll constraint Ti

t � 0, as explained above. One can also check
that it follows from the relativistic symmetric energy-momentum
tensor by expanding in powers of c, i.e. the Tμ

(1)] term in (Eq. 73).
The expansion of the relativistic scalar field Lagrangian

around c = 0 leads to (after appropriately rescaling the
Lagrangian with c2−2Δ) the Lagrangians L0 and L1. The
Lagrangian L0 is Carroll boost invariant while the Lagrangian
L1 is not.11 We can however modify L1 by adding a Lagrange
multiplier to make it Carroll boost invariant. The Lagrange
multiplier sets to zero _ϕ0 (so that now L1 is the leading order
Lagrangian in the expansion of the free scalar theory). This
leads to

L � _ϕ0
_ϕ1 −

1
2
ziϕ0ziϕ0 + ~χ _ϕ0, (76)

with Lagrange multiplier ~χ. We can absorb _ϕ1 into ~χ leading to

L � −1
2
ziϕ0ziϕ0 + χ _ϕ0, (77)

where the new Lagrange multiplier is χ.
We can obtain the latter Lagrangian also directly by taking a

Carroll limit. Let us consider the following relativistic Lagrangian
density consisting of two scalar fields χ and ϕ:

L � −c
2

2
χ2 + χztϕ − 1

2
ziϕ( )2 − V ϕ( ). (78)

From the equation of motion for χ,

χ � 1
c2
ztϕ, (79)

it is easy to see that the Lagrangian density in (Eq. 78) is
engineered such that integrating out χ yields a canonical
relativistic scalar field Lagrangian as given in (Eq. 55). And of
course, χ is identical to the conjugated momentum when seen in
first order formalism. It is however not a scalar field under
Lorentz transformations.

In the Carroll limit c → 0 keeping both χ and ϕ fixed, we find
that the Lagrangian density in (Eq. 78) becomes

L � χ _ϕ − 1
2
ziϕ( )2 − V ϕ( ). (80)

The action is invariant under Carroll boosts if we assign the
transformation laws

δϕ � �b · �x _ϕ , δχ � �b · �x _χ + �b · �zϕ. (81)
The field equation of χ sets _ϕ � 0, in fact χ is a Lagrange

multiplier. This is consistent with the expression (79) and the fact
that both χ and ϕ are kept fixed in the c→ 0 limit. The situation is
then as described in the introduction, and in the small c-
expansion, this means that the scalar field should be slowly
varying in time.

Notice that the Lagrangian (80) is actually very similar to (74).
It seems that all one needs to do is to perform the field redefinition
χ � _ϕ1. However this changes the Lagrangian in a non-trivial way
as varying ϕ1 does not lead to the same equation of motion as
varying χ. Using the on-shell constraint _ϕ � 0, the resulting
energy-momentum tensor is now given by

Tt
t � − V + 1

2
ziϕ( )2( ) , Ti

t � 0,

Tt
j � −χzjϕ , Ti

j � − V + 1
2
ziϕ( )2( )δij + ziϕzjϕ.

(82)

It is conserved on-shell and indeed, as required byCarroll symmetry,
Ti

t � 0.We see now that if we subjectL1 in (Eq. 74) to _ϕ0 � 0, that the
two theories are equivalent when χ plays the role of _ϕ1 and the energy-
momentum tensor in (Eq. 74) becomes the same as (82).

4.2 Maxwell Theory
We can also consider Carrollian versions of Maxwell’s theory. In
analogy to the scalar field theory case treated in the previous
section, we present here again two perspectives. One in which we

11The next-to-leading order Lagrangian is invariant under a symmetry group
whose Lie algebra can be obtained by expanding the Poincaré algebra around c2 = 0
and quotienting this algebra by keeping only the level zero and level one generators
(see [42] for more details).
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consider an expansion for slow speed of light and the other based
on taking the c → 0 limit, as has been studied in e.g. [8–11, 43].
Furthermore, in parallel with similar investigations of the non-
relativistic expansion/limit (c → ∞) of Maxwell theory (see e.g.
[44, 45]), one finds two distinct sectors, the electric and the
magnetic.

4.2.1 Expansions
The Maxwell field Aμ transforms under Lorentz boosts as

δAμ � ct �β · �zAμ + 1
c
�β · �x ztAμ + �δAμ, (83)

where �δA0 � �β · �A and �δ �A � �βA0. Here we have used the
transformation δAμ = ξ]z]Aμ + zμξ

]A] under a general coordinate
transformation and used its restriction to a Lorentz transformation via
ξ0 � �β · �x/c, ξi= x0/cβi= tβi. Fromnow onwewill useAt= cA0, which
allows12 for an expansion in even powers of c such that

At � cΔ A 0( )
t + c2A 1( )

t +/ ,( ) � cΔ ∑∞
n�0

A n( )
t c2n, (84)

for some Δ, and likewise for Ai with the same Δ.
Again we define �β � c �b, with �b the Carroll boost parameter.

The fields in the expansion above then transform as

δA n( )
t � �b · �x ztA n( )

t + t �b · �zA n−1( )
t + �b · �A

n−1( )
, (85)

δA n( )
i � �b · �x ztA n( )

i + biA
n( )
t + t �b · �zA n−1( )

i , (86)
where the transformations for n = 0 are included using A(−1)

μ ≡ 0.
The field (A(0)

t , A(0)
i ) is a vector field with respect to Carroll

transformations. The higher order modes in the expansion
transform into each other under boosts.

Next we study the expansion of the Maxwell Lagrangian

L � 1
2c2

Ei( )2 − 1
4

Fij( )2, (87)
where the field strengths are

Ei � ziAt − ztAi, (88)
Fij � ziAj − zjAi. (89)

Inserting the expansion of the vector field we thus find that the
Lagrangian expands according to L � c2Δ−2(L0 + c2L1 +/ ),
where the leading order Lagrangian is

L0 � 1
2

E 0( )
i( )2, (90)

with

E 0( )
i � ziA

0( )
t − ztA

0( )
i . (91)

The next to leading order Lagrangian is

L1 � E 0( )
i E 1( )

i − 1
4

F 0( )
ij( )2, (92)

where

F 0( )
ij � ziA

0( )
j − zjA

0( )
i , (93)

E 1( )
i � ziA

1( )
t − ztA

1( )
i . (94)

One can explicitly check that L0 and L1 are invariant under
the transformations in (Eqs 85, 86), up to total derivatives.

Finally, the Bianchi identity ϵαλμ]zλFμ] = 0 implies

ziB
n( )
i � 0 , ztB

n( )
i + ∇× E n( )( )i � 0, (95)

where B(n)
i � 1

2ϵijkF
(n)
jk .

4.2.2 Electric Carroll Sector
Let us first focus on L0. This is the action of the electric sector of
Carrollian electrodynamics previously identified in [8, 46]. It also
follows directly from the strict c→ 0 limit of the Maxwell action.
To avoid clutter, we drop the 0-superscript on all the fields (A(0)

t ,
A(0)
i , etc.) in this specific subsection. The corresponding

equations of motion are

ziEi � 0 , ztEi � 0, (96)
which are respectively Gauss’ law and Ampère’s law with the
Ampère term switched off, as is known for the electric limit of
Carroll electromagnetism [8, 46]. In addition we have the Bianchi
identities (95) giving

ziBi � 0 , ztBi + �∇ × �E( )
i
� 0. (97)

Furthermore, using the transformation rules of (A(0)
t , A(0)

i ) in
(Eqs 85, 86), we find the Carroll transformations

δEi � �b · �x ztEi , δBi � �b · �x ztBi − �b × �E( )
i
, (98)

which indeed leave the equations of motion of the electric
Carrollian sector invariant. The corresponding energy-
momentum tensor is given by

Tt
t � −1

2
Ei( )2 , Ti

t � 0,

Tt
j � �E × �B( )

j
, Ti

j � −EiEj + 1
2

Ei( )2δij, (99)

where we used the following improved formula for the energy-
momentum tensor such that Ti

t � 0 and Ti
j � Tj

i

Tμ
] � − δL

δzμAα
z]Aα + δμ]L − δμkzt − δμtzk( ) EkA]( ). (100)

The resulting energy-momentum tensor is Carroll covariant
and remains traceless in 3 + 1 dimensions. This result coincides
with what one would get from taking the non-relativistic limit of
the Lorentzian energy-momentum tensor.

Let us consider general solutions to the electric Carroll sector.
From (Eq. 96) we find

�E � �∇ × �V �x( ), (101)
where �V(x, y, z) is some arbitrary vector field. We see that the
electric field is static. From the second equation in (Eq. 97) we
obtain the solution

12This is also natural when considering the 1-form A = Aμdx
μ = A0dx

0 + Aidx
i =

Atdt + Aidx
i, while it also ensures we can write Fi0 � ziA0 − z0Ai � 1

c (ziAt −
ztAi) � Ei

c .
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Bi � ψi
�x( ) − t �∇ × �E( )

i
. (102)

From the first condition in (Eq. 97) we obtain the following
solution for ψi: ziψi( �x) � 0. In contrast to the electric field, the
magnetic field is found to allow for time dependence, be it only
linearly.

Let us consider again the electric Carroll equations of motion
given by Eqs 96, 97, but this time in momentum space. These
imply that z2t

�B � 0 so that �B � �B0 + t �B1. The fields �E, �B0 and �B1

are time-independent and they obey

�∇ · �E � 0 , �∇ · �B0 � 0 , �∇ × �E + �B1 � 0. (103)
If we insert a plane wave profile �E � �Eei �k· �x, �B0 � �B0ei

�k· �x and
�B1 � �B1ei

�k· �x this leads to the algebraic equations

�k · �E � 0 , �k · �B0 � 0 , i �k × �E + �B1 � 0. (104)
It follows that �k, �E and �B1 form an orthogonal system. Hence

given �k and, say �E, we know �B1. The only freedom left is a rotation
of the orthogonal pair �E and �B1 around the momentum �k. This
freedom is a manifestation of the helicity discussed earlier in
Section 2.3 on representations of the Carroll algebra. A similar
analysis goes through for the magnetic limit.

4.2.3 Magnetic Carroll Sector
Next we turn to L1. As we will shortly see this is closely related to
a (novel) action for the magnetic sector of Carrollian
electrodynamics. First of all, the equations of motion obtained
by varying (A(1)

t , A(1)
i ) will give rise to the equations of motion of

L0, which is a general feature of expanded Lagrangians.
Furthermore, varying the leading order fields gives the equations

ziE
1( )

i � 0 , −ztE 1( )
i + ∇× B 0( )( )i � 0 (105)

which exhibit respectively Gauss law and Ampère’s law, but with
the electric field E(1)

i (instead of E(0)
i ). In addition coming from

(Eq. 95) we have the Bianchi identity

ziB
0( )
i � 0 , ztB

0( )
i + ∇× E 0( )( )i � 0. (106)

Let us consider the case when we force the leading term in the
expanded action to be zero, i.e. E(0)

i � 0. We can achieve this by
adding a Lagrange multiplier term ~χiE

(0)
i to L1 with Lagrange

multiplier ~χi. In that case we thus also have from (Eq. 106) that
ztB

(0)
i � 0 which is Faraday’s law with only the magnetic

induction term. Thus we recover the equations of motion of
the magnetic Carroll limit [8, 46]. As a result the actionL1 (which
is now the leading term) becomes a Carroll invariant action for
the magnetic sector, something which was previously unknown.
As a further check we compute the Carroll transformations of the
fields

δE 1( )
i � �b · �x ztE 1( )

i + �b × �B
0( )( )

i
, δB 0( )

i � �b · �x ztB 0( )
i , (107)

which indeed leave the equations of motion of the magnetic
Carrollian sector invariant.

We can also find the action for the magnetic Carroll sector
using a limiting procedure analogous to the one considered for

the scalar field. For this we first introduce an altered Maxwell
action containing a new field χi which when integrated out yields
the original Maxwell action, i.e.

L � −c
2

2
χiχi + χiEi − 1

4
Fij( )2. (108)

Here χi has to transform in a particular manner such that the
Lagrangian remains invariant under Lorentz boosts. Now taking
c → 0 we obtain Carroll boost invariant Lagrangian

L � χiEi − 1
4

Fij( )2. (109)

Here the magnetic part of the Maxwell tensor survives the
Carroll limit. Furthermore, one has to require the following
transformation of χi under Carroll boost:

δχj � �b · �xztχj + �b × �B( )
j
, (110)

in order to keep the Lagrangian invariant under the Carroll boost.
Note that the Lagrangian is precisely of the form of L1 in (Eq. 92)
with the difference that instead of E(1)

i we have the Lagrange
mutiplier χi. (cf. _ϕ1 vs χ for the scalar case).

The equations of motion are easily computed. First of all the
Lagrange multiplier χi enforces Ei = ziAt − ztAi = 0 and hence ztFij
= 0. The remaining equations of motion are then

ziχi � 0 , −ztχi + �∇ × �B( )
i
� 0. (111)

Together with the Bianchi identity for the B-field,

ziBi � 0 , ztBi � 0, (112)
we thus see that these are the correction equations of motion for
magnetic Carroll upon identifying χi with the (true) electric field

(E(1)
i in the analysis above). Indeed the transformation of χi in

(Eq. 110) correctly corresponds to the transformation of E(1)
i in

(Eq. 107).
We also give here the resulting energy-momentum tensor of the

novel action (Eq. 109) for magnetic Carroll. This takes the form

Tt
t � −1

2
Bi( )2 , Ti

t � 0,

Tt
j � �χ × �B( )

j
, Ti

j � −BiBj + 1
2

Bk( )2δij,
(113)

upon using Ei = 0 as well as the improved energy-momentum
tensor formula

Tμ
] � − δL

δzμAα
z]Aα + δμ]L − δμtzi χiA][ ]

+ δμi zt χiA]( ) + zj FijA]( )[ ]. (114)
This energy-momentum tensor remains traceless in 3 + 1

dimensions and correctly satisfies Ti
t � 0. It was noted in [8] that

the electric and magnetic Carroll sectors are related via
electromagnetic duality which acts as �E → �B, �B → − �E, as
opposed to relativistic Maxwell which is invariant. This is
obvious from the equations of motion. Comparing the energy
momentum tensors in (Eqs. 99, 113) we see that these also
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respect this symmetry. Note in particular that the momentum
current is the Poynting vector �E × �B which is thus invariant.
Finally, using the electromagnetic duality we can also recycle the
solutions to the equations of motion obtained in the electric
sector for the magnetic sector.

Another way to view both sectors is by starting from a
relativistic Maxwell energy-momentum tensor and considering
the following dimensionless combinations

|B|
|E|/c( ) � c

|E/c|2
|P|( )≪ 1/ (electric) , |E|/c( )

|B|

� c
|B|2
|P|( )≪ 1/ (magnetic), (115)

while keeping the relativistic momentum density flux |P| �
|E‖B|c−2 fixed and requiring that |E/c| is fixed for the electric
case or |B| fixed for the magnetic case.

4.3 Comments About Carrollian Limits of
General Relativity
In both the scalar field and the Maxwell case we have seen that
there are two types of Carroll limits. It is thus natural to wonder
whether the same is true for general relativity. In [15] a Carroll
limit of general relativity (in ADM variables) has been worked out
leading to a theory with just kinetic terms (extrinsic curvature
squared terms) as well as a cosmological constant, but thus
without the spatial Ricci scalar term. The natural suggestion is
that the other Carroll limit of general relativity requires a
Lagrange multiplier term that sets the extrinsic curvature to
zero on shell and which does contain a spatial Ricci scalar as
well as a cosmological constant. We will report on this and other
curved Carroll spacetime topics in [42].

5 PERFECT FLUIDS

In the remainder of this paper we focus on applications of Carroll
symmetry to cosmology and dark energy. We take a closer look at
the arguments of the introduction, using the language of perfect
fluids in a cosmological setting. Hence we will couple to gravity, in
particular to the FLRW metric.

We start with some general remarks about perfect fluids as
discussed in [30]. For perfect fluids with translation and rotation
symmetry, but not necessarily boost symmetry, the energy-
momentum tensor can be written as

Tt
t � −E , Ti

t � − E + P( )vi , Tt
j � Pj ,

Ti
j � Pδij + viPj. (116)

This looks like the standard form of the energy-momentum
tensor in a relativistic theory written in lab-frame coordinates, but
it is more general, and holds also in the absence of any (i.e.
Lorentz, Galilei or Carroll) boost symmetry. Here E and P are
energy density and pressure respectively, while Pi is the
momentum flow. Due to rotation symmetry, this quantity can

be written as Pi � ρvi where ρ is the kinetic mass density
introduced in [30].

Though more general, the expression for the energy-
momentum tensor in (Eq. 116) can still be used for relativistic
systems such as the real scalar field discussed in the introduction.
In this case the energy-momentum tensor is given by (Eq. 57) in
section (4.1) and we evaluate in the FLRWmetric gμ] = diag( − c2,
a2(t)δij). It is a straightforward exercise to put it in the form (Eq.
116), so that we read off

E � 1
2
c2π2

ϕ +
1
2a2

|∇ϕ|2 + V ,

P � 1
2
c2π2

ϕ −
1
2a2

|∇ϕ|2 − V , ρ � π2
ϕ, (117)

together with

vi � − 1
πϕa2

ziϕ , vi � − 1
πϕ
ziϕ. (118)

Here i, j indices are lowered or raised with the metric hij = a2δij
or its inverse. Notice that E corresponds to the Hamiltonian
density and the pressure P to the Lagrangian in curved spacetime.
The internal energy density is

~E ≡ E − ρv2 � −1
2
zμϕz

μϕ + V ϕ( ). (119)

It is Lorentz invariant and appears in the usual formulation of
a relativistic perfect fluid tensor

Tμ
] �

~E + P

c2
UμU] + Pδμ], (120)

with relativistic four-velocities satisfying UμUμ = − c2. In fact, ~E is
often denoted by ρ in the literature, but we have reserved the
symbol ρ for the kinetic mass density.

With Uμ � γ(1, �v) one can equate (120) to (116) and one can
derive the general identities

E + P � c2ρ , E + P � γ2 ~E + P( ), (121)
where γ−2 = 1 − v2/c2 and v2 = vivjhij. In a rest frame, in which vi =
0, we have that E � ~E but this will not be used here. We note that
the equations in (Eq. 121) were also shown in [30] in flat
spacetime, but as shown here they hold more generally. The
first equation in (Eq. 121) implies that in the limit of vanishing
speed of light, the sum E + P vanishes if the kinetic mass density
remains finite. In the example of the scalar field, we have ρ � π2

ϕ

(for all velocities vi) which is kept finite if we take the limit as in
section 4.1, so no rescaling of the scalar field. It thus follows that
the energy density E � −P as a consequence of the limit c → 0.
The energy-momentum tensor in the Carroll limit and in the rest
frame is then simply Tμ

] � Pδμ].
We can repeat this argument (for flat space) in more general

terms based on (Eqs 7, 8). Combined with (Eq. 116), we
immediately find

1
c
Ti

t + cTt
i � 0 → E + P � c2ρ, (122)
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for Lorentz symmetry, whereas from imposing Carrollian
symmetry we get

Ti
t � 0 → E + P � 0, (123)

provided that vi ≠ 0. Notice that the Carroll case follows from the
Lorentz case by taking c→ 0 while keeping Tt

i, hence the kinetic
mass density ρ, finite, as before. Notice furthermore that this
derivation only holds in a frame in which vi ≠ 0, but it can be
shown that E + P � 0 follows in any frame, i.e. also in the rest
frame where �v � 0. For this we use the covariant transformation
law on the energy-momentum tensor, (9). Substituting the
energy-momentum tensor components (116) into this
transformation law, it is an easy exercise to derive

E′ � E − E + P( ) �b · �v , P′ � P , Pi′

� Pi − E + P( )bi( ) 1 − �b · �v( ) , v′ i � vi

1 − �b · �v. (124)

We know that the zero energy flux condition tells us that
(E + P)vi � 0 so that this simplifies to

E′ � E , P′ � P , Pi′ � P i 1 − �b · �v( ) − E + P( )bi ,

v′ i � vi

1 − �b · �v. (125)

Note that, as expected, the transformation of the velocity
vector coincides with the one obtained in (Eq. 4).

Using the transformation law of the momentum density Pi

and using Pi � ρvi we have straightaway for any vi

Pi′ � ρ′v′i � ρ′ vi

1 − �b · �v � ρvi 1 − �b · �v( ) − bi E + P( ), (126)

where we used the transformation law of the velocity. Since vi and
bi are independent, solving this equation requires

E + P � 0. (127)
While the vanishing of the energy flux only told us that the

product of E + P and vi had to vanish we now see that it is always
E + P that must be zero, even when the velocity is zero. We
emphasize that an essential ingredient here is the fact that the
momentum density is of the form ρvi. As a byproduct of this
calculation we also obtain the transformation of the kinetic mass
density for cases with nonzero velocity, namely

ρ′ � ρ 1 − �b · �v( )2. (128)
We thus see that for any fluid velocity the equation of state of a

Carroll perfect fluid is given by E + P � 0 in any frame, as
announced in the introduction.

The above argument relied heavily on the assumption that the
momentum density is proportional to the fluid velocity, i.e.
Pi � ρvi. Ordinarily, a perfect fluid is described by a local
temperature and a velocity field and this, together with
rotational symmetry, is the origin of this assumption. However
as we have seen for certain Carroll particles the momentum need
not be related to the velocity, and so setting vi = 0 in (Eq. 116)

need not lead to a diagonal tensor but can instead give rise to an
energy-momentum tensor that is of the form

Tt
t � −E , Ti

t � 0 , Tt
j � Pj , Ti

j � Pδij, (129)
where the momentum densityPi is an independent variable. This
energy-momentum tensor transforms as a Carroll tensor, i.e. as
(9) with Ti

t � 0 provided E and P are invariant under Carroll
boosts andPj transforms asPj′ � Pj − bj(E + P). In this case the
above argument no longer applies so that it no longer follows that
E + P � 0. However, it is no longer clear that one should view this
case as describing a fluid as it is not clear what the
thermodynamic interpretation is. For more details we refer the
reader to [42] where we study Carroll fluids (on curved Carrollian
spacetimes) in more detail.

6 FRIEDMANN EQUATIONS AND DARK
ENERGY

In the previous section we have shown that in the Carroll limit of
a perfect fluid, one recovers an equation of state with E + P � 0, so
w = − 1. One may therefore expect that this leads to dark energy
and exponential expansion of the Universe when coupled to
gravity. In this section, we show how this works by studying the
Carroll limit of the Friedmann equations. As we will explain,
some subtleties arise in this limit with regard to Newton’s
constant that needs to be rescaled properly before taking the
limit c → 0. Another subtlety that can arise is that in the Carroll
limit, E + P � 0, but both E � P � 0. At the end of this section we
illustrate how this can happen in a particular example starting
from a relativistic fluid with w = 1.

We start by coupling a relativistic perfect fluid to dynamical
gravity, in our case the FLRW metric ds2 � −c2dt2 + a2(t)d �x 2.
As is well known, this metric is written in comoving coordinates
and so we work in the rest frame of the fluid where vi = 0, hence
~E � E. The Friedmann equations for a spatially flat Universe in
the rest frame of the fluid are then

_a2

a2
� 8πGN

3c2
E ,

€a

a
� −4πGN

3c2
E + 3P( ), (130)

where a possible cosmological constant has been absorbed in the
pressure and energy density. Recall that the scale factor a(t) is
dimensionless. Using an equation of state of the form P � wE it
follows that

€a

a
+ 1
2
_a2

a2
1 + 3w( ) � 0. (131)

Note that any explicit dependence on c has dropped out, so the
Carroll limit is trivial here. The solutions are well known and one
must separate w = − 1 from the rest:

w ≠ − 1: a t( ) � a0t + a1( ) 2
3 1+w( ) ,

H t( ) ≡ _a

a
� 2
3 1 + w( )

a0
a0t + a1

w � −1: a t( ) � a0e
Ht,

(132)
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with two integration constants a0 and a1, and H(t) the Hubble
function which is constant for w = − 1. The Hubble radius, RH(t)
= cH−1 grows linear in time for any value of w ≠ − 1.

From the Friedmann equations follow the identities, valid for
any w,

E + P � 3c2

8πGN
1 + w( )H2 t( ) →

ρ � 3
8πGN

1 + w( )H2 t( ), (133)

where we remind that the kinetic mass density ρ follows from
(Eq. 121). One can see from the first equation that E + P → 0
in the Carroll limit, but some care is needed with specifying
what is kept fixed in the limit c→ 0. To illustrate this, we look
at two examples, one with w = − 1, and one with w = + 1. We
focus again on the case of a single scalar field, for which we
have ρ � π2ϕ � (ztϕ)2/c4.

The simplest case is dark energy, w = − 1, i.e. a scalar field
constant in time and space, so πϕ = 0 and vi = 0, but with a
nonzero, but constant potential V � Λ � E, such that the Klein-
Gordon equation is satisfied. The metric is that of de Sitter
spacetime with a horizon given by the Hubble radius. We then
find, from the first equation in (Eq. 130),

H2 � 8πGN

3c2
Λ. (134)

For fixed Λ and GN, the Hubble constant would diverge in the
Carroll limit, but it is important that H stays fixed in order to
maintain exponential expansion and the conformal
transformations as isometry group (see (27)). Furthermore, as
explained in the introduction we want to keep the potential V = Λ
fixed and finite in the Carroll limit and so we need to rescale
Newton’s constant such that in the Carroll limit, the Hubble
constant is kept fixed,

GC ≡
GN

c2
, H2 � 8πGC

3
Λ , GC fixed. (135)

The Hubble radius RH then goes to zero,
RH � cH−1 � c�����

8πGCΛ
√ → 0, as desired in the Carroll limit.13

We have E + P � 0 in the Carroll limit (because w = − 1), with
both E and P finite and nonzero, i.e. E � Λ. So we can confirm the
picture raised in the introduction that the Carroll limit builds up
the spacetime from small Hubble cells that grow with growing
values of c. The Hawking temperature is constant throughout de
Sitter space, and should stay fixed in the Carroll limit where we
rescale the size of the Hubble patch. The entropy however is
expected to vanish, since it is associated to the area of the horizon

which vanishes in the Carroll limit. Indeed, inserting all SI-units,
we have

kBT � H

2π
Z , SGH � kBc3

4ZGN
A � πkB

ZGC

c3

H2
→ 0. (136)

Here we have assumed that kB and Z behave the same in the
Carroll limit. The conclusion of this is that de Sitter space in the
Carroll limit becomes conformal to R3, with metric
ds2 � eHtd �x 2. Expanding around c = 0 opens up Hubble
patches with radius cH−1, within which the temperature is
constant, but the entropy scales with c3.

Next we consider the second example, with w ≠ − 1, say
w = 1, a free scalar field with vanishing potential V = 0.
What happens when we take the zero speed of light limit?
We cannot expect dark energy or inflation, yet there
should be a well-defined Carroll limit with E + P � 0,
suggesting w = − 1. It is actually not difficult to figure
out the solution to this apparent paradox. The Klein-
Gordon equation is €ϕ + 3H _ϕ � 0 for zero potential, or in
terms of momenta

_πϕ + 3Hπϕ � 0. (137)
This is easily solved by

πϕ �
������

1
12πGN

√
1

t + a1/a0( ), (138)

where we took into account (133), i.e. ρ � π2ϕ � 3H2/(4πGN), as
well. The solution for the scalar field is then

ϕ t( ) � c2������
12πGN

√ ln t + a1/a0( ) + ϕ0. (139)

The SI-units for ϕ (in 3 + 1 dimensions) are (kg · m)1/2s−1 =
J1/2m−1/2. In the Carroll limit, there is no need to rescaleGNwith a
factor c2 this time, as H is already finite in the limit (see (132)).
Therefore, ϕ goes to a constant in the c → 0 limit, but the
momentum does not, it goes like t−1. The energy density is

E � 1
2
c2π2

ϕ → 0. (140)

It goes like E ∼ c2t−2 and vanishes in the Carroll limit. Similarly
the pressure vanishes in the Carroll limit. So what we find is
that E + P vanishes without w = − 1 (in fact w = + 1) but the
reason is that both E and P vanish. We therefore see that the
equation E + P � 0 does not always mean dark energy
(exponential growth), because both energy and
pressure can be zero. But note that even for vanishing
energy and pressure the scale factor is nontrivial and still
the same as for c ≠ 0; this is because the c2 dependence in E
and P cancels against the c2 factor in the denominator of (Eq.
130). The reason why such an evolution for the scale
factor can take place is alluded to in the introduction:
even for non-inflationary metrics, there are (time-
dependent) super-Hubble scales and superluminal
recession velocities. A non-trivial Carroll limit should
therefore still exist.

13By vanishing Hubble radius, we mean it is smaller than any other length scale in
the problem. In empty de Sitter, there is however no other length scale, so we
rescale RH → ϵRH and send ϵ → 0. We remark furthermore that our analysis is
classical. In a quantum theory, one could compare with the Planck length. Then the
classical Carroll regime is valid for small Hubble radius, but still larger than the
Planck length.
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7 INFLATION

In the previous section, we looked at two examples with a
constant value of w. Generically, however, w is time
dependent, as is the case during inflation. In this section, we
address what happens to inflation in the Carroll limit. As we will
show, the Carroll limit enforces the limitw→ − 1, so towards a de
Sitter phase. We will analyze in detail the Carroll limit of chaotic
inflation (with a quadratic potential), but we expect our
conclusions to be more general.

Before we consider the limit, let us quickly recap the chaotic
inflation scenario. Ignoring spatial derivatives, which we address
in the next subsection, the scalar field equation of motion is
€ϕ + 3H _ϕ � −c2zVzϕ. For only a mass term, the potential is V �
1
2
m2c2

Z2
ϕ2 in SI-units. The first of the Friedmann equations in (Eq.

130) can now be written as

H2 � 4πGN

3
π2
ϕ +

m2ϕ2

Z2
( ), (141)

with πϕ � 1
c2
_ϕ. The scalar field equation is

_πϕ + 3Hπϕ + m2c2

Z2 ϕ � 0. (142)

In chaotic inflation, we start with an initial condition for which
the scalar field is very large. This means that H should be very
large as well. One furthermore looks for solutions in which πϕ is
small at early times compared to the ϕ and H terms in (Eq. 141)
which are large at early times. So ϕ varies slowly in time. We also
assume that _πϕ is small at early times and can be ignored in (Eq.
142). This then leads to an approximate solution at early times

ϕ � ϕ0 −
c2������

12πGN

√ mc2

Z
t , H �

�����
4πGN

3

√
m

Z
ϕ, (143)

which is in the textbooks on chaotic inflation. The second
Friedmann equation is also satisfied, it can be written as
H2 + _H � 4πGN

3 (m2ϕ2

Z2
− 2π2

ϕ), where we can ignore _H and πϕ at
early times. So one can see that at early times, one starts off in a de
Sitter phase (constant H), and the linear terms in t deviate away
from this. One can now check that dropping the π2

ϕ-term in (Eq.
141) is justified when the Hubble constant H0 = H(t = 0) is much
larger than the scalar mass m in appropriate units.

Now we reconsider the equations in the Carroll limit and in
the spirit of section 4.1 we make expansions14

ϕ � ϕ0 + c2ϕ1 +/ , πϕ � 1
c2
_ϕ0 + _ϕ1 +/ ,

H � H0 + c2H1 +/ , (144)
with all coefficients time dependent. Furthermore, we keep fixed
the combinations

GC ≡
GN

c2
, μ ≡

mc

Z
, (145)

in the limit c → 0 such that the potential V � 1
2μ

2ϕ2 stays finite
and we can have nontrivial solutions. The leading order terms in
the field equations then start at c−2 and require _ϕ0 � 0, and at
order c0, we get

H2
0 �

4πGC

3
μ2ϕ2

0 , €ϕ1 + 3H0
_ϕ1 � −μ2ϕ0. (146)

The first equation determines the leading order solution for
the Hubble factor and the scalar field, and corresponds to a de
Sitter solution (since ϕ0 is constant in time). The second equation
perturbs the scalar field away from being constant. The solution
of the inhomogeneous equation is given by

ϕ1 t( ) � − μ2

3H0
ϕ0t. (147)

Possible solutions to the homogeneous equation are not
included, as they can be absorbed in the constant ϕ0 or set to
zero by appropriate boundary conditions. With these boundary
conditions, one reproduces precisely the inflationary solution for
the scalar field in (Eq. 143). At order c2 in the Friedmann
equation, one determines H1 and we find

H1 � μ2

18H0
− 1
3
μ2t, (148)

which leads to

H � H0 1 + c2μ2

18H2
0

( ) − 1
3
μ2c2t. (149)

Notice that this only matches the result from inflation (the
second equation in (Eq. 143)) when μc≪ H0. This condition was
needed for the validity of the approximation made in inflation,
but is not needed in the derivation of the Carroll expansion. Of
course we can redefineH0 but the relation with ϕ0 as given by (Eq.
146) is then lost.

The momentum πϕ stays constant in the Carroll limit, πϕ �
− μ2

3H0
ϕ0 and the energy density goes like

E � 1
2
c2π2

ϕ + V ϕ( ) → 1
2
μ2ϕ2

0, (150)

and P � −E. So we conclude that in the Carroll limit, inflationary
solutions are attracted to dark energy solutions with an equation
of state w = − 1.

The above analysis can be translated in terms of the slow roll
parameters. For chaotic inflation, ϵ = η, with, in SI units,

ϵ � 1
2

c4

GN

V′
V

( )2

� c4

GN

2

ϕ2. (151)

Using (Eq. 143), we can rewrite the slow roll parameter as

ϵ � 8π
3

R2
H t( )
λ2

, (152)

so that slow roll is guaranteed for all times for which the Compton
wavelength is larger than the Hubble radius, λ ≫ RH(t), so for

14One could, as in section 4.1, introduce additional overall scaling factors cΔϕ and
cΔH in front of the expansion, but we did not find any other interesting,
inequivalent, solutions. Moreover, we want that de Sitter solution should be
included, where H is constant and nonzero in the c → 0 limit.
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super-Hubble scales. The Carroll limit guarantees this because RH
→ 0 for c → 0.

8 SCALAR PERTURBATIONS IN DE SITTER
SPACETIME

We now look at perturbations of the fields, and in particular focus
on scalar perturbations. In this subsection, we focus on the massless
case. This is standard analysis and we follow the notation of [47]. The
only minor difference in the notation is that we reintroduce the speed
of light c into the expressions. An important set of quantities in the
perturbation analysis are the Bunch-Daviesmode functions vk at given
wavenumber k appearing in the plane wave expansion of the scalar
perturbation around a de Sitter background. Plane waves are given by
ei

�k· �x, so k has inverse length. The solutions for thesemode functions in
a de Sitter background are given by (see e.g. eq. (196) in [47]),

vk � e−ikcτ��
2k

√ 1 − i

kcτ
( ). (153)

Here τ here is conformal time, which is given by τ = − 1/(aH)
in de Sitter. In the far past, τ→ − ∞, modes are supposed to start
to be sub-Hubble with |kcτ|≫ 1, which for de Sitter means
k−1 ≪ c/(aH) ≡ RH, the comoving Hubble radius. So for
early-time-modes within the comoving Hubble sphere, the
modes scale like k−1/2 and oscillate like in a Minkowski
spacetime. The comoving Hubble radius however shrinks in
time, as

RH � c

H
e−Ht, (154)

so the mode will at some point later in time exit the horizon and
become super-Hubble, k−1 >RH, or in terms of the wavelength λ
≡ a/k > RH, or equivalently, |kcτ| < 1. In this regime, the second
term takes over and the mode functions will scale like k−3/2. For
the rescaled fields ψk ≡

vk
a , this implies that they freeze in time at

super-horizon scales.
The important observation here is that the exiting of the mode

functions from the horizon is also achieved in the Carroll limit
c→ 0, as expected since this limit would also shrink the comoving
Hubble radius. Indeed, in the Carroll limit, the second term in
(Eq. 153) dominates, and we get straightaway

ψk ≡
vk
a

→c → 0
c → 0

i�
2

√ H

k3/2
, (155)

which now is time-independent. So in order words, the Carroll
limit gives us the behaviour of the mode-functions after crossing
time. Therefore, also the correlation functions freeze out at super-
Horizon scales.

8.1 Massive Scalar in de Sitter
We now consider a massive scalar field in de Sitter and switch on
the spatial derivatives as perturbations in the scalar field. After
Fourier transforming the spatial components, the Klein-Gordon
field equation becomes

€ϕk + 3H _ϕk + ω2
0 +

c2k2

a2
( )ϕk � 0, (156)

with wave-vector as in ϕ∼ ϕk(t)ei �k· �x and as before, ω0 ≡ μc =mc2/
Z and k2 = kiδijk

j. Notice that the perturbation in spatial
derivatives comes with a factor of c2, so it is suppressed to
leading order in the Carroll expansion. Furthermore, we now
keep ω0 fixed in the Carroll limit. The potential (mass term) itself
would then vanish in the strict Carroll limit, but this is allowed as
this massive scalar field need not be the inflaton field, and the de
Sitter background is already fixed, so we take H constant.

As before, we make an expansion around small values of c,

ϕ � ϕ0 + c2ϕ1 +/ ,

and find to leading order

€ϕk,0 + 3H _ϕk,0 + ω2
0ϕk,0 � 0, (157)

which is easily solved by

ϕk,0 � f±e
λ±Ht � f±a

λ± , λ± � −3
2
±

������
9
4
− ω2

0

H2

√
≡ − 3

2
± ]ϕ.

(158)
The functions f± can depend on k and can be determined by

normalization conditions, similar to the massless case. Observe
however that now there is a small time-dependence, and the
fluctuations do not freeze out in the strict Carroll limit. In the zero
mass limit, they however do, as ω0 → 0 and λ+ → 0, consistent
with the massless case if we choose boundary conditions that
dissallow the λ− solution (which goes like e−3Ht in the massless
case and diverges when t → − ∞).

At next order, the equation for ϕ1 is

€ϕk,1 + 3H _ϕk,1 + ω2
0ϕk,1 � −k

2

a2
ϕk,0 � −k2f+ k( )e λ+−2( )Ht, (159)

which is solved by (dropping again integration constants)

ϕk,1 � − k2

2a2H2

ϕk,0

2 1 − ]ϕ( ). (160)

For ]ϕ = 1, this solution does not hold and is replaced by

ϕk,1 �
k2f+
4H2

1 + 2Ht( )e−5
2Ht. (161)

Grouping things together, we find for the solution for the
massive scalar in the Carroll expansion (with ]ϕ ≠ 1)

ϕk � f+ k( ) aλ+ 1 − c2k2

4a2H2

1
1 − ]ϕ

+/( ). (162)

The leading term proportional to aλ+ � (1a)
3
2−]ϕ is well-known

from the literature and appears in the power spectrum as well.

9 OUTLOOK

In this paper we have explored various aspects of Carroll
symmetry. The Carroll symmetry algebra arises in the c → 0
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limit of the Poincaré algebra. As it stands, this limit appears to be
very unphysical, as particles with finite velocities become
tachyonic, the usual Lorentz factor

�������
1 − v2/c2

√
becomes

imaginary, etc. While it is true that physical velocities can
never be relevant for the v ≫ c regime, there can be other
effective velocities in a system for which this condition holds,
and for which the Carroll limit and the small c expansion are
physically meaningful. The prime example that we considered in
this paper is that of superluminal recessional velocities in
expanding universes. We showed that this is relevant for
inflation and argued even for non-inflationary models. This
led us to advocate that this perspective offers the potential of
understanding the Universe as an expansion in c around a Carroll
point with Carroll symmetry. As an example, we saw that the de
Sitter group of isometries in the limit becomes the conformal
group in Euclidean flat space, consistent with a holographic
interpretation of dark energy, and a key ingredient in the
bootstrap approach to cosmological correlators [40, 41].

A second situation in which the c → 0 limit is meaningful is
when the relevant “effective velocity” is related to the time
dependence of classical field configurations. For these there is
no issue organizing the theory as an expansion in c as we
illustrated in various examples in Section 4.

An alternative perspective on the role of the c→ 0 limit is that
in this limit lightcones get squeezed and therefore spatially
separated points become causally disconnected. In the
cosmological context it is the different Hubble patches which
become causally disconnected. This suggests a possible broader
applicability of the Carroll limit to other situations where points
are taken to be approximately causally disconnected, in particular
to all situations where one attempts to define an S-matrix for
localized asymptotic states. Such localized asymptotic states are
assumed to exist in isolation and not interact with each other at
early and late times, and may only exists approximately in actual
quantum field theories, for example due to IR divergences. In
such cases one can try to factorize the S-matrix in a hard and soft
part and we speculate that Carroll-like limits may in general be of
relevance to the hard part of such amplitudes, but that the E = 0
Carroll particles could be of relevance to the soft modes. We leave
a further investigation of this issue to future work.

The problems that arise in taking the c→ 0 limit at the level of
individual point particles also show up when trying to interpret
energy-momentum tensors that are compatible with the Carroll
symmetries as describing the thermodynamics of a well-defined
underlying quantum system. The Carroll algebra does not allow
one to write a non-trivial dispersion relation which relates the
energy to the momentum, and this leads to a divergence in the
integral over momenta in the finite temperature partition
function.15 One can try to avoid this conclusion in several

ways, e.g. by restricting the integral over momenta by hand, or
looking at systems with no momenta such as spacetime-filling
branes, but none of these lead to a particularly compelling
picture. One could also choose to take the Carroll limit
directly at the level of the partition function of a
relativistic gas, but this leads to a vanishing result unless
one adds additional factors of c by hand. In such a case one
gets a finite answer which defies a direct quantum mechanical
understanding unless one is willing to consider e.g. a gas of
tachyons, but we do not think that this is a particularly
interesting direction to explore for obvious reasons. We
refer the reader to our forthcoming work [42] in which we
elaborate on several of these points.

Another observation that we would like to highlight are the
two types of Carroll limits which generically seem to exist.
These two different limits are already visible in the Carroll
algebra where the representation theory is quite different
depending on whether the energy vanishes or not. These two
qualitatively different behaviours also appear if we look at
correlation functions. Consider for example the two-point
function of two Carroll scalar fields. It is easy to see that the
following two answers are both solutions to the Carroll Ward
identities

〈O(t, �x)O(0, 0)〉 � f(| �x|), 〈O(t, �x)O(0, 0)〉 � F(t)δ( �x)
(163)

where the first case corresponds to vanishing energy, and the
second one to non-vanishing energy. Equivalently, the first case is
one where we put the canonical momentum of a field equal to
zero, whereas the second case is relevant for theories where we
drop spatial derivatives, in line with the field theory limits
considered in Section 4.

To quote Lewis Carroll from Alice in Wonderland: “Begin at
the beginning,” the King said, very gravely, “and go on till you
come to the end: then stop.” We tried to follow the advice of the
King quite closely in this paper and hope to have convinced the
reader that we have not quite come to the end (yet).
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