
High Resolution Ex Vivo Diffusion
Tensor Distribution MRI of Neural
Tissue
Kulam Najmudeen Magdoom1,2,3, Michal E. Komlosh1,2,3, Kadharbatcha Saleem1,2,3,
Dario Gasbarra4 and Peter J. Basser1,2*

1Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD,
United States, 2Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences,
Bethesda, MD, United States, 3The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) Inc., Bethesda,
MD, United States, 4Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland

Neural tissue microstructure plays a key role in developmental, physiological and
pathophysiological processes. In the continuing quest to characterize it at ever finer length
scales, we use a novel diffusion tensor distribution (DTD) paradigm to probe microstructural
features much smaller than the nominal MRI voxel size. We first assume the DTD is a normal
tensor variate distribution constrained to lie on the manifold of positive definite matrices,
characterized by amean and covariance tensor.We then estimate the DTD usingMonte Carlo
signal inversion combined with parsimonious model selection framework that exploits a
hierarchy of symmetries of mean and covariance tensors. High resolution multiple pulsed
field gradient (mPFG) MRI measurements were performed on a homogeneous isotropic
diffusion phantom (PDMS) for control, and excised visual cortex and spinal cord of macaque
monkey to investigate the capabilities of DTD MRI in revealing neural tissue microstructural
features using strong gradients not typically available in clinical MRI scanners. DTD-derived
stains and glyphs, which disentangle size, shape, and orientation heterogeneities of
microscopic diffusion tensors, are presented for all samples along with the distribution of
the mean diffusivity (MD) within each voxel. We also present a new glyph to visualize the
symmetric (kurtosis) and asymmetric parts of the fourth-order covariance tensor. An isotropic
mean diffusion tensor and zero covariance tensor was found for the isotropic PDMS phantom,
as expected, while the covariance tensor (both symmetric and asymmetric parts) for neural
tissue was non-zero indicating that the kurtosis tensor may not be sufficient to fully describe
the microstructure. Cortical layers were clearly delineated in the higher moments of the MD
spectrum consistent with histology, and microscopic anisotropy was detected in both gray
and white matter of neural tissue. DTDMRI captures crossing and splaying white matter fibers
penetrating into the cortex, and skewed fiber diameter distributions in the white matter tracts
within the cortex and spinal cord. DTD MRI was also shown to subsume diffusion tensor
imaging (DTI) while providing additional microstructural information about tissue heterogeneity
and microscopic anisotropy within each voxel.

Keywords: diffusion MRI, brain, cortical layers, spinal cord, DTD, Monte Carlo

Edited by:
Jana Hutter,

King’s College London,
United Kingdom

Reviewed by:
Jan Martin,

Lund University, Sweden
Silvia Capuani,

National Research Council (CNR), Italy

*Correspondence:
Peter J. Basser

basserp@mail.nih.gov

Specialty section:
This article was submitted to
Medical Physics and Imaging,

a section of the journal
Frontiers in Physics

Received: 01 November 2021
Accepted: 14 February 2022

Published: 09 June 2022

Citation:
Magdoom KN, Komlosh ME,

Saleem K, Gasbarra D and Basser PJ
(2022) High Resolution Ex Vivo

Diffusion Tensor Distribution MRI of
Neural Tissue.

Front. Phys. 10:807000.
doi: 10.3389/fphy.2022.807000

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 8070001

ORIGINAL RESEARCH
published: 09 June 2022

doi: 10.3389/fphy.2022.807000

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.807000&domain=pdf&date_stamp=2022-06-09
https://www.frontiersin.org/articles/10.3389/fphy.2022.807000/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.807000/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.807000/full
http://creativecommons.org/licenses/by/4.0/
mailto:basserp@mail.nih.gov
https://doi.org/10.3389/fphy.2022.807000
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.807000


1 INTRODUCTION

Nervous tissue is rich and varied over multiple length scales in
normal development and is affected in numerous pathological
conditions [1, 2]. Diffusion tensor imaging (DTI) [3, 4] has been a
key imaging method for revealing these features and their
pathological changes. However, DTI assumes water diffusion
within a MRI voxel can be described by a single mean
diffusion tensor, which has some well-known limitations when
applied to heterogeneous media, including neural tissue [5–7].
For example, a voxel composed of orientation-dispersed white
matter fibers cannot be easily distinguished from one containing a
spherical emulsion of neuronal soma such as in the gray matter as
both motifs result in a similar isotropic diffusion tensor. A
promising approach to probe heterogeneity within a MRI
voxel was introduced by Jian et al. who described water
diffusion using an ensemble of diffusion tensors drawn from a
probability density function (pdf) in the space of diffusion tensors
(i.e., diffusion tensor distribution, DTD) [8]. The MR signal is
then expressed as the expected value of the Gaussian diffusion
signal attenuation from the ensemble of micro-diffusion tensors
sampled from the DTD. The goal of DTD MRI is to estimate the
DTD from the measured MR signals in each voxel.

Determining a non-parametric DTD using the framework of
Jian et al. is challenging due to the well known ill-posed nature of
Laplace inversion [9]. The ill-posedness was partly overcome in
several studies by reducing the dimension of DTD with or
without regularization [10–13], using parametric DTDs [8, 12,
14], and using signal representations in terms of moments of
DTD [15]. We previously proposed a normal tensor variate pdf
that is constrained on the manifold of positive definite diffusion
tensors (CNTVD) which is rich enough to describe a wide range
of tissue heterogeneity and ensures monotonic signal decay with
b-value unlike the cumulant signal representation which do not
satisfy this constraint [16]. We also showed that the CNTVD is
the maximum entropy distribution among all constrained pdfs
with given first and second moments, which makes it the least
biased distribution in the absence of any a priori information
about the underlying tissue microstructure [17].

Using tensor algebra, we showed that rank-1 and rank-2
b-tensors generated in single and double-PFG experiments
respectively are sufficient to accurately measure the first two
moments of any DTD: the mean and covariance tensors [16].
However, implementing multiple-PFG (mPFG) MRI
experiments [18, 19] can be challenging due to long echo time
and coherence artifacts resulting from multiple RF pulses.
Recently, q-trajectory imaging (QTI) methods introduced by
Westin and coworkers overcame some of these challenges,
however, with some attendant limitations, such as undefined
diffusion gradient timing parameters that limit the physical
interpretation of the MRI data, complex gradient waveforms
that may be difficult to implement and sub-optimal gradient
efficiency [15, 20, 21]. We had introduced a new pulse sequence
which overcomes these drawbacks by sandwiching independent
trapezoidal gradients on either side of the 180° RF pulse in a single
spin echo (SE) sequence to generate arbitrary b-tensors of interest
[22]. In addition to providing well defined diffusion gradient

timing parameters and efficiency in terms of gradient utilization,
our pulse sequence is also immune to concomitant gradient field
artifacts which are known to affect DTD analysis [23].

Here, we apply our modeling framework with CNTVD and
our novel pulse sequence to investigate the capabilities of DTD in
resolving neural tissue microstructure using excised tissues at
high k and q-space resolution. The small pulse widths and large
gradient strengths feasible on microimaging scanners, combined
with the low diffusivity of excised tissues allows us to probe length
scales much smaller than that possible on an in vivo specimen on
a typical clinical scanner. We first validate our method using an
isotropic polydimethylsiloxane (PDMS) phantom and present
results obtained in visual cortex and spinal cord specimen from
perfusion-fixed macaque monkey. We also introduce new glyphs
to help visualize the DTD covariance tensor which shows the
variability in the diffusion tensors as a function of orientation.We
show that our new method is capable of capturing the
microscopic anisotropy and heterogeneity in both the brain
and spinal cord specimen.

2 MATERIALS AND METHODS

2.1 Theory
The MR signal from an ensemble of diffusion tensors distributed
according to p (Dij) is given by [8],

S bij( ) � S0 ∫ e−bijDijp Dij( )dDij + ε( ) (1)

where S0 is the signal without diffusion weighing, bij, Dij are the
second order symmetric diffusion tensor and diffusion weighting
b-matrix or b-tensor, respectively [3] and ε is a scalar parameter
to account for the non-zero signal that is known to persist at large
b-values in neural tissue [24]. Assuming a CNTVD for p (Dij), the
signal equation is approximated using Monte Carlo (MC)
integration with samples, Dij, drawn from the CNTVD with a
given mean and covariance tensor as shown below [16],

S bij( ) ≈ S0
∑n
i�1
e−bijDij1 Dij ∈ M+( )
∑n
i�1
1 Dij ∈ M+( ) + ε

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2)

where M+ is the space of positive definite second-order tensors,
1(Dij ∈ M+) is the indicator function that is one when Dij is
positive definite and zero otherwise, and n is the number of MC
samples (set to 200,000). For ease of sampling, the diffusion
tensor is expressed as a 6D vector and covariance tensor as 6 × 6
symmetric positive definite matrix.

2.2 Pulse Sequence and Experimental
Design
We used our new dPFG pulse sequence with an echo planar
imaging (EPI) readout introduced in [22] to generate b-tensors of
ranks 1 and 2 using trapezoidal gradients in a single spin echo. A
compressed sensing type experimental design described in [16]
was used to generate a set of rank-1 and rank-2 b-tensors. Briefly,
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eigenvectors of the b-tensor were randomly rotated to uniformly
sample orientation while their two non-zero eigenvalues were
constrained so that their sum and ratio follows an uniform
distribution to uniformly sample the size and shape
respectively. The physical diffusion gradient strengths in the
new pulse sequence required to generate the desired b-tensors
for a fixed δ and Δ are obtained by solving the equation, bij � bij′ ,
where bij′ is the desired b-tensor and bij is the actual b-tensor
numerically computed for a given diffusion weighted gradient set
in the pulse sequence. The optimization was performed using a
non-linear least squares fitting routine in MATLAB (Mathworks,
Natick, MA) constrained by the current limits of the gradient
hardware.

2.3 Specimen Preparation
Two adult rhesus macaque monkeys (Macaca mulatta) were
perfused for the ex vivo MRI studies as described below. All
procedures adhered to the Guide for the Care and Use of
Laboratory Animals (National Research Council), and were
carried out under a protocol approved by the Institutional
Animal Care and Use Committee of the National Institute of
Mental Health (NIMH) and National Institute of Health (NIH).
First the animal was deeply anesthetized with sodium
pentobarbital and perfused transcardially with 0.5 L of saline,
followed by 4 L of 4% paraformaldehyde, both in 0.1 M
phosphate buffer (pH 7.4). After the perfusion the brain was
removed with intact spinal cord and post-fixed between 8 and
12 h in the same buffered paraformaldehyde solution and then
transferred into 0.1 M phosphate buffered saline (PBS) with
sodium azide. A portion of the tissue encompassing the
primary (V1) and secondary (V2) area of the visual cortex and
cervical spinal cord was dissected for MR imaging.

2.4 MRI Measurements and Image
Pre-Processing
MRI data were acquired on a 7T vertical Bruker wide-bore
Avance III MRI scanner (Bruker Biospin, Billerica, MA)
equipped with a Micro2.5 microimaging probe and GREAT60
gradient amplifiers capable of generating up to 1.5 T/m gradient
strength in all three axis. RF was transmitted and received using a
5 mm linear probe for polydimethylsiloxane (PDMS) and cortex,
and 20 mm quadrature probe for the spinal cord. The DTD pulse
sequence, gradient hardware, b-tensor calculations and model
fitting were calibrated using 3.9 cSt cyclic PDMS in a 5-mmNMR
tube at 17°C. Imaging was performed at 100 μm isotropic spatial
resolution using 2-shot 3D EPI with the following parameters: Δ/
δ = 20/5 ms, TR/TE = 1000/50 ms and 1 average. A total of 217
different b-tensors were sampled with b-values ranging from
0–12,000 s/mm2.

Neural tissue (spinal cord and visual cortex) was immersed in
perfluoro polyether (Fomblin, Solvay Specialty Polymers, Italy)
for susceptibility matching and to achieve better image contrast.
The imaging protocol was adjusted to suit the sample under
study. The visual cortex specimen was imaged at 100 μm isotropic
spatial resolution using 3-shot 3D EPI with the following
parameters: TR/TE = 1000/38 ms and 4 averages. The spinal

cord was imaged at 125 μm × 125 μm × 1mm spatial resolution
using 2-shot 3D EPI with the following parameters: TR/TE =
1000/60 ms and 4 averages. The b-tensors sampled and diffusion
times used were identical to that acquired on PDMS.

The thermal noise in the images was filtered using a
Marchenko-Pastur principal component analysis (PCA)
algorithm [25] implemented in DIPY software [26], and the
effect of eddy current induced image translation and shearing
were reduced by registering the individual DWI volumes with b =
0 s/mm2 acquisition using 3D affine transform [27, 28]
implemented in FSL software [29] prior to DTD model fitting.

2.5 Parameter Estimation and
Microstructural Imaging Stains
The second-order mean diffusion tensor and fourth-order
covariance tensor characterizing the CNTVD were both
estimated from the MR signal using methods outlined in [16].
Briefly, the different symmetries of the mean [30] and covariance
tensors [31] were exploited to build a family of nested signal
models, the most parsimonious of which was chosen using the
Bayesian information criterion (BIC). For a given nested model,
the MR signal is fit to Eq. 2 using a numerical optimization
algorithm (COBYLA method [32] implemented in scipy’s
optimize minimize subroutine in python) to estimate the
unknown parameters.

The estimated CNTVD parameters are used to delineate
several microstructural features within the voxel, which are
also described in greater detail in [16]. Briefly, the micro-
diffusion tensors in the voxel are simulated by drawing MC
samples from the CNTVD with the estimated mean and
covariance tensors. The macroscopic fractional anisotropy
(FA) and orientation distribution function (ODF) are
computed from the mean diffusion tensor, whereas the
microscopic FA and ODF (i.e., μFA and μODF) are computed
by averaging the ensemble of FAs and ODFs obtained in each of
the micro diffusion tensors within the voxel. The size (Vsize) and
shape (Vshape) heterogeneity within a voxel are quantified by the
median absolute deviation of average trace and FA-weighted
eigenvalue skewness of the micro-diffusion tensors
respectively, normalized by its value for the uniform
distribution. The orientation heterogeneity within a voxel is
quantified by extent of scatter about the mean eigenvector of
the micro-diffusion tensors (Vorient) [16]. The spectrum or
distribution of the mean diffusivity (MD) is obtained from
plotting the histogram of average trace of micro-diffusion
tensors from which moments such as the mean, standard
deviation (σMD), and skewness are measured and mapped.

We previously showed that the kurtosis tensor is the fully
symmetric part of the covariance tensor [16] and is thus
subsumed by it, and can be visualized by taking projections of
the covariance tensor along the unit vector [31]. In this work, we
introduce a new glyph to visualize the asymmetric part of the
covariance tensor, Rasymm(u), which becomes zero when the
covariance tensor collapses to the fully symmetric kurtosis
tensor as shown in Supplementary Section S1. In essence this
glyph captures the additional information that is obtained with
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the dPFG measurements. The spherical functions describing
these glyphs are as follows,

Rsym u( ) � Cijkluiujukul (3)

Rasymm u( ) �
�����������������������������
〈 Cijkluivjukvl − Cijkluiujvkvl( )2〉v⊥u√

(4)

where C is the fourth order covariance tensor, u and v are
orthogonal unit radius vectors, and angle brackets denotes
averaging over all v for a given u. The analytic expression for
orientation averaged terms above are derived in Supplementary
Section S2.

3 RESULTS

The DTD derived stains obtained in the PDMS phantom along
with S0 and offset parameter maps are shown in Figure 1. The
stains obtained in PDMSwere uniform across the sample with the
offset accounting for approximately 2% of signal. The MD is
approximately equal to 0.2 μm2/ms while all other stains
were zero.

The stains obtained from a section of the visual cortex along
with its overall location in the macaque brain is shown in
Figure 2. The offset was approximately 5% in the cortex and
12% in the surrounding white matter. The cortical layers were
delineated in MD standard deviation and skewness maps and to a
lesser extent in Vsize map similar to what was observed in
histology. The cortex-white matter interface known to be
injured in diseases such as traumatic brain injury (TBI) [33]
was clearly identified as regions of high MD standard deviation.
The white matter tract adjacent to the cortex, on either side of the
inferior occipital sulcus (ios), despite having similar FA values
were distinguished in the MD skewness map. Microscopic
anisotropy was detected in the cortex with FA close to zero in
many parts of the cortex (≈ 0.2) while the μFA was elevated
(≈ 0.6). The high shape and orientation heterogeneity in the
cortex reveals the source of this microscopic anisotropy maybe
due to heterogeneously shaped neuronal soma and penetrating
white matter tracts. The orientation heterogeneity stain exhibited
higher values in regions of lower FA and vice-versa which is
consistent with the picture that increased orientation
heterogeneity of microscopic anisotropic structure tends to
reduce the overall macroscopic anisotropy [5].

FIGURE 1 | DTD derived stains obtained in PDMS phantom showing zero heterogeneity. This includes S0 - non-diffusion weighted image, signal offset, ε,
expressed as percent of S0, MD—mean diffusivity, MD skewness— skewness of MD spectrum, FA—fractional anisotropy, μFA—microscopic fractional anisotropy, and
Vsize, Vshape, Vorient—size, shape and orientation heterogeneity respectively.

FIGURE 2 |DTD derived stains obtained in a excised visual cortex of amacaquemonkey showingmicroscopic anisotropy and heterogeneity. Approximate location
in the macaque brain from which 10 mm ×5 mm × 5 mm piece was dissected for MR imaging shown using SMI-32 stained sections (highlights pyramidal neurons and
their processes) in Saleem and Logothetis macaque brain atlas [50] in the left most column. The V1 and V2 areas of the visual cortex and inferior occipital sulcus (ios) are
highlighted for reference. The DTD-derived stains shown include S0—non-diffusion weighted image, signal offset, ε, expressed as percent of S0, MD—mean
diffusivity, MD skewness—skewness of MD spectrum, FA—fractional anisotropy, μFA—microscopic fractional anisotropy, and Vsize, Vshape, Vorient - size, shape and
orientation heterogeneity respectively.
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Orientation dispersion in the visual cortex is shown by
comparing macro and micro ODFs in two Gy-white matter
interface regions highlighted in Figure 3 along with glyphs
characterizing the covariance tensor of CNTVD. The
asymmetric part of the covariance tensor was comparable to

the symmetric part in many voxels in both the regions which
show the additional information captured by the covariance
tensor as compared to the kurtosis tensor alone. In interface 1,
the macro ODFs in the gray and white matter show a single
principal direction while the micro ODFs show the two fiber

FIGURE 3 |Orientation dispersion observed in macaque visual cortex shown by comparing the macro and micro ODFs. The need for a DTD model and additional
information obtained beyond the kurtosis tensor model is demonstrated by plotting the symmetric and asymmetric parts of the covariance tensor of the constrained
normal tensor variate distribution. Two regions of interest (ROIs) at gray-white matter interface regions are highlighted in the direction-encoded color (DEC) map, showing
the principal direction of the mean diffusion tensor, and S0 map.

FIGURE 4 | DTD derived stains obtained in a excised cervical spinal cord of macaque monkey showing microscopic anisotropy and heterogeneity. The following
regions of interest in the spinal cord are highlighted in the non-diffusion weighted image (S0): iz—intermediate zone, dh—dorsal horn, gf - gracile fasciculus, dsnr—dorsal
spinal nerve root, lcst—lateral corticospinal tract, vh—ventral horn and cc—central canal. The DTD stains include the signal offset, ε, expressed as percent of S0,
MD—mean diffusivity, MD skewness—skewness of MD spectrum, FA—fractional anisotropy, μFA—microscopic fractional anisotropy, and Vsize, Vshape,
Vorient—size, shape and orientation heterogeneity respectively.
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populations mixing. The symmetric part of the covariance tensor
in the gray matter also show penetrating white matter fibers into
the cortex. In interface 2, the macro ODFs are very similar while
the micro ODFs show splaying of fibers.

The stains obtained in cervical spinal cord are shown in
Figure 4. The offset parameter in the spinal cord showed a
similar contrast to that observed in the cortex, accounting for
approximately 8% and 15% of the signal in gray and white matter
respectively. DTD MRI identified sub-voxel features invisible
with DTI. The intermediate zone (iz) in the gray matter and
dorsal spinal nerve root (dsnr) exhibited highly skewed and broad
MD distribution compared to other regions in the spinal cord.
The intermediate zone also exhibited high size heterogeneity
while zero shape and orientation heterogeneity thus indicating
a spherical emulsion type DTD in this region. The spinal cord
white matter appeared uniform in the size heterogeneity stain
while the shape and orientation heterogeneity stains showed
contrast with the peripheral tracts (e.g., gracile fasiculus, gf)
exhibiting higher shape and orientation heterogeneity
compared to the central white matter (e.g., lateral cortico-
spinal tract, lcst). Microscopic anisotropy was detected in gray
and peripheral white matter as shown by elevated μFA in this
region with concomitant increase in shape and orientation
heterogeneity.

Orientation dispersion in representative white and gray-white
matter interface regions in the spinal cord along with their
covariance glyphs are shown in Figure 5. In white matter,
macro and micro ODFs were uniform and indistinguishable
showing a single principal fiber direction. The symmetric part
of the covariance tensor was uniform, pointing along the
principal fiber axis while the asymmetric part was close to
zero. In the gray-white interface region, macro ODFs in the

gray matter are planar while those in the white matter are linear.
The micro ODFs show the fibers start splaying as they penetrate
the gray matter with increased presence of orthogonal lateral
fibers which was also visible in the symmetric part of the
covariance tensor. The asymmetric part was close to zero in
coherent white matter similar to what was observed in the cortex
but non-zero in gray matter.

4 DISCUSSION

4.1 Validity of the Diffusion Tensor
Distribution Method and its Measurement
At the length scales probed by DTD (discussed below), which still
include a multitude of cells and processes, the Gaussian
distribution of diffusion tensors provides a reasonable
description for p(D). Gaussian diffusion within each micro-
compartment, another assumption of the DTD methodology,
is also reasonable given the likely absence of fully restricted
compartments in the neural tissue due to the non-zero
permeability of cell and organelle membranes to water
mediated through lipid bilayer, aquaporins and transporters
[34]. So, for instance, one would not expect to find significant
microscopic restriction to water diffusion in live soft tissue as one
would in some other porous media, such as sandstone and
other rocks.

In the PDMS sample, the isotropic model was correctly
selected for the mean tensor throughout the sample with
mean diffusivity less than 5% from the actual value at ambient
bore temperature set at 17°C and zero FA. The estimated
covariance was zero as expected from the uniform DTD in the
sample. The offset parameter which models noise in this case was

FIGURE 5 | Orientation dispersion observed in macaque cervical spinal cord shown by comparing the macro and micro ODFs. The need for a DTD model and
additional information obtained beyond the kurtosis tensor model is demonstrated by plotting the symmetric and asymmetric parts of the covariance tensor of the
constrained normal tensor variate distribution. Two regions of interest (ROIs) one in white matter (WM) and gray-white matter (GM-WM) interface regions are highlighted
in the direction encoded color (DEC) map, showing the principal direction of the mean diffusion tensor, and S0 map.
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less than 5% of the signal consistent with the DTI model fully
explaining the MR signal. The so called “dot-compartment”
thought to be present in neural tissue [24, 35] is also
accounted for by the offset parameter in our model. Using
spherical encoding, Tax et al. recently showed that the dot-
compartment accounted for approximately 10% of the signal
in the human brain which is close to what we observed in both the
brain and spinal cord [36]. These results obtained using large
b-values shows the accuracy of the b-tensor calculation and
gradient pulses, and the pulse sequence free of artifacts.

4.2 Resolving Power of Diffusion Tensor
Distribution MRI
The resolving power of DTD MRI is defined as the length of the
smallest compartment, l, that can be distinguished in a DTD
experiment. This length scale is limited by the pore saturation
effect (l≥ ����

2Dδ
√ ), extent of diffusion weighting (l≥ π

|q1+q2|), and
exchange rate (k≤ 1

Δ). Given the diffusion gradient pulse width in
our measurement and smallest measured MD, the diameter of the
smallest resolvable compartment is approximately 4 μm which is
approximately a factor of 4 smaller than that achieved on a typical
clinical MRI scanner. At this length scale, individual axons in white
matter and extra-cellular space are too small to be resolved by our
measurement. However, heterogeneity in bundles of axons larger
than 4 μm such as in kissing/crossing/splaying fibers should be
detectable by our measurements. Setting the resolving power of the
DTD experiment to the average axon diameter (i.e., 1 μm) and
using the mean diffusivity of the brain tissue, the diffusion gradient
strength and pulse duration required to probe axonal heterogeneity
at this length scale are approximately 12 T/m (i.e., 1200 G/cm) and
1.5 ms, respectively. The former is an order of magnitude larger
than what the gradient system used in this study can provide. In
gray matter, DTDMRI can resolve cellular heterogeneity as shown
by the delineation of cortical layers in MD spectra. This is in
agreement with a recent electron microscopy study in human
cerebral cortex which showed heterogeneity in cell sizes that vary
across cortical layers [37].

4.3 Diffusion Tensor Distribution Derived
Microstructural Information
The DTD measurement detected microscopic anisotropy and
heterogeneity in gray and white matter of neural tissue consistent
with previous findings [38, 39]. In the visual cortex, the higher
moments of the MD spectrum showed unique features not visible
in MD maps typically obtained via DTI [3]. The cortical layers
visible in MD standard deviation and skewness maps matched
well with the histology. The higher MD skewness in the adjacent
whiter matter maybe reflective of the skewed distribution of axon
fiber bundles in this region well known to exist in white matter
regions. The shape and orientation heterogeneity in the cortex
likely arose from a mixture of soma (spherical compartment) and
splaying white matter fibers (prolate/oblate) known to enter the
cortical region. DTD MRI clearly showed evidence of crossing
and splaying of white matter fibers as they penetrate the cortex as
shown by the μODF and covariance glyphs.

In the spinal cord, higher moments of MD in the
intermediate zone is likely due to heterogeneous size of
soma known to be present in this region. In white matter,
the axon fiber diameters are known to be larger in nerve roots
[40] and in peripheral regions of the cervical spinal cord [41,
42] compared to the central white matter which may have
increased their conspicuity in DTD MRI. These regions are
highlighted in the shape and orientation heterogeneity maps
which has resulted in higher microscopic anisotropy. Non-
zero orientation heterogeneity in gray matter could have arose
from lateral white matter fibers that criss-cross this region
[43]. This shows the ability of DTD-MRI to isolate white and
gray matter heterogeneity within a voxel.

4.4 Covariance Tensor of Constrained
Normal Tensor Variate Distribution vs.
Kurtosis/Correlation Tensors and Previous
Diffusion Tensor Distribution
Implementations
The deviation of the diffusionweightedMR signal from theGaussian
decay has been represented using the kurtosis tensor based on q-
vectors [44]. We showed mathematically that the kurtosis tensor is a
fully symmetrized form of the more general covariance tensor based
on the b-tensor [16] and may miss key features of tissue
microstructure. In this study, we have experimentally verified that
this is indeed the case for the neural tissue as the asymmetric part of
the covariance tensor is non-vanishing. Recently, correlation tensor
imaging [45, 46] was proposed to overcome some of the drawbacks
of kurtosis tensor imaging by representing the dPFG signal using a
collection of second and fourth order tensors to capture the
asymmetric part in addition to the traditional mean diffusion and
kurtosis tensors. However, this formalism may not be necessary as
the covariance tensor formalism is more compact.

The covariance tensor measured in the QTI method is based on
the cumulant expansion of the MR signal [15] with respect to the b-
tensor, which is inaccurate as it leads to non-monotonic signal decay,
thus limiting the range of b-values and the general applicability of
that approach. This limitation is due to the inclusion of nonphysical
negative definite micro-diffusion tensors as it can be observed that
the signal expression is identical to that obtained by assuming a
normal tensor variate distribution (NTVD) [47] in the DTD signal
expression [8]. In this work, we have also overcome this drawback by
constraining themicro-diffusion tensors to be positive definite which
allows us to synthesize realistic micro-diffusion tensors from which
salient statistical measures can be accurately measured and mapped.
A limitation of our approach despite being general is the long
computation time required for Monte-Carlo simulations since
analytical signal model does not exist for CNTVD. However
recent advances in computational hardware and software using
graphics processing units (GPU) [48] should soon match the
speed of direct signal inversion.

4.5 Prospective Applications
The proposed stains could inform normal and abnormal
developmental and neurophysiology studies. The size
heterogeneity stain may aid in detecting free water regions in
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the brain which have been implicated in diseases such as
Parkinson’s [49]. The shape and orientation heterogeneity
stains, and μODF glyphs may help detect subtle white matter
changes implicated in several pathological conditions. Stronger
Connectome-like gradients may enable improved cortical
parcellation in live human subjects. As an addendum, while
we have applied this approach to an isotropic phantom and
fixed neural tissue in this work, this approach is readily applicable
to imaging a broad range of tissues and tissue types outside the
brain and spine in vivo, and various biological and non-biological
materials and specimen suitable for MR analysis.

5 CONCLUSION

In this study, we present DTD measured in neural tissue. We
demonstrate that our experimental design and signal inversion
framework is able to capture heterogeneity in the brain and spinal
cord. New heterogeneity stains may 1 day be useful in assessing
disease, normal and abnormal developmental processes,
degeneration and trauma in the brain and other soft tissues.
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