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Diffusion exchange spectroscopy (DEXSY) is a multidimensional NMR technique that can
reveal how water molecules exchange between compartments within heterogeneous
media, such as biological tissue. Data from DEXSY experiments is typically processed
using numerical inverse Laplace transforms (ILTs) to produce a diffusion-diffusion
spectrum. A tacit assumption of this ILT approach is that the signal behavior is
Gaussian—i.e., the spin echo intensity decays exponentially with the degree of
diffusion weighting. The assumptions that underlie Gaussian signal behavior may be
violated, however, depending on the gradient strength applied and the sample under
study. We argue that non-Gaussian signal behavior due to restrictions is to be expected in
the study of biological tissue using diffusion NMR. Further, we argue that this signal
behavior can produce confounding features in the diffusion-diffusion spectra obtained
from numerical ILTs of DEXSY data—entangling the effects of restriction and exchange.
Specifically, restricted signal behavior can result in broadening of peaks and in the
appearance of illusory exchanging compartments with distributed diffusivities, which
pearl into multiple peaks if not highly regularized. We demonstrate these effects on
simulated data. That said, we suggest the use of features in the signal acquisition
domain that can be used to rapidly probe exchange without employing an ILT. We
also propose a means to characterize the non-Gaussian signal behavior due to restrictions
within a sample using DEXSY measurements with a near zero mixing time or storage
interval. We propose a combined acquisition scheme to independently characterize
restriction and exchange with various DEXSY measurements, which we term
Restriction and Exchange from Equally-weighted Double and Single Diffusion
Encodings (REEDS-DE). We test this method on ex vivo neonatal mouse spinal
cord—a sample consisting primarily of gray matter—using a low-field, static gradient
NMR system. In sum, we highlight critical shortcomings of prevailing DEXSY analysis
methods that conflate the effects of restriction and exchange, and suggest a viable
experimental approach to disentangle them.
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1 INTRODUCTION

Multidimensional NMR and MRI techniques [1] are a powerful
means of studying heterogeneous samples [2]. Such methods can
reveal correlations between distinct relaxation or diffusion
components or pools within a heterogeneous sample [3]. A
prominent multidimensional NMR methodology is diffusion
exchange spectroscopy (DEXSY) [4], which looks at diffusion-
diffusion correlations along the same gradient encoding
direction. DEXSY can reveal the exchange dynamics between
different diffusive microenvironments [5] and can interrogate
steady-state water exchange without the use of exogenous
contrast agents. DEXSY is thus a valuable tool for the
noninvasive study of porous materials such as biological tissue.
DEXSY and DEXSY-based methods are ideally suited for
studying transmembrane water transport in cells and
tissues [6–21].

In DEXSY, two unidirectional diffusion encodings with
diffusion weightings b1 and b2 are separated by a mixing time,
tm [4, 22]. Signal is acquired at the second echo. The normalized
echo intensity, I/I0, is typically fit by assuming Gaussian diffusion
[4, 5, 15, 16, 23, 24] such that the spin echo signal decays
exponentially with the degree of each diffusion weighting,
characterized by the b-value. In this framework, the DEXSY
signal may be expressed as

I

I0
� ∫∞

0
∫∞

0
P D1, D2, tm( )exp −b1D1 − b2D2( ) dD1dD2, (1)

where P(D1, D2, tm) is the joint probability density function
(PDF) of diffusivities over both encoding periods for some tm.
The P(D1,D2) for a fixed tm can thus be measured by acquiring I/
I0 at sufficiently many (b1, b2) pairs and then performing a
numerical 2-D inverse Laplace transform (ILT) in the (b1, b2)
domain [25]. Off-diagonal peaks in P(D1, D2) (i.e., lying off the
45° line) are interpreted as signatures of exchange between
compartments [5]. These peaks may be integrated to quantify
the extent of exchange during tm. Repeating the process and
varying tm provides information about the exchange dynamics,
which are typically modelled using first-order rate
equations [26].

Although Eq. 1 is the most common way to interpret DEXSY
data, diffusion is not necessarily Gaussian within heterogeneous
samples [27]. According to conventional models of the spin echo
attenuation due to diffusion, non-Gaussian signal behavior due to
restrictions appears in many experimental cases [28–33].
Grebenkov [34] points out that at high diffusion weighting, the
non-Gaussian signal behavior can manifest itself approximately as
an exponential attenuation decaying with b1/3 rather than b. In the
presence of such behavior, P(D1, D2) must be interpreted with
caution. To avoid potential misinterpretation, the data can instead
be studied in the (b1, b2) acquisition domain—without
transforming them—as we have proposed in prior studies that
detail rapid variations of DEXSY [15, 19, 35]. More specifically,
based on a method proposed by Song et al. [36] for the robust
identification of exchange from T2 − −T2 (a.k.a. relaxation
exchange spectroscopy, REXSY) time-domain features, we

proposed to acquire DEXSY signal along a diagonal of constant
total diffusion weighting, b1 + b2 [35]. Applying this similarity
transformation to the (b1, b2) domain effectively separates or
disentangles the effects of exchange and non-Gaussian signal
behavior due to restrictions from the attenuation due to
Gaussian diffusion [19, 35].

To complement our prior work, we argue here that 1) based on
conventional signal models, the presence of non-Gaussian signal
behavior is expected within biological specimen, 2) non-Gaussian
signal behavior can lead to illusory features in the ILT-derived
P(D1, D2), and 3) features in the (b1, b2) domain at various
tm—including, critically, tm near 0—can be used as an alternative
way to study exchange and to characterize the non-Gaussian
signal behavior due to restrictions within a sample. We develop a
combined acquisition scheme to independently characterize these
effects in a time-efficient manner. We then present corroborating
experimental findings on ex vivo neonatal mouse spinal cord
utilizing a low-field permanent magnet NMR device known as the
mobile universal surface explorer (NMR-MOUSE) with a strong
static gradient. The neonatal mouse spinal cord contains mostly
gray matter and very little myelin [37, 38]. Diffusion
microstructural models for gray matter have become an
important and challenging area of research [39–41] and our
results facilitate future studies on this topic.

2 THEORY

2.1 Models of the Spin Echo Signal
Attenuation due to Diffusion
According to Hurlimann€et al. [32] and others [31, 42, 43], the spin
echo decay due to diffusion can be separated, roughly speaking,
into three regimes. For simplicity, a spin echo formed under a
constant (or static) magnetic field gradient g with echo time 2τ is
considered. The three regimes are associated with three length
scales: 1) the diffusion length, ℓd � ����

D0τ
√

, where D0 is the free
diffusion coefficient; 2) the gradient dephasing length,
ℓg � (D0/γg)1/3, where γ is the gyromagnetic ratio; and 3) the
structural length, ℓs, which is the length scale over which spins are
restricted along the gradient direction. The diffusion length ℓd is
the mean distance travelled by spins over the duration of each
gradient application, τ. The gradient dephasing length ℓg can be
qualitatively considered as the distance that spins must travel to
significantly de-correlate their phases given they shared the same
initial position [32, 44]. The structural length, ℓs, is the length scale
that characterizes the extent of the restricted pore in the direction
of the static gradient vector.

The smallest of the three length scales determines the diffusion
regime (see Figure 1A) [32]. The simplest case is when ℓd is
smallest; diffusion is effectively free and the well-known result
[45] for the normalized spin echo decay under a constant gradient
holds:

I/I0 � exp −bD0( ),
b � 2

3
γ2g2τ3.

(2)
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Eq. 2 corresponds to a Gaussian distribution of net spin
displacements during the measurement. If spins are confined
by barriers, however, then the distribution of displacements will
deviate from a Gaussian, resulting in non-Gaussian signal
behavior.

Outside of the “free diffusion” regime, significantly slower
echo dephasing—i.e., a slower increase in the phase variance of
the spin ensemble—is observed due to confining barriers. When
ℓg is smallest, signal from spins localized near barriers (within a
distance of ℓg) dephases much more slowly than signal from spins
that are farther from barriers. This localized signal dominates,
producing the so-called “localization” regime [31, 46]. In the long
τ limit (i.e., large ℓd), signal at a distance greater than ℓg from
barriers has completely dephased and the decay of the persistent
localized signal, assuming no exchange across barriers, is, to a
first-order approximation [31],

I

I0
≃
a0
ℓs

D0

γg
( )1/3

exp −a1D1/3
0 γ2/3g2/3τ( )∝ exp −b1/3( ), ℓd ≫ ℓg

(3)
where a0 is a geometry-dependent prefactor (e.g., a0 = 5.8841 for
parallel plates [32]) and a1 = 1.0188 is a universal prefactor. The
signal behavior in the localization regime is complicated,
however, and higher order terms may be significant [31, 47].

When ℓs is smallest, spins can diffuse across the restricted
volume without significant dephasing. Put another way, spins in
this regime are confined within a space that is much smaller than
a turn of the phase winding helix imposed by a diffusion-
weighting gradient. Spins thus experience a limited range of
frequencies, resulting in the “motional averaging” or
narrowing regime [30, 48]. For a spherical geometry of radius
R (such that ℓs = R), again in the long τ or large ℓd limit, the signal
decay in the motional averaging regime is well-approximated
by [30].

I

I0
≃ exp − 8

175
γ2g2R4

D0
2τ − 581

840
R2

D0
[ ]( ), ℓd ≫R

≈ exp −b1/3 16
175

γ4/3g4/3R4

2/3( )1/3D0
[ ]( ) � exp −b1/3c( ), (4)

where the final approximation drops the small (R2/D0) term. For
compactness, we pull out a constant for the exponential scaling of
the motionally averaged signal decay with b1/3 (base units of
m2/3s−1/3),

c � 16
175

γ4/3g4/3R4

2/3( )1/3D0

. (5)

The slower signal decay in both the localization and motional
averaging regimes is characterized by a limiting exponential
scaling of I/I0 with τ (∝ b1/3), as compared to τ3 (∝ b) for the
free Gaussian diffusion regime. This difference in scaling
distinguishes the Gaussian and non-Gaussian signal regimes.
Generally, lengthening τ to increase b has a much smaller
effect on I/I0 in these non-Gaussian signal regimes. Note that
our distinction of Gaussian vs. non-Gaussian signal behavior
refers to any deviation from free diffusion and exponential signal

decay with b; this differs from the usual definition of a Gaussian
phase distribution approximation [30, 32, 42] in which the signal
decays exponentially with g2. Under that definition, the
motionally averaged signal behavior remains Gaussian. To
avoid confusion, we hereafter refer to water decaying in the
motionally averaged and localized regimes as “restricted” since
this water feels the effects of surfaces during diffusion encoding.
Non-Gaussian signal behavior, as defined here, encompasses the
effects of restriction.

2.2 Signal Behavior in Heterogeneous
Samples
In heterogeneous samples such as biological tissue, with
potentially hierarchically organized compartments, there may
exist many water pools or volumes with distributed effective ℓs

values. Individual sub-ensembles of water spins may reside in the
regimes described above. For static gradient systems, ℓg is fixed
such that only two cases arise, depending on the relationship
between ℓd and ℓg. If ℓd < ℓg, then there are freely diffusing and
motionally averaged sub-ensembles, presuming that some ℓs

FIGURE 1 | Simplified visualization of signal regimes adapted from
Moutal and Grebenkov [44]. (A) The three asymptotic regimes of signal
behavior determined by the smallest of the three length scales: ℓd, ℓg, ℓs. (B)
Regimes when ℓd > ℓg and ℓg = 0.8 μm, corresponding to the left side of
the triangle in (A). A representative distribution of ℓs with PDF P(ℓs) is shown.
For ℓs > ℓd, diffusion remains approximately free. Note that the signal decay of
the motionally averaged signal fraction is not dependent on ℓd and exhibits
ensemble-averaged behavior over ℓs = [0, ℓg], leading to persistent signal even
for large ℓd. (C) Regimes when ℓd < ℓg and ℓg = 0.8 μm, corresponding to the
right side of the triangle in (A). We conjecture that exchange with some first-
order exchange rate k may occur between restricted and free
microenvironments encoded by non-Gaussian and Gaussian signal
attenuation. The DEXSY experiment with ℓd ≳ ℓg takes advantage of the
persistence of the non-Gaussian signal I/I0 ∝ exp(−b1/3) relative to the rapid
attenuation of Gaussian signal I/I0 ∝ exp(−b) to maximize sensitivity to
exchange between restricted and free microenvironments.
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values extend below ℓg (motivated below). If ℓd > ℓg, then there are
motionally averaged, localized, and free sub-ensembles. These
two cases are visualized in Figure 1, where exemplar ℓd and ℓg

values are overlaid on a representative PDF of distributed ℓs

values, P(ℓs). As seen in Figures 1B,C, if any portion of P(ℓs)
extends below ℓg, then some degree of restricted signal will be
present in diffusion NMR experiments, regardless of ℓd. For the
first case, ℓd < ℓg, little overall signal attenuation is expected and
thus the free and motionally averaged sub-ensembles are not well
separated. For the second case, ℓd > ℓg, free sub-ensembles
attenuate much more rapidly with ℓd and the remaining signal
becomes insignificant relative to the motionally averaged and
localized sub-ensembles. While it is challenging to model the
diffusion signal attenuation arising from a heterogeneous system
containing all of these sub-ensembles, it is straightforward to
utilize the characteristics of the attenuation to filter out free water
sub-ensembles; by choosing ℓd ≳ ℓg, the remaining signal resides
largely in the localized and motionally averaged sub-ensembles.
Presuming extracellular water to be predominantly free and
motionally averaged water to be predominantly intracellular,
choosing ℓd ≳ ℓg provides a simple means to measure
transmembrane water exchange with high SNR and a small
number of data points via DEXSY, motivating the signal
model discussed in the following section.

A similar picture applies for pulsed gradient experiments, in
which ℓd is generally fixed and ℓg is varied. Note that ℓg is
equivalently defined in the limit that the gradient pulse
duration is equal to the diffusion encoding time: δ =
Δ—i.e., when the pulsed gradients resemble the uninterrupted
application of a static gradient—as opposed to the commonly
used narrow gradient pulse approximation: δ ≪Δ (see Refs. [44,
49] for comparisons between these limits).

How do these cases apply to practical NMR experiments on
biological tissue? That is, what is the range of salient ℓs values in
tissue (i.e., cells) and what is the range of attainable experimental
ℓg values? Electron microscopy (EM) imaging reveals a range of
membrane-bound structures: cells, organelles, and even vesicles,
which suggests that the range of salient ℓs values within tissue
spans several orders of magnitude, from tens to thousands of
nanometers. In comparison, an approximate lower bound for ℓg is
provided by high static gradients, such as produced by stray fields
[50] or some permanent magnets used in low-field NMR [51],
which can attain, e.g., ℓg = 0.8 μm for g = 15.3 T/m and D0 =
2.15 μm2/ms [15] (see also Refs. [52–54]). Thus, at least some ℓs
values will invariably be smaller than ℓg ~ 1 μm, so the presence of
restricted signal within biological tissue is expected, given that the
residence time within such restrictions is longer than the
diffusion encoding time. In practice, this may manifest itself as
a persistent signal component that exhibits little to no decay due
to diffusion, especially at smaller gradient amplitudes.

Others [55, 56] have likewise pointed out that Gaussian
diffusion is almost always violated to some degree in the
study of biological tissue using diffusion NMR due to
restrictions, but exchange from restricted compartments
should also be important. Biological membranes control
permeability to water and other substances through lipid
membrane composition and through expression of

membrane transport proteins. To water, membranes both
reflect and hence restrict on some timescale but allow
passage through and are permeable on some longer
timescales. It may be feasible, therefore, to ignore restriction
or exchange by probing the appropriate timescales.

Due to the potentially distributed nature of ℓs, however, both
restriction and exchange may be relevant over a large range of
probe-able timescales. Measurement of time-dependent diffusion
in yeast samples over extremely short sub-millisecond timescales
shows a deviation from the linear surface-to-volume ratio (S/V)
scaling expected for the short-time limit [57], consistent with the
effect of membrane permeability [58]. Static gradient spin echo
diffusion attenuation in the spinal cord model utilized below
shows the non-Gaussian signature of b1/3 signal scaling even at
extremely high diffusion weighting out to b = 3,000 ms/μm2 with
corresponding diffusion time τ = 6.6 ms [15]. Explorations of the
“dot” compartment in gray matter appear to reveal a persistent,
non-exchanging water pool at b = 15 ms/μm2 and diffusion times
up to 35.5 ms [59]. Taken together, these and other results over a
large range of timescales and gradient strengths (see Refs. [55, 60,
61]) suggest that, in general, exchange cannot be completely
ignored at short timescales, nor does exchange fully average out
the effects of membranes at longer timescales. Therefore,
restriction and exchange must both be accounted for to better
understand what the diffusion NMR signal can reveal about the
underlying tissue microstructure. Fortunately, unlike with single
pulsed-field gradient or single diffusion encoding, with double
diffusion encoding incorporating a mixing time, specifically with
DEXSY, we can naturally separate the encoding of diffusion from
the encoding of exchange. We now utilize the models for spin
echo signal attenuation due to diffusion to develop a simplified
DEXSY signal model for heterogeneous samples such as
biological tissue.

2.3 A Minimal Diffusion Exchange
Spectroscopy Signal Model for ℓd ≳ ℓg
This picture of distributed ℓs values hews close to the notion of a
crowded cellular milieu, but does not lend itself to interpreting
experimental data. Thus, we propose a simplified DEXSY signal
model when ℓd ≳ ℓg using the picture provided in Figure 1B (cf.
Moutal et al. [62]). We assume that relatively little signal exhibits
localization behavior when ℓd is not much larger than ℓg such that
the signal may be approximated as arising from two equilibrium
signal fractions, fm and fe, corresponding to a motionally averaged
(ℓs ≲ ℓg) and a free or extracellular sub-ensemble (ℓs > ℓg),
respectively. More specifically, we assume that the signal
behavior for ℓg < ℓs < ℓd resembles that of free diffusion
because dephasing can occur within the extent of ℓs and the
signal that is localized near boundaries does not yet dominate as it
would in the limit of large ℓd. The gradient dephasing length ℓg

demarcates the approximate boundary between the sub-
ensembles. For the motionally averaged signal fraction fm, we
assume that ℓd ≫ ℓs for most ℓs < ℓg such that the signal behavior
may be approximated by Eq. 4 whilst dropping the (R2/D0) term.
Again, we pull out a constant for the scaling with b1/3, here
ensemble-averaged over ℓs = [0, ℓg],
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〈c〉 � 16
175

γ4/3g4/3〈R4〉
2/3( )1/3D0

, 〈R4〉 ≈ ∫ℓg

0
P ℓs( ) ℓ4s dℓs, (6)

where P(ℓs) is the PDF of ℓs (e.g., Figures 1B,C). Because we are
principally concerned with experiments performed under a static
gradient, we treat g as a constant and leave the g4/3 term in 〈c〉.
Note that for pulsed gradients with varying g, a different
representation would be necessary.

Assuming no exchange during diffusion encoding periods, no
surface relaxation effects, and ignoring relaxation processes for
the time being (i.e., spin-lattice relaxation T1 during tm and spin-
spin relaxation T2 during the encodings), I/I0 for a DEXSY
experiment may be written as arising from four signal fractions:

I

I0
� fm,m exp − b1/31 + b1/32[ ]〈c〉( ) + fm,e exp −b1/31 〈c〉 − b2D0( )

+fe,m exp −b1D0 − b1/32 〈c〉( ) + fe,e exp − b1 + b2[ ]D0( ),
(7)

where fm = fm,e + fm,m, fm,e and fe,m are signal fractions that
exchange between the two sub-ensembles or compartments
during tm, and fm,m and fe,e are signal fractions that do not,
exhibiting the same signal behavior during both encodings. For
static gradient experiments, b1 and b2 are varied by changing τ,
i.e., b1 � (2/3)γ2g2τ31 and b2 � (2/3)γ2g2τ32. If exchange between
fm and fe is assumed to be driven by passive diffusion, then the
exchange will obey first-order rate kinetics with rate constant k:

k � 3κ/〈R〉, 〈R〉≈ ∫ℓg

0
P ℓs( )ℓs dℓs, (8)

where κ is the barrier permeability (base units of m/s) and 〈R〉 is
an ensemble-averaged, effective spherical radius for the
motionally averaged sub-ensemble. The radius 〈R〉 may also
be written as 〈R〉 = 3V/S, such that k = κ (S/V), where S/V is
the surface-to-volume ratio of all restrictions for which ℓs ≲ ℓg.
Finally, assuming detailed mass balance (i.e., no net flux): fm,e =
fe,m, the total exchanging fraction may be written as [19].

fexch tm( ) � fm,e + fe,m � 2fefm 1 − exp −tmk( )[ ], (9)
where the factor 2fefm = 2fm(1 − fm) is a steady-state exchange
fraction corresponding to complete mass turnover as tm ≫ 1/k.
Altogether, Eqs. 7, 9 provide a three-parameter model (fm, 〈c〉, k)
for the DEXSY signal as a function of (b1, b2, tm).

While such a signal model is parsimonious and makes several
assumptions—particularly in ignoring transitional signal
behavior when ℓg < ℓs < ℓd and in assuming a single effective
exchange rate between fe and fm—it may suffice as a coarse-
grained description of the signal behavior in heterogeneous tissue
suitable for obtaining apparent parameters. This model is
amenable to both static gradient DEXSY (in which ℓg is
constant) and pulsed gradient DEXSY in the limit that δ = Δ
(in which ℓg is varied and ℓd is constant). Broadly speaking, this ℓd
≳ ℓg signal model is a two-compartment model with a first-order
exchange rate that, unlike the standard Kärger model for
diffusion exchange [63], incorporates restriction, represented
here by a motionally averaged signal fraction fm with some
effective exponential decay rate 〈c〉 proportional to b1/3g4/3.

This model is used throughout to simulate data and to fit
experimental data.

3 RESULTS

3.1 Simulated Data and Diffusion-Diffusion
Spectra
To simulate data using Eq. 7, we set fm = fe = 0.5 and choose
〈c〉 � 1.2 (μm2/ms)1/3 such that complete signal attenuation and
therefore stable ILTs can be achieved within reasonable b-values.
Note that in reality, 〈c〉may be much smaller, e.g., in the range of
〈c〉 ~ 0.01 − 0.1 (μm2/ms)1/3 as reported in Williamson and
Ravin et al. [15] for fixed neonatal mouse spinal cord.
Nonetheless, the simulations here are demonstrative, and the
observed behavior in the ILTs should translate to any signal
model that consists of a freely diffusing signal fraction fe
exchanging with some restricted signal fraction exhibiting
exponential decay with b1/3.

Simulated signals at different tm in relation to k (tm �
[0, 1/(2k), 1/k]) are plotted vs. (b1, b2) in Figure 2, along with
the ILT-derived P(D1, D2) and marginal P(D1) distributions.
Gaussian noise with a signal-to-noise ratio (SNR) of 100 was
added prior to the inversion of simulated data. An example with
tm = 0 and no noise is also presented for comparison. The ILTs
were performed using non-negative least squares (NLS) with L2
regularization [64, 65]. The regularization parameter was chosen
to produce a residual sum of squares (RSS) ≈ 1/SNR for the tm = 0
case and held constant for the tm = 1/(2k) and 1/k cases,
representative of moderate regularization. The simulated signal
shows the expected transition from Gaussian to non-Gaussian
signal behavior with increasing b-values (Figures 2A,B) and
resembles previously reported data [15]. Both restriction and
exchange result in curvature in the iso-signal contours, shown in
Figure 2A. The cases with exchange show faster initial decay due
to exchange from fm to fe, which is clearly visible in Figure 2B.

The inverted P(D1, D2) spectra (Figures 2C,D) contain illusory
features. Namely, the presence of restricted signal results in 1)
broadening of the (D0, D0) component into a star-like shape in
both the on- and off-diagonal directions, even in the absence of noise
and exchange (tm = 0), and 2) with exchange, the off-diagonal
components are distributed and are not consistent with the “ground-
truth” two-compartment model, Eq. 7, used to simulate the data.
The marginal P(D1) distributions (Figure 2D) have a distributed tail
of small diffusivities. With less regularization, the tail splits into
multiple peaks (data not shown), an effect known as “pearling” [2].
This long tail of diffusivities is also seen in previous experimental
P(D) distributions in which motionally averaged signal behavior was
observed (see Refs. [66–68] as well as Figures 2C, 3A in Williamson
and Ravin et al. [15]). Thus, while ILTs may be able to detect the
exchange process in general via an increase in the off-diagonal
components in P(D1, D2), the location and shape of these
components cannot be meaningfully interpreted in the presence
of non-Gaussian signal behavior due to restrictions. Furthermore,
spurious off-diagonal components may be detected even in the
absence of exchange, due primarily to the star-like broadening of the
(D0, D0) component.
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3.2 Diffusion Exchange Spectroscopy
Acquisition Scheme and Signal Model
Motivated by Features in the Acquisition
Domain
As shown in Figure 2A, the curvature of the iso-signal contours
in the (b1, b2) domain is sensitive to exchange, which provides a
means to vastly reduce the number of samples needed to measure
exchange at a given tm. Rather than fully or partially sampling the
(b1, b2) domain, one can instead obtain a finite difference
approximation to the curvature along a contour or curve of
constant total diffusion weighting, b1 + b2, at different tm in
order to estimate k, thereby obviating the ILT altogether and
avoiding its potential confounds entirely.

Previously, we presented a rapid, five-point method to
measure an apparent exchange rate (AXR) while removing

the effects of the diffusion-weighted T1 on the signal [19].
Here, we perform the same signal re-parameterization, but in
the context of the minimal ℓd ≳ ℓg signal model, Eq. 7. We find
that fm and 〈c〉 can be related to the curvature depth at tm = 0,
providing a unique method of characterizing the non-Gaussian
signal behavior due to restrictions from a series of DEXSY
experiments with short tm or from double spin echo
experiments, akin to DEXSY with zero tm. Further, we
present a combined acquisition scheme which uses multiple
tm to determine all relevant restriction and exchange
parameters: fm, 〈c〉, and k or the AXR.

3.2.1 Signal Re-Parameterization
To look at the curvature of the signal attenuation in the (b1, b2)
domain, we re-parameterize the sum, bs, and difference, bd, of the
b-values.

FIGURE 2 | Simulated data and diffusion-diffusion spectra for the ℓd ≳ ℓg signal model in Eq. 7. (A) Simulated DEXSY signal in the (b1, b2) acquisition domain for four
cases: tm = 0, tm = 0 without noise, tm = 1/(2k), and tm = 1/k. Gaussian noise with SNR = 100 was added unless otherwise specified. Iso-signal contours at I/I0 = (0.01,
0.005, 0.003) are shown. (B) 1-D signal behavior from (A) along b2 = 0 (solid line) and the b1 = b2 diagonal, i.e., bd = 0 (dashed line). Increased exchange results in faster
decay along the bd = 0 diagonal. (C) ILT-derived diffusion-diffusion spectra P(D1, D2). The range of diffusivities given for the inversion was (D1, D2) ∈ (1 × 10–3,
22.5) μm2/ms. The L2 regularization parameter was chosen to produce an RSS ≈ 1/SNR for the tm = 0 case and held constant for the other cases. Broadening of the (D0,
D0) component into a star-like shape is observed, even in the absence of noise. In exchanging cases, distributed exchanging components along D0 are visible. (D)
Marginal P(D1) distribution from (C). Note the long tail of distributed, small diffusivities.
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bs � b1 + b2, bd � b1 − b2,

b1 � bd − bs
2

, b2 � bs + bd
2

,
(10)

Substituting Eq. 10, Eq. 7 can be rewritten as

I

I0
� fm,m exp − bs + bd

2
[ ]1/3

〈c〉 − bs − bd
2

[ ]1/3

〈c〉( )
+fm,e exp − bs + bd

2
[ ]1/3

〈c〉 − bs − bd
2

[ ]D0( )
+fe,m exp − bs − bd

2
[ ]1/3

〈c〉 − bs + bd
2

[ ]D0( )
+fe,e exp −bsD0( )

(11)

Calculating the second partial derivative of I/I0 with respect to bd
evaluated about bd = 0 (i.e., the central curvature of the signal
along a slice of constant bs), and rearranging,

z2

zb2d

I

I0
( )

∣∣∣∣∣∣∣∣∣bd�0 � fm − fexch

2
( ) 〈c〉

9
2
bs

( )5/3

exp −2 bs
2

[ ]1/3

〈c〉( )
+a0 fexch exp − bs

2
[ ]1/3

〈c〉 − bs
2
D0( ), (12)

where fm,m = fm − fexch/2 has been substituted by mass balance,
and a0 is a factor given by

a0 � 〈c〉
3 21/3b2/3s[ ] − D0

2
⎛⎝ ⎞⎠2

+ 22/3〈c〉
9b5/3s

. (13)

Note that the contribution due to fe,e disappears from Eq. 12.
Computing the curvature thus separates the effects of restriction
and exchange—both of which introduce curvature—from the
effects of non-exchanging signal fractions that exhibit mono-
exponential decay with b—which do not.

Rewriting Eq. 12 in terms of fexch,

fexch � 2 ΔI − fm a1 b
2
s( )

b2s a0 exp −2−1/3b1/3s 〈c〉 − 2−1bsD0( ) − a1[ ], (14)

where now the curvature has been replaced with a three-point
finite difference approximation assuming symmetry across the bd
= 0 axis (i.e., assuming that I/I0 is the same at bd = ±bs),

z2

zb2d

I

I0
( )

∣∣∣∣∣∣∣∣∣bd�0 �
2ΔI
b2s

, (15)

where ΔI is the difference between the I/I0 endpoint(s) and
midpoint along bd,

ΔI � I/I0( ) ∣∣∣∣bd� ±bs
− I/I0( ) ∣∣∣∣bd� 0

(16)
and for compactness we let

a1 � 〈c〉
18

2
bs

( )5/3

exp −2 bs
2

[ ]1/3

〈c〉( ). (17)

The exchanging fraction fexch can in principle be obtained from a
single ΔI measurement with a priori knowledge of fm and 〈c〉.
However, if these quantities are not known, additional
experiments are able to determine the apparent values of fm

FIGURE3 |Description of the proposed REEDS-DE NMR acquisition scheme. Parameters are obtained in two steps. (A) In the first step,ΔI valuesmeasured at two
or more bs near tm = 0 are fit to Eq. 18, yielding fm and 〈c〉. The bs values should be chosen to satisfy ℓd ≳ ℓg. (B) In the second step, ΔI values measured at one or more tm
> 0 at a fixed bs are used to calculate fexch(tm) from Eq. 20, utilizing the first step for the correction term, ΔI(tm = 0) (see Section 3.2.3). Finally, the tm dependence of fexch is
fit to Eq. 9, yielding k. The steady-state fexch at long tm should agree with 2fm(1 − fm). Marginal points along b1 or b2 = 0 may be used to measure the diffusion-
weighted T1.
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and 〈c〉. Note that by using ΔI as the measured value (i.e., a
difference in signal), the effect of T1 during tm is removed, as
shown in Ref. [19].

3.2.2 Determining the Motionally Averaged Signal
Fraction and Decay Constant
Going one step further, fm and 〈c〉 can be isolated by measuring
ΔI at tm = 0. With tm = 0, the exchanging fractions are
approximately 0 such that fm = fm,m and fe = fe,e. From Eq. 11,
it can be seen that taking ΔI removes the fe contribution, yielding
a simple expression for ΔI as a function of bs,

ΔI bs, tm � 0( ) � fm exp −b1/3s 〈c〉( ) − exp −22/3b1/3s 〈c〉( )[ ]. (18)
The apparent fm is proportional to ΔI at tm = 0 and can be
determined at a single bs if 〈c〉 is known (and vice versa). If
either parameter is unknown, then ΔI at tm = 0 can be measured
at two or more bs values and a two-parameter fit to Eq. 18 can
be performed, yielding fm and 〈c〉 simultaneously. In such a fit,
〈c〉 is a shape parameter and fm is a scale parameter, which
supports robust NLS fitting. It is important to note that the
range of appropriate bs values for the fit is not arbitrary, and is
tightly constrained by the assumption that ℓd ≳ ℓg. The rationale
behind selecting bs values is discussed in more detail in
Section 3.3.2.

To gain further insight into how fitted fm and 〈c〉 values
might reflect the underlying P(ℓs), forward simulations of the
signal difference ΔI(bs) in impermeable spheres with gamma
distributed radii were performed using analytical expressions
[30]. Eq. 18 was fit to simulated data and results are presented
in the Supplementary Material. We find that the two-
parameter model, Eq. 18, can adequately describe ΔI(bs) in
a truncated bs range (see Section 3.3.2) and that fitted fm and
〈c〉 values trend correctly with changes in the simulated P(ℓs)
or P(R). We emphasize, however, that these are apparent
parameters.

3.2.3 Accounting for Confounds at Small Mixing Time
In previous work [15] to quantify the AXR or k from the tm
dependence of DEXSY experiments, Eq. 9 required some
modification to account for curvature (ΔI) observed at short
tm. An intercept term f0 was introduced,

fexch tm( ) � 2fm 1 − fm[ ] − f0( ) 1 − exp −tmk( )[ ] + f0. (19)
The ΔI due to fm,m partially explains the need for an f0 parameter.
Other effects may also contribute to f0: 1) exchange during the
encoding periods, 2) exchange between compartments with
different T2 during the measurement, and 3) the change in
ℓd between diffusion encoding periods when τ1 ≠ τ2, which is
unavoidable for experimental setups with a static field gradient.
The last effect 3), particularly, can result in large apparent
exchange when no time-dependent exchange has occurred.
Looking at Figures 1B,C, shifting ℓd left or right between
encodings may produce fm,e or fe,m signal fractions,
respectively. The same effect 3) can occur with pulsed
gradients, in which ℓg is varied while ℓd stays constant. All of
these confounding effects are lumped into f0.

Another ad hoc approach to the correction for these effects is
to remove the ΔI observed at tm = 0 when calculating fexch.
Modifying Eq. 14 and explicitly including the tm dependence,

fexch tm( ) � 2 ΔI tm( ) − ΔI tm � 0( ) − fm a1 b
2
s[ ]

b2s a0 exp −2−1/3b1/3s 〈c〉 − 2−1bsD0( ) − a1[ ]. (20)

By performing the correction at this stage—prior to fitting for
k—an intercept term is no longer necessary and Eq. 9 may be
used as is to determine k from measurements of fexch at one or
more tm.

3.2.4 Combined Acquisition Scheme
With Eqs 6–20 in mind, a combined acquisition scheme is
designed to determine apparent values of 〈c〉, fm, and k
without prior knowledge of P(ℓs). As described in Section
3.2.2, ΔI measured at two or more bs values at tm = 0 can be
fit to Eq. 18, yielding fm and 〈c〉. With fm and 〈c〉 known, a0 and
a1 can be calculated from Eqs. 13, 17, respectively, after which Eq.
20 can be used to calculate fexch from DEXSY experiments with
various tm > 0, using the previous measurement(s) for the ΔI(tm =
0) correction term. Finally, calculated fexch(tm) values can be fit to
Eq. 9, yielding k. Note that the steady-state exchange fraction
2fm(1 − fm) is presumed to be known such that Eq. 9 is truly a
single parameter model. Furthermore, two points along b1 or b2 =
0 may be used to obtain the diffusion-weighted T1 in order to
interpolate the marginal b1 or b2 = 0 points for further data
reduction, if desired [19]. In total, I0 and three values of ΔI (two at
tm = 0 and one at tm > 0) are sufficient to determine all
parameters, although more data are likely required for
practical fitting purposes. Throughout all measurements, the
source of contrast ΔI lies in the difference between double
diffusion encodings with equal diffusion weighting (b1 = b2, bd
= 0) and single diffusion encodings with the same total diffusion-
weighting (bs = b1 + b2). We thus term the method: Restriction
and Exchange from Equally-weighted Double and Single
Diffusion Encodings, abbreviated REEDS-DE. REEDS-DE is,
in essence, a sub-sampling of conventional DEXSY data. This
combined acquisition scheme is visualized in Figure 3.

3.3 Experimental Validation of the
REEDS-DE Combined Acquisition Scheme
3.3.1 Materials and Methods
The curvature along slices of constant bs and at tm near zero was
assessed using two different double diffusion encoding pulse
sequences implemented on a PM-10 NMR-MOUSE single-
sided magnet at ω0 = 13.79 MHz, B0 = 0.3239 T, with a large
g = 15.3 T/m static gradient (SG). One method is to simply
shorten tm in the SG-DEXSY pulse sequence. Exchange will be
negligible when tm ≪ 1/k. In this study, tm = 0.2 ms was chosen,
which is much shorter than the reported 1/k ≈ 10 ms for fixed ex
vivo neonatal mouse spinal cord [15]. Further details of this
sequence are presented in Ref. [15]. Alternatively, the storage
interval can be removed completely by using an SG-double spin
echo (SG-SE-SE) sequence. This sequence combines the phase
cycles of the classic double spin echo [69] with the standard
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NMR-MOUSE SG spin echo diffusion sequence [70]. For both
sequences, the signal is acquired in a CPMG loop and summed to
maximize SNR [71]. Both sequences are shown in Figure 4. The
pulse sequences and phase cycles can be found in the Data
Availability statement.

Sample preparation and test chamber details can be found in
the Materials and Methods of Ref. [15]. Briefly, spinal cords were
removed from Swiss Webster wild type mice (Taconic
Biosciences, Rensselaer, NY) between postnatal day 1 and 4,
under approved animal protocols (National Institute of
Neurological Disorders and Stroke Animal Care and Use
Committee (ACUC), Animal Protocol Number 1267–18 and
National Institute of Child Health and Human Development
ACUC Animal Protocol Number 21-025). Experiments were
performed on either freshly dissected, viable spinal cords or
on fixed spinal cords. Fixed spinal cords were fixed overnight
in 4% paraformaldehyde and washed three times with artificial
cerebrospinal fluid (aCSF) to remove residual paraformaldehyde.
Spinal cords were placed within a 13 × 2 mm solenoid
radiofrequency (RF) coil, built in-house. During experiments,
spinal cords were bathed in aCSF with a surrounding gas
environment of 95% O2/5% CO2. Temperature was monitored
(≈ 25 ± 1 °C).

The SG-DEXSY and SG-SE-SE experiments were performed
using the same experimental parameters. Curvature along bd was
assessed at bs = (0.3, 1, 6) ms/μm2. 6, 20, 21 points were spaced
linearly in bd across each bs slice, respectively. With static
gradients, b = 0 cannot be obtained and the minimum used

here was b = 0.089 ms/μm2. That is, the normalization point I0
corresponds to b = 0.089 ms/μm2. Accordingly, the bd range along
the slices of bs was bd = (−bs + 0.089, bs − 0.089) ms/μm2. Points
exactly at bd = 0 were avoided due to the potential refocussing of
unwanted coherence transfer pathways when τ1 = τ2. Other
experimental parameters include: 90°/180° RF pulse lengths =
2/2 μs, pulse powers = −22/−16 dB, 2 s repetition time, 2000 or
8,000 echo CPMG train with 25 μs echo time, 8 points per echo,
and 0.5 μs dwell time. With regards to relaxation processes, the
effect of T1 is normalized by using a difference in signals ΔI, as
previously mentioned, and T2 is assumed to negligibly affect the
signal because the utilized τ values (≲ 1 ms) are small compared to
the measured T2 = 163 ms of the sample [15].

3.3.2 REEDS-DE Results
The curvature shape and depth (i.e., ΔI) from SG-DEXSY
experiments with tm = 0.2 ms and SG-SE-SE experiments
performed on a freshly dissected, viable ex vivo neonatal
mouse spinal cord are presented in Figure 5. At small bs, no
curvature is observed. As bs increases, ΔI increases, as predicted
by Eq. 18. It is worth noting that the SG-SE-SE experiment has
anti-parallel gradient encodings whereas the SG-DEXSY
experiment resembles an SE-SE experiment but the 90° RF
storage pulses select coherence from both parallel and anti-
parallel gradient encodings [72]. The SG-DEXSY experiment
displays less attenuation than the SG-SE-SE experiment, likely
corresponding to signal refocussing in the SG-DEXSY
experiment due to reflections off of barriers that occurs on the
timescale of the encoding, τ = τ1 ≈ τ2 [73, 74]. While substantive,
this effect does not appear to affect ΔI such that, for our purposes,
SG-SE-SE and SG-DEXSY experiments with tm = 0.2 ms are
functionally identical.

We assess the full REEDS-DE acquisition scheme (Figure 3)
by retroactively analyzing the data presented in Appendix 7,
Figure 2 of Ref. [15], which was acquired using the same SG-
DEXSY protocol but on a different, fixed spinal cord. We choose
to analyze a certain range of bs values based on validity constraints
of the ℓd ≳ ℓg signal model, Eq. 7. For this setup, g = 15.3 T/m and
D0 = 2.15 μm2/ms such that the point at which ℓd = ℓg = 0.8 μm
occurs at τ = 0.3 ms and b = 0.3 ms/μm2. As ℓd greatly exceeds this
value, a significant portion of the remaining signal may exhibit
localization behavior, invalidating the signal model (see
Figure 1B). Furthermore, a longer τ results in more exchange
during encodings such that the assumption of fm,e = fe,m = 0 at
small tm used to arrive at Eq. 18 may no longer be valid. A
somewhat arbitrary heuristic is to keep ℓd ≲ 1.6 ℓg. Here, ℓd =
1.6 ℓg corresponds to τ = 0.76 ms and b = 5 ms/μm2. Another
constraint on validity comes from Eqs. 4, 6, in which we dropped
the (R2/D0) term on the basis of 2τ ≫ (581/840) (R2/D0). This
approximation is valid when ℓs ≪ ℓd. Thus, ℓd should be kept
somewhat larger than ℓg such that ℓs ≪ ℓd for most ℓs < ℓg. These
are competing validity constraints. As such, a narrow range of bs
should be used to measure ΔI. Here, we chose values in the range
bs = (2, 5) ms/μm2—or, equivalently, 1.23 ℓg ≤ ℓd ≤ 1.6 ℓg, where ℓd
= 1.23 ℓg corresponds to b1 = b2 = 1 ms/μm2. Results are
summarized in Figure 6.

FIGURE 4 | Pulse sequences. Static gradient DEXSY and static gradient
double spin echo pulse sequences implemented on a low-field single-sided
NMR system.
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For the first step of the REEDS-DE acquisition scheme
(Figure 3A), ΔI was measured at six points bs = (2, 3, 3.5, 4,
4.5, 5) ms/μm2 using the SG-DEXSY sequence with tm = 0.2 ms
and data was fit to Eq. 18, yielding fm ≈ 0.61 and
〈c〉 ≈ 0.072 (μm2/ms)1/3, shown in Figure 6A. This 〈c〉 value
corresponds to 〈R4〉 ≈ 2.3 × 10–2 μm4. Data was truncated from a
full data set with bs up to 100 ms/μm2. Using allΔImeasured at up
to bs = 100 ms/μm2 results in a poorer fit, perhaps due to
increased exchange during encodings and the transition from
freely diffusing to localized signal behavior in sub-ensembles for
which ℓg < ℓs < ℓd. This behavior is expected, and supports that a
narrow range of bs corresponding to ℓd ≳ ℓg is where the signal
model in Eq. 18 is most valid.

For the second step of REEDS-DE (Figure 3B), ΔI was
measured using the SG-DEXSY sequence over the same range
of bs values with tm = (0.2, 2, 10, 20, 160) ms, shown in Figure 6B.
Then, bs was fixed at 5 ms/μm2 to calculate fexch(tm) from Eq. 20,
shown in Figure 6C. Finally, fexch(tm) values were fit to Eq. 9,
yielding k ≈ 75 s−1 or 1/k ≈ 13 ms. This measured k agrees with
previous results using a similar method (see “Method 2” in Ref.
[15]). The observed steady-state exchange fraction (i.e., at the
longest tm = 160 ms≫ 1/k) agrees with the predicted steady-state
fraction of 2fm(1 − fm) ≈ 0.48, providing further evidence that the
truncated fit in Figure 6A accurately characterizes the non-
Gaussian signal behavior of the sample. All data was analyzed
in MATLAB R2021b and fit using the lsqnonlin function.
Overall, we demonstrate the feasibility of the REEDS-DE
acquisition scheme and obtain good fits to the presented
signal models.

Note that the truncated fit systematically overestimates ΔI at
smaller and larger bs (see Figure 6A inset). The direction of
deviation is expected. At smaller bs, ΔImay be overestimated due
to the dropped (R2/D0) term in Eq. 4, which, when included,
results in a smaller effective 〈c〉 (i.e., a slower rise in ΔI vs. bs). At
larger bs (and ℓd), ΔImay be overestimated as the localized signal
behavior in the fe signal fraction becomes significant, decreasing
the difference in the signal decay of the fm and fe signal fractions.
More explicitly, the fe signal fraction no longer resembles the free
diffusion regime as ℓd≫ ℓg and a more complex relationship than
Eq. 18 is needed to describe how the appearance of localized
signal affects ΔI vs. bs. Despite this shortcoming, the data support

that the maximal ΔI is observed before localized signal behavior
becomes prohibitively significant, at around bs = 8 ms/μm2. Thus,
for the purposes of measuring apparent restriction and exchange
parameters with maximal SNR efficiency, it may be acceptable
and even preferable to truncate the bs range and thereby avoid the
localization regime. In a more thorough analysis, a variety of
truncation points spanning bs = (3, 100) ms/μm2 were utilized.
Results are presented in the Supplementary Material. We find
that fit parameters converge on expected values as the truncation
region decreases—i.e., 2fm(1 − fm) converges on the observed
steady-state exchange fraction of 0.48, and 〈c〉 values
stabilize—supporting our use of a limited range of bs.

4 DISCUSSION

4.1 Adapting REEDS-DE to High Field
Scanners
Adapting REEDS-DE to pre-clinical or clinical scanners may
prove challenging from a practical and modelling standpoint. On
conventional MRI scanners, g may be orders of magnitude
smaller (≲ 350 mT/m) than what is available on some low-
field, single-sided NMR systems, resulting in a larger ℓg.
Typically, ℓg ≳ 3 μm on pre-clinical and clinical scanners, as
compared to ℓg = 0.8 μm here. Due to this larger ℓg, entirely
different exchange processes may be measured because the
effective boundary between the restricted and freely diffusing
sub-ensembles has moved. This may result in a smaller observed k
because the motionally averaged sub-ensemble spans ℓs � [0, ℓg];
a larger ℓgmay decrease the apparent, ensemble-averaged S/V (see
Eq. 8). Different gradient strengths may significantly influence
the apparent exchange rate. Indeed, exchange rates found in the
literature for neural tissue vary greatly [75, 76], possibly due to
this ℓg dependence. The ℓd ≳ ℓg condition of REEDS-DE also
necessitates longer diffusion times, which decreases the available
signal due to T2 and may make exchange during encodings more
substantial. Exchange during encodings may be difficult to model
out of Eq. 18 in the first step of REEDS-DE without further
assumptions.

Another challenge for combining REEDS-DE with imaging is
the presence of a non-zero-mean noise floor. With the NMR-

FIGURE 5 | Exemplar curvature shape and depth ΔI for tm at or near 0 measured at various bs on a freshly dissected, viable ex vivo neonatal mouse spinal cord. (A)
Normalized signal I/I0 for the SG-DEXSY with tm = 0.2 ms and SG-double spin echo (SE-SE) sequences, where I0 was acquired at b = 0.089 ms/μm2. I/I0 is plotted as a
function of bd for three bs = (0.3, 1, 6) ms/μm2. ΔI increases with bs, as predicted. Error bars = ±1 SD from three technical replicates. (B) ΔI vs. bs from (A), where ΔIwas
measured as the difference between the average of the endpoints and the minimum I/I0 point. Exemplar curves (dotted lines) are shown for fm = (0.1, 0.65) and
〈c〉 � 0.07 (μm2/ms)1/3. NLS fits using this fixed 〈c〉 (dashed lines) yield fm ≈ 0.37 (RSS = 1.3 × 10–4). An initial guess of fm = 0.2 was provided.
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MOUSE, summing up the real component of the complex signal
preserves zero-mean Gaussian noise [15]. With imaging, the
signal magnitude is typically used, leading to non-zero-mean
Rician noise [77]. The persistent signal from motionally averaged
water may be difficult to accurately model and separate from the
noise floor, which may affect estimates of fm and 〈c〉.

While the methods discussed here are potentially amenable to
experiments in which gradient strength and direction is varied,

some alterations to the modelling are needed. In particular, the
motionally averaged signal decays exponentially with b1/3g4/3. The
g4/3 term, which is considered as a constant in Eqs. 4, 6 to pull out
〈c〉, will need to be accounted for when g is varied. The described
method also ignores the transitional signal behavior when all
three length scales ℓd, ℓg, ℓs are similar, although such behavior
may be significant in both the intracellular and extracellular space
[34]. Alternatively, more general diffusionMR signal models may
be used to interpret REEDS-DE measurements, as opposed to the
exchanging, two-compartment model presented here. To model
signal resulting from simple restricted geometries probed by
arbitrary gradient waveforms, the multiple correlation function
framework can be utilized [27, 78]. Another way to model the
signal is using time-dependent frameworks [79–81] that—similar
to the ℓd ≳ ℓg signal model, Eq. 7—are valid when there are only
free and motionally averaged signal fractions (i.e., when the
Gaussian phase distribution approximation [42] holds in all
sub-ensembles). Probing multiple gradient directions provides
the opportunity for combinations with a diffusion tensor imaging
framework [82], but the exchange rate is expected to vary with
direction in anisotropic tissue regions [9]. We emphasize that
REEDS-DE and the fitting approach described here is merely one
way to interpret data from double diffusion encodings and that
the above discussion concerning conventional MR scanners is
speculative.

4.2 Comparison to Other Diffusion
Exchange Spectroscopy-Based Methods
This work contributes to the existing body of literature
attempting to accelerate DEXSY and obtain exchange
parameters without the intensive data requirements of a
conventional numerical ILT. Some approaches aim to
accelerate the ILT itself [83, 84], e.g., by constraining the
inversion using the marginal P(D) distributions [24, 85].
Approaches which rely on an ILT, however, remain limited by
the confounds discussed in Section 3.1 and are thus unable, at
present, to disentangle the effects of restriction and exchange.
One potential direction would be to develop a simultaneous
Gaussian and non-Gaussian inversion, similar to a
simultaneous Gaussian and exponential inversion developed
for relaxation data [86].

Other approaches are more similar to the one presented here
and remain in the acquisition domain. Notably, filter exchange
spectroscopy (FEXSY) uses a large, fixed b1 to attenuate the free
water population (i.e., fe) and views the decay at various b2 as
being exchange-limited [6, 17, 18]. Visually, FEXSY slices the (b1,
b2) domain horizontally, rather than diagonally, potentially
conflating the effects of restriction and exchange. Simulated
data and experimental observations, however, show that slicing
diagonally along constant b1 + b2 = bs maximally isolates the
effects of (and provides the greatest sensitivity to) non-Gaussian
signal behavior due to restrictions and exchange—see the DEXSY
signal contours in Figure 2A. Thus, REEDS-DE and other
approaches based on estimating the diagonal curvature or ΔI
offer improved isolation from Gaussian diffusion and potentially
improved SNR compared to FEXSY.

FIGURE 6 | REEDS-DE acquisition and fitting scheme using SG-DEXSY
data acquired on a fixed spinal cord. (A) ΔI vs. bs curves for step 1 of REEDS-
DE (Figure 3A). ΔI was measured at bs = (2, 3, 3.5, 4, 4.5, 5, 6, 8, 10, 13, 20,
30, 60, 100) ms/μm2 with tm = 0.2 ms. Error bars = ± 1 SD from three
technical replicates. Two fits to Eq. 18 are compared: one (red line) using the
first six bs values up to bs = 5 ms/μm2 (dotted line), whilst 1.23 ℓg ≤ ℓd ≤ 1.6 ℓg,
and the other (blue line) using all bs values. The truncated fit evaluated over the
truncated region has RSS = 1.3 × 10–4 vs. 5.8 × 10–4 for the full fit and yields fm
≈ 0.61, 〈c〉 � 0.072 (μm2/ms)1/3. The data are best fit near ℓd ≳ ℓg. An initial
guess of fm = 0.2 and 〈c〉 � 1 × 10−4 (μm2/ms)1/3 was provided. Inset shows
zoomed plot. (B) ΔI vs. bs curves acquired at tm = [0.2, 2, 10, 20, 160] ms for
step 2 of REEDS-DE (Figure 3B). Error bars = ± 1 SD from three technical
replicates. Inset shows zoomed plot. (C) fexch calculated from points in (B) at a
fixed bs = 5 ms/μm2 using Eq. 20. The tm = 0.2 ms point was used for the
correction term, ΔI(tm = 0). Values were fit to Eq. 9, yielding k = 75 s−1 and 1/
k ≈ 13 ms (RSS = 0.013). An initial guess of k = 70 s−1 was provided. The
measured steady-state exchange fraction, fexch(tm = 160 ms) = 0.49 ± 0.03,
agrees with 2fm(1 − fm) ≈ 0.48. Zoomed plot shown to the right.
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4.3 Relation of Our Findings to Those of
Others
REEDS-DE can be viewed as a diffusion microstructural model of
signals acquired with double diffusion encodings. The model
incorporates a restricted intracellular compartment and exchange
between intra- and extracellular compartments, consistent with
classic microstructural imaging studies, e.g., Stanisz et al. (1997)
[87]. From an extensive in vivo study of diffusion in human
corticospinal tract, Nilsson et al. (2009) concluded that exchange
must be included in two compartment models in which one
compartment is restricted [60]. However, many microstructural
models have focused on restriction and ignored exchange. For
example, exchange is ignored in the Combined Hindered and
Restricted Model of Diffusion (CHARMED) [88]. More
generally, the field has posited a CHARMED-like “standard
model” of brain microstructure consisting of 1) water confined
in myelinated axons and neurites, modelled as impermeable
sticks or cylinders, and 2) extra-cellular water presumed to
undergo hindered, Gaussian diffusion [55, 89]. Extensions of
this “standard model,” e.g., soma and neurite density imaging
(SANDI) similarly ignore exchange [39]. While such models have
been effective for understanding white matter, they have failed to
translate to gray matter [55, 61, 90]. This is perhaps due to the
higher expected membrane permeabilities of gray matter
components including of soma, unmyelinated axons, dendrites
and glia/glial processes such as astrocytes which highly express
aquaporin water channels [91]. A growing body of literature
suggests that exchange rates in gray matter are faster than have
been previously assumed, with mean residence times on the order
of 1/k ~ 10 ms [15, 41, 90, 92], as reported here.

On the other hand, studies of exchange using diffusion NMR
typically exclude the effects of restriction—following the seminal
Kärger model [63]—and instead model the intracellular or
restricted component(s) as having a small intrinsic diffusivity
but otherwise Gaussian diffusion [41, 62, 93, 94]. This
assumption may lead to the vast underestimation of exchange
rates, as the slower exponential scaling of the signal decay in the
high b-value regime is attributed not to non-Gaussian signal
behavior, but to a slower exchange rate, when the former effect
may be significant. Consider that 1-D diffusion MR data along b
can be adequately fit using Kärger models or restriction
models—both are capable of explaining the transition to
slower exponential decay observed at high b-values [40, 41]
(e.g., Figure 2B). The effects are ambiguated. If exchange is
ignored, restriction length scales may be overestimated; if
restriction is ignored, exchange rates may be underestimated.
Ironically, slow exchange rates measured while ignoring
restriction are sometimes used, perhaps erroneously, to justify
the exclusion of exchange in signal models of tissue that do
include the effects of restriction, such as CHARMED [88] and
SANDI [39]. Overall, we should be cautious not to make
modeling assumptions using findings from different,
incompatible signal models.

Here, we provide a constructive method to merge the
disparate signal models for restriction and exchange in
tissue while retaining sensitivity to both effects in isolation.

Unlike conventional diffusion MR experiments,
multidimensional methods such as REEDS-DE and its
attendant DEXSY experiments can efficiently disentangle
these effects. Indeed, restriction and exchange parameters
are fit separately using the REEDS-DE acquisition scheme.
Furthermore, the relatively small number of
parameters—arising from the presented argument that any
underlying P(ℓs) is adequately described by a two-
compartment model when ℓd ≳ ℓg—minimizes SNR
requirements and supports robust NLS fitting. The theory
and double diffusion encoding methods presented in this
paper can be considered a step towards incorporating
exchange into microstructural signal models, for which there
is a vast body of prior literature. REEDS-DE and similar
approaches may help to answer longstanding questions
within the field, namely the relevance of exchange in gray
matter.

5 CONCLUSION

Non-Gaussian signal behavior confounds the interpretation of 1-
and 2-D diffusion coefficient distributions obtained using
numerical ILTs of diffusion NMR and DEXSY data. On the
other hand, non-Gaussian signal behavior is a signature of
restriction and enhances sensitivity to transmembrane water
exchange in tissue. A method to characterize the non-
Gaussian signal behavior due to restrictions in itself and in
tandem with exchange represents a valuable contribution. To
that end, we have developed a diffusion NMR acquisition scheme
that independently characterizes both restriction and exchange:
Restriction and Exchange from Equally-weighted Double and
Single Diffusion Encodings (REEDS-DE). Although the method
has not yet been validated for general use (i.e., using conventional
scanners), we present experimental NMR data collected on ex
vivo neonatal spinal cord using a strong, static gradient system
which support the validity of REEDS-DE and its accompanying
signal model in the regime of ℓd ≳ ℓg.

REEDS-DE leverages multidimensional NMR data along
the b1, b2, and tm dimensions of DEXSY experiments. The
method uses a simple two-point difference metric ΔI along an
axis of constant total diffusion weighting bs = b1 + b2 to remove
the effects of Gaussian diffusion (and T1 relaxation). This
difference is then acquired at various tm including tm near 0
with experimental parameters that satisfy ℓd ≳
ℓg—i.e.,

����
D0τ

√
≳ (D0/γg)1/3 — in order to further disentangle

the effects of restriction and exchange. The method yields
three apparent parameters that characterize restrictions with
an effective spherical radius R smaller than or similar to ℓg: fm,
〈c〉, and k, corresponding to the volume fraction, ensemble-
averaged decay rate with b1/3g4/3, and first-order exchange rate,
respectively. The method provides a novel means of rapidly
and comprehensively characterizing time-varying diffusion
behavior in biological tissue without the potential pitfalls of
numerical ILTs, and may prove useful in the study of tissue
that has been historically difficult to characterize, such as gray
matter.
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