
Stability and Controllability of Various
Spatial Solitons in Exciton–Polariton
Condensates by a Composite
Pumping
Kun Zhang1, Wen Wen2,3, Ji Lin1 and Hui-jun Li1*

1Institute of Nonlinear Physics and Department of Physics, Zhejiang Normal University, Jinhua, China, 2Department of
Mathematics and Physics, Hohai University, Changzhou, China, 3College of Science, Hohai University, Nanjing, China

We investigate the stability and controllability of one-dimensional bright and dark solitons,
and two-dimensional bright solitons and vortices with the charges m = 1 and 2,
respectively, in a nonresonantly incoherent pumped exciton–polariton condensates. A
composite pumping, consisting of the constant part and the Bessel-type spatially
modulating part, is introduced to balance the gain and loss. We demonstrate that the
pumping can not only stabilize all these solitons but also modulate the profiles of these
solitons. We also find that all these solitons obtained in this study are different from the
ones in the previous studies. Our work may pave a way to modulate these solitons in the
nonresonantly pumped exciton–polariton system.
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1 INTRODUCTION

In semiconductor microcavities, exciton–polariton condensates can be formed at a few Kelvin or
even at room temperature [1–5]. The strong light–matter interaction [6] observed in the
exciton–polariton condensates allows it to be an ideal platform to study quantum
nonequilibrium physics and exotic properties of high-orbital condensates [7]. These novel
properties are also very important to form various nonlinear phenomena, such as bistability [8,
9], information processing [10–12], pattern formation [13–15], artificial polariton molecules [16],
chaos [17], quantum vortices [18–25], and spatial solitons [21, 22, 26–38].

Spatial solitons are formed by balancing the diffraction and nonlinearity. There are rich nonlinear
physics and important practical applications [39, 40]. The lattice solitons [41], defect solitons [42],
interface kink solitons [43], and surface lattice solitons [44] had been found in the (1 + 1)-
dimensional saturated nonlinear Schrödinger equation (SNLSE). And in the coherent atomic media,
the (2 + 1) dimensional [(2 + 1) D ] SNLSE [45] (or cubic–quintic nonlinear Schrödinger equation
[46]) was researched. The bright ground solitons, vortices [47], and double-hump solitons [48] have
been found in the [(2 + 1) D] SNLSE, and lattice solitons [41] and discrete solitons [49] have also
been obtained in the SNLSE in which there was a periodical modulation potential in the denominator
of the saturable nonlinear term. However, except for the bright ground solitons and lattice solitons
[41], all others solitons are unstable. In a recent study, a high-dimensional SNLSE including a
trapping potential was constructed and various stable nonlinear modes [50] were obtained.

In the nonresonant incoherent exciton–polariton condensations with the homogeneous
pumping, dark solitons are unstable, and it would disappear after evolution in a short time for
one- [32] and two-dimensional [33] systems. The spatially periodic [22], ring-shaped [15, 23, 35],

Edited by:
Hui Hu,

Swinburne University of Technology,
Australia

Reviewed by:
Arko Roy,

University of Trento, Italy
Yongyou Zhang,

Beijing Institute of Technology, China

*Correspondence:
Hui-jun Li

hjli@zjnu.cn

Specialty section:
This article was submitted to

Optics and Photonics,
a section of the journal

Frontiers in Physics

Received: 20 October 2021
Accepted: 18 February 2022
Published: 22 March 2022

Citation:
Zhang K, Wen W, Lin J and Li H-j

(2022) Stability and Controllability of
Various Spatial Solitons in

Exciton–Polariton Condensates by a
Composite Pumping.

Front. Phys. 10:798562.
doi: 10.3389/fphy.2022.798562

Frontiers in Physics | www.frontiersin.org March 2022 | Volume 10 | Article 7985621

ORIGINAL RESEARCH
published: 22 March 2022

doi: 10.3389/fphy.2022.798562

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.798562&domain=pdf&date_stamp=2022-03-22
https://www.frontiersin.org/articles/10.3389/fphy.2022.798562/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.798562/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.798562/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.798562/full
http://creativecommons.org/licenses/by/4.0/
mailto:hjli@zjnu.cn
https://doi.org/10.3389/fphy.2022.798562
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.798562


and Gaussian-shaped [21, 30, 31] pumping have been proposed
to stabilize solitons. However, the balance between the nonlinear
gain and the constant loss is not realized, so the stability of
solitons is still an open question.

Under the adiabatic approximation of reservoir density, the
exciton–polariton condensates can be described by SNLSE with
the Kerr nonlinear term and the gain and loss terms, so the
formations and stability of nonlinear modes in this system are of
particular interest, and the mechanisms are also very complex.
When we discuss the nonlinear excitations (such as solitons and
vortices) on the basis of homogeneous condensates, it is difficult
to realize the balance between the nonlinear gain and the
invariable constant loss. Recently, we proposed the composite
pumping including the constant part and Gaussian-type spatially
modulating part to balance the gain and loss, and generate the
stable nonlinear modes [38]. But the roles of constant pumping
and spatial modulating pumping had not been elaborated
carefully.

In this study, we construct a nonresonant composite pumping,
consisting of the constant part and the Bessel-type spatially
modulating part, to balance the nonlinear gain and the invariable
loss. Then, the Gross–Pitaevskii equations described the dynamics of
the exciton–polariton condensates are solved, and the one-
dimensional bright and dark solitons and two-dimensional bright
solitons and vortices with different charges are obtained. Their stability
is proved by the linear stability analysis and evolution, and their
controllability is discussed. And we find that the balance or near
balance between gain and loss is the necessary condition for the
stability of solitons with the nonzero homogeneous background. In
addition, we also find that the spatial modulated pumping can be used
to modulate the profiles of solitons.

The article is organized as follows. In Section 2, the model
under study is introduced. In Section 3, various soliton solutions,
their properties, and their stabilities are discussed. In the last
section, the main results are summarized.

2 MODEL

Using the mean-field theory, the dynamics of two-dimensional
exciton–polariton condensates are described by using a
dissipative Gross–Pitaevskii equation for the polariton field Ψ
and the rate equation of the density of the excitonic reservoir nR:

iZ
zΨ
zt

� − Z2

2m*
z2

zx2 +
z2

zy2( ) + gC|Ψ|2 + gRnR + i
Z

2
RnR − γC( )[ ]Ψ,

(1)
znR
zt

� Pu r( ) − γR + R|Ψ|2( )nR, (2)

where Pu(r) is the nonresonant optical pumping; m* is the
effective polariton mass of the lower polariton branch; γC and
γR are the polariton and exciton loss rates, respectively; R is the
condensation rate; gC represents the strength of the nonlinear
interaction between polaritons; and gR is the interaction strength
between polaritons and reservoir excitons. The nonresonant
pumping is constructed by Pu(r) = P0 + P1Jn(r/w0), which

consists of a cw field P0 and Bessel-type field, respectively, Jn
denotes the n-order Bessel function, r = x for one-dimensional
system, and r � ������

x2 + y2
√

for the two-dimensional system.
The dimensionless forms of Eqs 1, 2 can be written as
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where s = t/τ0, (ξ, η) = (x/Rx, y/Ry), u = Ψ/ψ0, n � nR/n0R, w = w0/

Rx, ∇′ 2
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x/Z), Rx, y, ψ2
0, and n0R

being, respectively, characteristic time, the width of quantum
well layers in x, y directions, the condensate density, and the
reservoir density. These coefficients in Eqs 3, 4 are
σ1 � −gCψ2

0τ0/Z, σ2 � −gRn0Rτ0/Z, σ3 � Rn0Rτ0/2, σ4 = γCτ0/2,

σ5 = γRτ0, σ6 � Rψ2
0/γR, σ7 � P0

n0RγR
, and σ8 = σ7P1/P0. The

characteristic time τ0 = 5.45 × 10–10 s can be obtained by the
parameters in Ref. [32].

Here, if Rx = Ry, this model is (2 + 1) dimensional, that is, the
quantum well layers are sandwiched between the two distributed
Bragg reflectors [2]. If Rx ≪ Ry, δ ≪ 1, the effect of z2/zη2 can be
neglected, so Eqs 3, 4 are reduced to quasi (1 + 1) dimensional,
such as the nanowire system [32].

3 SOLITON SOLUTIONS AND THEIR
PROPERTIES

The linear properties of Eqs 3, 4 have been discussed in Ref. [38].
To obtain the stationary soliton solutions, we substitute u(ξ, η, s) =
ψ(ξ, η) exp(iβs) and n(ξ, η, s) = n′(ξ, η) into Eqs 3, 4, and obtain

−βψ + ∇′ 2
⊥ ψ + σ1|ψ|2ψ + σ2n′ψ − i σ3n′ − σ4( )ψ � 0, (5)

where n′ � P(r)
1+σ6|ψ|2. By using the Newton conjugate gradient

method [51], the profiles and power P′ � ∫∫+∞
−∞ |ψ|2dξdη or

the renormalized power P′ � ∫∫+∞
−∞ ‖ψ|2 − |ψ0|2|dξdη (mainly

for the solitons with background) of the soliton solutions are
obtained, and ψ0 is the amplitude of the background. The stability
of the soliton solutions ψ can also be analyzed by introducing
the perturbations u(ξ, η, s) � {ψ(ξ, η) + ϵ[v1(ξ, η)eλs+
v2*(ξ, η)eλ*s]}eiβs, n(ξ, η, s) � n′ + ϵ[v3(ξ, η)eλs + v3*(ξ, η)eλ*s],
where v1, v2, and v3 are the normal modes and λ is the
corresponding eigenvalue of the perturbations, and solving the
eigenvalue problem as shown in Ref. [38]. In general, we
use the parameters σ1 = −1, σ2 = 0.3, σ3 = 0.15, σ4 = 0.1, σ5 =
1, and σ6 = 4, which are obtained by substituting the parameters
in [32] into these formulas given Eq. 4.

3.1 The Soliton Solutions for
One-Dimensional System
We discuss the one-dimensional soliton solutions of Eq. 5 and
their stability first. The nonlinear modes are excited on a
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homogeneous background of the steady condensate wave
function for the bright and dark solitons. The bright solitons
are with a zero background, and the dark solitons are with a
nonzero homogeneous background, so the physical mechanisms
to generate and stabilize these bright solitons and dark solitons
are different. For them, the nonlinear saturated gain term cannot
be balanced by the constant loss directly, so an inhomogeneous
pumping is necessary to stabilize them. For the dark solitons, the
inhomogeneous pumping can not only be used as an external
potential but also suppress the nonlinear saturated gain caused by
the nonlinear excitation. Meanwhile, the homogeneous pumping
suppresses the constant loss for the soliton. For the bright ones,
the competitions between the inhomogeneous pumping, nonzero
homogeneous background of the steady condensate wave
function, and the gain and loss are complicated. Here, we
choose the 0-order Bessel inhomogeneous pumping and w =
2.5 to find the one-dimensional bright and dark solitons.

Using the Newton conjugate gradient method [51], we first
find the soliton solutions of Eq. 5, then make the linear stability
analyses, and evolve the obtained solitons by Eqs 3, 4. The bright
solitons with β = 0.35 and their stability are shown in Figure 1.
From the profiles of bright solitons, since a dip contributes to the
nonlinear saturated gain term, σ8 > 0 is taken to compensate the
loss. Figures 1A–D illustrate the power and stability curves as a
function of the homogeneous pumping σ7 (the inhomogeneous
pumping σ8). From the power curves in Figure 1B, one can find
positive inhomogeneous pumping is necessary to generate the
bright solitons. Although there are stable bright solitons, the
stable ranges for the parameters σ7,8 are narrow, as shown in
Figures 1C,D. In Figures 1E,G, the red solid lines denote the
profiles |ψ| of the steady states by solving Eq. 5, the green dashed
lines denote the profiles of pumping. From them, we find the
pumping can modulate the profiles of the bright solitons. In the
center of Figure 1E, the highest peak of the soliton profile is fully
in agreement with the highest peak of the pump, and the two side

peaks of the soliton profile are also in agreement with the side
peaks of pumping. And in the center of Figure 1G, the highest
peaks of the soliton profile and pump are also concordant, but the
second and third side peaks of pumping are coincident with the
second and third side valleys of the soliton profile. Thus, the
profiles of pumping can be used to reconstruct the shapes of
bright solitons.

The stability is proved further by a numerical evolution of Eqs
3, 4, and adding the random perturbations into the initial values
of evolution, that is, the initial value is taken as u(s = 0, ξ, η) = ψ(ξ,
η) (1 + ερ1) and n(s = 0, ξ, η) = n′(ξ, η) (1 + ερ2), where ε = 0.1, ρ1,2
are the random variables uniformly distributed in the interval [0,
1], and s = 100 denotes 54.5 ns. In Figures 1F,H, the projections
of the evolution results are shown in the left panels, and the blue
dashed lines and the red solid lines denote the profiles of the
evolution results at the times s = 0 and s = 800 in the right panels,
respectively. The evolution results are in agreement with the
results of the stability analyses. The profile of the bright soliton
can conserve perfectly even after evolution 436 ns from the
numerical results in Figure 1F.

There are the Kerr nonlinearity terms, saturated nonlinearity
terms, and the composite pumping terms in Eqs 3, 4, so it is
possible to support the bright solitons and dark solitons
simultaneously in the exciton–polariton condensate system.
Since a hump contributes to the nonlinear saturated gain term
due to the profiles of the dark solitons, the coefficient of
inhomogeneous pumping should be σ8 < 0 for reducing the
gain. Figures 2A,B illustrate the power curves as a function of
the homogeneous pumping σ7 and the inhomogeneous pumping
σ8, respectively, here, β = 0.1. Figure 2C shows the stability curves
as a function of σ7 and σ8. For explaining the reason of soliton
stability, we introduce I � ∫+∞

−∞(σ3n − σ4)dξ to denote the
intensity of the total gain and loss. In Figure 2D, the intensity
I as a function of σ7 and σ8 is shown. We find that the value of I is
close to zero when the soliton is stable. The small value means

FIGURE 1 | (Color online) (A–D) Power and stability curves of the bright solitons as a function of σ7 (σ8). (E,G) Profiles of the bright solitons with the different σ7
marked by the dots and the letters E and G in (A,C). The red solid lines denote the profiles |ψ| of the nonlinear steady states obtained by solving Eq. 5. The green dashed
lines denote one-fifth of the pumping P. (F,H) The projections and profiles of the evolution results. In the left panels, the projections are shown. The profiles of the evolution
results at the special times s are shown in the right panels. The blue dashed lines are the initial profiles after adding the random perturbations.
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that the balance or near balance between the nonlinear gain and
constant loss is realized. From the power curves in Figure 2B, one
can find that the negative inhomogeneous pumping supports the
dark solitons, very narrow intervals of σ8 > 0 also support the dark
solitons. And the stable ranges of parameters σ7,8 are both narrow.
In Figures 2E,G, the red solid lines (the blue dashed dotted lines)
denote the profiles |ψ| (the phases ϕ) of soliton solutions by
solving Eq. 5. And the green dashed lines denote the intensity of
pumping. From them, it is obvious that the profiles of dark
solitons are modulated by pumping.

The evolution results are shown in Figures 2F,H, the
projections of evolution results are shown in the left panels,
the evolution results of s = 0 (s = 800) are denoted by the red solid
lines (the blue dashed lines) in the right panels. From the phase ϕ
of the right panels in Figure 2F, the profiles of dark solitons in s =
0 and s = 800 are in agreement very well, and the phase jump still
keeps obviously after evolution 436 ns. The phase jump will
disappear with the increasing evolution times when the dark
solitons are unstable, as shown in Figure 2H.

From the aforementioned results, the homogeneous and
inhomogeneous parts of pumping are both very important to
generate and stabilize the bright and dark solitons. Furthermore,
the inhomogeneous part can also be used to modulate the shapes of
nonlinear solitons. And the small intensity I is very important for the
stability of dark solitons, that is, the balance between the nonlinear
gain and constant loss is very important to stabilize dark solitons.

3.2 The Soliton Solutions for
Two-Dimensional System
It is very interesting to find stable high-dimensional solitons and
control them in exciton–polariton models (3) and (4). In this
subsection, we study the properties of high-dimensional spatial

solitons. Here, we take the second-order Bessel-type pumping
and w = 1 in the inhomogeneous pumping.

The two-dimensional bright solitons are shown in Figure 3
with β = 0.35. Figures 3A–D show the power and stability curves
as a function of σ7 (σ8). From them, we not only obtain the
parameters ranges supporting the two-dimensional bright
solitons but also show the stability of these solitons. Figures
3E–H are the profiles and evolutions of the two-dimensional
bright solitons, respectively. In these insets, the red solid lines, the
green dashed lines, and the blue dashed lines are the cross sections
of the profiles of the initial bright solitons, the profiles of the
pumping, and the profiles after the evolution s, respectively. From
Figure 3E, we find that there are three rings in the profile of the
bright soliton, which we do not find in the previous reports about
soliton solutions of the exciton–polariton system, and the
positions of the rings are consistent with those of the ring of
pumping by the insets. After taking the different parameters as
shown in Figure 3G, many more rings appear in the profile of the
bright soliton.

We also find the vortex solitons by imprinting a phase factor
exp(imθ) (θ � arctan η

ξ is the azimuthal coordinate) onto the
initial trial solutions. Although there exist the vortices in the
exciton–polariton system, it is still interesting to study how to
enhance the stability of the vortices and control the shapes of the
vortices.

In Figure 4, we show the vortices withm = 1 and their stability.
The power and stability curves as a function of σ7, 8 are shown in
Figures 4A–B. Figure 4C shows the stable intervals of the
vortices with m = 1 as a function of σ7 and σ8; Figure 4D is
the intensity I of the total gain and loss as a function of σ7 and σ8,
and Figures 4E–H are the profiles and the evolutions,
respectively. Comparing Figure 4A with Figure 4B, despite
there are the wide parameter intervals of σ7 to support the

FIGURE 2 | (Color online) (A,B) Power curves of the dark solitons as a function of σ7 and σ8, respectively. (C) Stability curves of the dark solitons as a function of σ7
(left panel) and σ8 (right panel). (D) The intensity I of the total gain and loss as a function of σ7 (left panel) and σ8 (right panel). (E,G) Profiles of the dark solitons with the
different σ7 marked by the dots and the letters E and G in (A–D). The red solid lines (the blue dashed-dotted lines) denote the profiles |ψ| (phases ϕ) of the nonlinear steady
states obtained by solving Eq. 5. The green dashed lines denote the pumping P after multiplying 0.9. (F,H) The projections and profiles of the evolution results.
Projections are shown in the left panels. The profiles |u| and the phases ϕ of the evolution results at the special times s are shown in the right panels. The blue dashed lines
are the initial values of evolution after adding the random perturbations.
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vortices, the parameter ranges to stabilize them are very narrow.
However, the situation is different for parameter σ8, we find the
vortices with m = 1 are stable in the whole ranges of σ8 < 0, as
shown in Figure 4B, and unstable for σ8 > 0. And the vortex is
also stable even in the absence of the inhomogeneous pumping
(in the case of σ8 = 0). Thus, for the case ofm = 1, all these vortices
are stable as long as σ8 ≤ 0. The results are also consistent with the
intensity curves, as shown in Figure 4D. From the insets of
Figure 4E, the top one is the phase of vortex, and in the bottom
one, the red solid line and the green dashed line are the cross
sections of the profiles of the initial vortex and one of the
pumping. From this, we also find every fluctuation of the
profile is consistent with that of the pump.

Furthermore, we also investigate the vortices with m = 2 in
Figure 5. The power and stability curves as a function of σ7, 8 are
shown in Figures 5A–B. Figure 5C shows the stable intervals of
the vortices with m = 2 as a function of σ7 and σ8, and Figure 5D
shows the intensity I of the total gain and loss as a function of σ7
and σ8. Figures 5E–H are the profiles and the evolutions,
respectively. Comparing Figure 5 with Figure 4, one can find
the existence ranges of the vortices are the same, and the tendency
of the stability curves is also the same, whereas the stability is
different. Through the stability analyses, it is obvious that the
vortices of σ8 < − 0.3 are stable for m = 2. However, from the
intensity I curves as shown in the right panel of Figure 5D, the
value of I is small in the whole intervals of σ8, but there is only the

FIGURE 3 | (Color online) (A–D) Power and stability curves of the two-dimensional bright solitons as a function of σ7 (σ8). (E,G) Profiles of the bright solitons with the
different σ7 marked by the dots and the letters E and G in (A,C). In the insets, the red solid lines denote the cross sections of the profiles by taking η = 0. The green dashed
lines denote one-fifth of the pumping P. (F,H) The profiles of the evolution results. The cross sections of the profiles are shown in the insets by taking η = 0. The blue
dashed lines denote the cross sections of the evolution results at the special times s. The red solid lines are the initial values of evolution after adding the random
perturbations.

FIGURE 4 | (Color online) (A) Power curves of the vortices withm = 1 as a function of σ7 (left panel) and σ8 (right panel). (B) Stability curves of the vortices withm = 1
as a function of σ7 (left panel) and σ8 (right panel). (C) Stable intervals of vortices with m = 1 as a function of σ7 and σ8. (D) The intensity I of the total gain and loss as a
function of σ7 (left panel) and σ8 (right panel). (E–H) Profiles and evolution results of the vortices with the different σ7 marked by dots and the letters E and G in (A–C). In
these insets, the top ones show the phases of the vortices, the bottom ones are the cross sections of the profiles denoted by the red solid lines, and pumping after
multiplying 0.7 is denoted by the green dashed lines.
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stable interval of σ8 < − 0.3. It is obvious that the small value of I is
necessary and is not a sufficient condition of soliton stability.
Thus, we see that the inhomogeneous pumping is very important
for stabilizing the higher charged vortices.

4 SUMMARY

In conclusion, the stability and controllability of one- and two-
dimensional spatial solitons have been discussed by introducing
the nonresonant pumping in exciton–polariton condensates. The
introduced pumping contains the homogeneous part that
balances the constant loss, in addition to the inhomogeneous
Bessel-type spatially modulating part that compensates the gain
or loss caused by the denominator of the nonlinear saturated gain
term. The bright and dark solitons in the one-dimensional
system, and the bright solitons and vortices with m = 1 and
m = 2 in the two-dimensional system have been found. These
solitons could be stabilized by engineering the homogeneous and
inhomogeneous pumping. The intensity of the total gain and loss
could be used as the necessary condition of soliton stability. And
in the parameter regions of the stable soliton, the bright solitons
can be excited by initial Gaussian or sech functions with the
similar amplitude and width to the stable bright solitons, the dark
solitons can be excited by the initial tanh function with the similar
background and width to the stable black solitons, or by the phase
imprinting method. And the vortex solitons can be excited by
imprinting a phase factor exp(imθ) onto a trial function with the
similar amplitude and width to the stable vortex solitons. In

addition, we have also found that the Bessel-type inhomogeneous
pumping could be used to control the profiles of nonlinear
modes. The results presented here may be useful for
understanding the physical properties of the condensates out
of equilibrium and guiding the experimental studying of the
condensate solitons, which may have potential applications in
polariton condensates for information storages and processing or
quantum simulators.
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