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Engineering applications of the fractional Weibull distribution (fWd) are quite

limited because a corresponding stochastic process is not yet constituted and

completely analyzed of fundamental properties. In order to fill this gap, the

fractional Weibull process (fWp) is defined in this paper with the realization

algorithm. The self-similarity property as well as long range dependence (LRD)

are proven for the future research. The simulation is conducted by the actual

data. The fWd is utilized to fit the actual probability distribution and the

corresponding process is generated to reflect the stochasticity of the data.

The randomwalk based on the fWp expands the simulation to the planar space.
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1 Introduction

After the discovery of fractal geometry, there has been recently a growing interest for

the application of the fractional dimension processes in several fields. The fractional

process is often used in the modeling of the Internet traffic. An abstract model for

aggregated connectionless traffic, which is based on the fractional Brownian motion, is

presented in [1]. In [2], generalized fractional Gaussian noise is proposed and used in the

traffic modelling. The stochastic process with fractional dimension can also be used in the

field of remaining useful life prediction for the mechanical parts. The remaining useful life

is the remaining time for the mechanical parts before the next failure. The purpose of the

remaining useful life prediction is to schedule the maintenance of the system and improve

the reliability. The multi-modal fractional Lévy stable motion degradation model is

developed to predict the remaining useful life of a blast furnace [3].

The Weibull distribution was originally introduced for modeling the strength data of

material by Weibull in 1939, which is inspired by the works of the extreme value

distribution, and then extended to several fields [4]. The traditional applications of the

Weibull distribution is in the field of mechanical engineering, which is the lifetime

prediction. A new extended model is used in the lifetime prediction in [5]. The Weibull

distribution is combined with the artificial neural network to form a new predicting model

for the prediction of the remaining useful life of the bearing [6]. There are also a lot of
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applications of Weibull distribution in the power system. The

combining modified Weibull distribution model is proposed for

the forecast of the power system reliability [7]. Based on simple

and complex Weibull distributions, a hypothesis of the power

system reliability has been confirmed [8]. In [9] the upper-

truncated Weibull distribution has been used both for

modeling the wind speed data and estimating the wind power

density. Weibull distribution is combined with the artificial

neural network to establish an advanced wind speed

prediction model [10].

The versatility of Weibull distribution raises people’s

interests on the fractional transformation. In [11] the fWd

was proposed for modeling the wind speed data. The

researchers find out that the actual wind speed data contains

a lot of low wind speed values. By discarding the wind speed data

that is close to zero, the wind speed is fitted by the fWd with high

accuracy for the speed range suitable for wind power production.

The fractal parameter is the fraction of data extracted from the

wind speed data to make a better fit. Therefore, the essence of the

fWd is to improve the fitting results by an additional fractal

parameter.

In [12], the power load is modeled by the Weibull

distribution. The power load data resembles the wind speed

data because the power load is commonly be zero or approximate

to zero. In the power break, the load is zero. At night, the factories

are closed, therefore the total power load consumption in the area

is close to zero. Therefore, this paper proposes the fWd for the

modelling of the power load in wish of a better modelling result.

Probability distribution as fWd describes the time series in

the statistical sense. In order to express the temporal

characteristics of the time series conforming to fWd, the

corresponding stochastic process need to be defined and

studied. In this paper, the fWp is defined with respect to fWd.

At each of the time point, draw a value randomly from the fWd

will constitute the corresponding fWp temporally. If we count the

values of the fWp in a long enough time period, the frequency

distribution of the counted data will be the corresponding fWd.

Therefore, the fWd and fWp are strongly connected

mathematically.

As a stochastic process is defined, some fundamental and

crucial property for the process need to be studied. Random walk

characteristics is a common stochastic behavior for a process,

which is beneficial in the optimization and graph machine

learning. The random walk can be useful for the optimization

to avoid the local maximum and the graph machine learning to

simplify the graph. A lot of stochastic time series in the

application conveys the properties of the self-similarity and

LRD, which is useful for the study. Stochastic process with

self-similarity and LRD can be employed in the modeling and

prediction of the time series with the same properties. Therefore,

in this paper, the random walk characteristics, self-similarity and

LRD of the fWd are studied and illustrated to facilitate the future

engineering application of the proposed process.

A random walk is known as a random behavior, in which a

particle in space takes a succession of random steps to create a

trajectory of moving [13]. In each of the step, the direction is

random and the step length follows a certain distribution. If the

distribution is normal distribution, then the random walk is

called Rayleigh flight [14]. The random walk with the probability

distribution to be Lévy distribution is called the Lévy flight [15].

In this paper, the random walk based on the fWp is proposed, in

which the probability for the step length is the fWd.

Self-similarity means that the partial segment of the

stochastic process or distribution resembles the whole

stochastic process or distribution [16]. In [17], the Weibull

distribution is used in the modelling of the self-similar

Internet traffic and the formula of the self-similarity

parameter is derived in [18]. The Hurst parameter of the

Weibull distribution belongs to (0.5,1), which can be

confirmed from the formula in [18]. Moreover, the

mathematical definition of self-similarity contains the concept

of equality in distribution [19]. Two random variables X and Y

are said to be equal in distribution, if they have the same

probability distribution function. In [20] a proposition is

proven for the equivalent condition of the equality in

distribution. In this paper, the proposition is employed to

prove the self-similarity of the fWp.

LRDmeans that the value of the stochastic process is strongly

influenced by the previous values of the time series [21]. The

autocorrelation function of the long range dependent signal

cannot be integrated in the infinity range, instead it diverges

to infinity. The reason for the divergence is that the

autocorrelation decays to zero very slowly as the power

functional speed. In order to make the integration to

converge, the autocorrelation need to decay exponentially,

which corresponds to the short range dependence.

In [22] the following theorem about the connection between

the self-similarity and LRD has been proved so that we can prove

the LRD based on self-similarity:

If a process is self-similar with self-similarity parameter

belonging to the half unit interval of (0.5, 1) and the second

moments exist, then it can be shown that its incremental

stochastic process is characterized by LRD.

In this paper, fWp is defined with respect to the fWd and the

random walk characteristics is analyzed. The self-similarity

property and the existence of the second moments are proved,

therefore the incremental process of fWp is characterized by LRD

[22]. Furthermore, LRD of the fWp is derived. The simulation is

carried out with the real data.

The rest of the paper is arranged as follows: In Section 2, the

properties of fWd is elaborated and the corresponding fWp is

defined with the realization algorithm. In Section 3 and Section 4,

the self-similarity and LRD of the fWp are proven. In Section 5,

the simulation of the fWp is carried out with the analysis for the

corresponding random walk. The work of this paper is

summarized in the conclusion.
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2 The fWp as well as the
corresponding random walk

2.1 Data modeling with the fWd

The density function of the fWd is defined as:

fx(x|a, b, c, δ) � c

b
(1 − δ)(x − a

b
)c−1

exp{ − (x − a

b
)c}, x≥ a,

(2.1)
where δis the fractal parameter, a is the location parameter, b is

the scale parameter and c is the shape parameter.

The location parameter ais the origin where the probability

of the physical values is above zero. Changing the value of awill

cause a shift of curve horizontally. The shape parameter cis the

key parameter of the distribution because it can change the shape

of the density function dramatically. The density curve of the

fWd is L-shaped when the value of parameter cis not larger than

1. Otherwise, the density curve is single-peaked.

Changing the scale parameter b while the other parameters

are hold constants will cause the curve to shift both vertically and

horizontally (see e. g., Figure 1). With the increase of the scale

parameter, the dispersion of the distribution is larger. and the

skewness of the data is smaller.

The skewness is very important for the modeling of the real

physical quantities. The maximum and minimum of the data is

confined by the application background of the data. Therefore,

the data area with high probability is relatively small and the

probability for other areas are close to zero. This common

phenomenon introduces skewness to the actual density

function with its admissible range between zero and positive

infinity. The skewness of fWd makes it easier to describe this sort

of data distribution.

Comparing with the Weibull density function, the probability

density function of the fWd has a scaling factor (1 − δ)which is

smaller than 1 representing the reserved proportion of the data.

Therefore, the fWd can be considered as the generalization of the

Weibull distribution with an additional fractal parameter. If fractal

parameter δis zero, then the fWddegenerates toWeibull distribution.

Changing δwhile the other parameters are kept invariant will cause

the peak of the curve to move vertically. In Figure 2, some fWds

corresponding to different fractal parameters are depicted.

The physical meaning of δ is the discarding rate of the

original data. When the ratio of the low value samples is high,

a higher fractal parameter can reduce the modeling error. When

the fractal parameter is determined to be smaller, there will be

less of the original data to be discarded. The value of δcan

influence the accuracy of modeling, thus the fractal parameter

should be determined through experiment.

2.2 Definition and realization algorithm of
the fWp

Definition of the fWp:

The stochastic process is fWp if the following two conditions

are satisfied:

1. fWp(0) � 0 (2.2)

2. The increments of the fWp are

independent (2.3)

3. For given t> s≥ 0, the increment satisfies

fWp(t) − fWp(s) ~ fWd (2.4)

Set s to be 0 and combining Eq. 2.2 and Eq. 2.4, Eq. 2.5 can be

reached:

FIGURE 1
The influence of the change of scale parameter.

Frontiers in Physics frontiersin.org03

Deng et al. 10.3389/fphy.2022.790791

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.790791


fWp(t) ~ fWd (2.5)

Derivation of the realization algorithm for fWp

Select a minimum calculation step lengthΔin the interested

definition range of the distribution and then define the discrete

argument xiin the definition range.

xi � iΔ, (2.6)

where the argument iis the total number of the step lengths

pertaining to the value of the physical quantities.

Substitute the discrete argument to the density function of

the fWd:

p(xi) � p(iΔ)

� (1 − δ) c
b
(iΔ − a

b
)c−1

exp{ − (iΔ − a

b
)c}, iΔ≥ a (2.7)

The definition range of the stochastic time series is limited

by the physical law and there is only a proportion of the

definition range that can raise people’s research interests.

Therefore, the maximum value of the argument i, which is i*,

can be defined:

ip � max i � [maxx
Δ ] (2.8)

The maximum value of iis determined based on the types of

the physical values and the applications

Therefore, the finite valued and discretized density function

of the fWd:

pdf(iΔ) ~
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 00 Δ

p(Δ)
θ

...
iΔ
p(iΔ)
θ

...
ipΔ
p(ipΔ)

θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, i � 0, 1, 2, ..., ip, (2.9)

where

θ � ∑ip
i�1
p(iΔ), (2.10)

The parameter θis introduced to normalize the values in the

random variable Such that it can meet the basic requirements of a

discrete random variable.

Define another discrete random variable Xip

Xip ~

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0
1
ip

1
1
ip
...
i
1
ip
...
ip

1
ip

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.11)

The discrete random variableXipmeans that the integer value

i is equally distributed in the range of [0, ip].
The constitution of the stochastic process can be separated

into three steps. The.

First step is to draw an integer value of ifrom the discrete

random variable Xip with the uniform probability. The second

step is to calculate the probability value of pdf(iΔ). The third

step is to multiply the probability values of the two steps.

Therefore, we can define the fWp as follows:

fWp(t) ~
⎧⎪⎪⎪⎨⎪⎪⎪⎩ 0

0

Δ
1
ip
p(Δ)
θσ

...
iΔ
1
ip
p(iΔ)
θσ

...
ipΔ
1
ip
p(ipΔ)
θσ

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (2.12)

where σis introduced to meet the basic requirement of the

discretized random variable:

σ � ∑ip
i�1

1
ipθ

p(iΔ) � 1
ip
, (2.13)

Substitute the value of σto the definition of the discrete

random variable:

FIGURE 2
The influence of the change of fractal parameter.
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fWp(t) ~
⎧⎪⎪⎪⎨⎪⎪⎪⎩ 0

0

Δ
p(Δ)
θ

...
iΔ
p(iΔ)
θ

...
ipΔ
p(ipΔ)

θ

⎫⎪⎪⎪⎬⎪⎪⎪⎭, i � 0, ..., ip (2.14)

There are six different parameters in the fWp. Four of them

are the same as the fWd and are estimated by the actual data.

These four parameters can reflect the statistical characteristics of

the data. The other two parameters are determined based on the

physical background of the data. In this section, a trajectory of the

fWp and the corresponding random walk are depicted separately

in Figure 3 and Figure 4. The parameters are chosen randomly in

this section and in Section 5 the whole procedure for the

construction of the fWp as well as the corresponding random

walk is provided.

3 Self-similarity property

3.1 Self-similarity criterion for a general
stochastic process

Let Xk be a stochastic process, and kis the argument. Xk is

self-similar with self-similarity parameterH ∈ (0, 1) if and only if

X(λk) �d( )
λHX(k) ∀λ> 0, (3.1)

where �d( )
denotes equality in distribution, i. e., they have the same

probability distribution function.

In [20], the following proposition expressed by Eq. 3.2 and

Eq. 3.3 are proved. Equations 3.2 is the general form of the

equivalent condition for equality in distribution with respect to

FIGURE 3
An exemplary trajectory of the fWp.

FIGURE 4
An exemplary random walk based on the fWp.
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two different random variables. If the random variable is Weibull

distribution, then the specialized form is presented as Eq. 3.3.

Given two cumulative distribution functions F1(k)
andF2(k), and a fixed numberm, we have that F1(k) is equal

toF2(k) in distribution if and only if g4(F2(k), m)is equal

tog4(F1(k), m), where the function g4(F(k), m)is called the

discriminant function and is defined as:

g4(F(k), m) � F−1((F(k) − F(m))mod 1), (3.2)

where F−1is the inverse function of the cumulative function and

mod is the modular operation.

For the Weibull distribution, we can get the specialized

definition forg4(F(k), m):

g4
′(F(k), m) � ( − log[exp{ − (k − a

b
)c} − exp{ − (m − a

b
)c}]) 1

c

(3.3)

By combining the self-similarity definition (3.1) with Eq. 3.2,

we can get the criterion of the self-similarity for a general

stochastic process:

g4(F(λk), m) � g4(F′(k), m) (3.4)

where F(k) is the cumulative distribution function ofXk,F′(k) is
the cumulative distribution function ofλHXk.

F′(k) � P(λHXk ≤ k) � P(Xk ≤
k

λH
) � F( k

λH
) (3.5)

Substituting (3.5) into (3.4) we get

g4(F(λk), m) � g4(F( k

λH
), m), (3.6)

which is a practical criterion for the self-similarity of a stochastic

process

On the left side of Eq. 3.6, it is the discriminant function

g4(F(k), m)with argument λk, while on the right hand side, it is

the discriminant function g4(F(k), m)with argument k
λH
.

3.2 The discriminant function for the fWp

In the following, we will derive the discriminant function for

the fWp.

The following equations can be derived from the definitions:

fp(k) � (1 − δ)f(k), (3.7)

Fp(k) � ∫k
−∞

fp(t)dt � ∫k
−∞

(1 − δ)f(t)dt � (1 − δ)F(k), (3.8)

F−1p(k) � 1
1 − δ

F−1(k), (3.9)

where f(x) and fp(x)are the density functions of the Weibull

distribution and the fWp. F(x) and Fp(x) are the cumulative

density functions of the Weibull distribution and the

fWp. F−1(x) and F−1p(x) are the inverse cumulative density

functions of the Weibull distribution and the fWp.

From Eq. 3.2, we have:

gp
4(F(k), m) � F−1p((Fp(k) − Fp(m))mod 1)

� 1
1 − δ

F−1(((1 − δ)[F(k) − F(m)])mod 1) (3.10)

Besides the additional coefficient 1
1−δ, the only change between

(3.2) and (3.10) is the differenceF(k) − F(m), which is added by

a scaling factor(1 − δ). F(k) − F(m) in Eq. 3.2 results in a

exp{−(k−ab )c} − exp{−(m−a
b )c}proportion of Eq. 3.3 specialized

for the Weibull distribution. Thus we can conclude that the

discriminant function specialized for the fWp is:

gp
4(F(k), m) � ( − log[(1 − δ){exp{ − (k − a

b
)c}

−exp{ − (m − a

b
)c}}]) 1

c (3.11)

3.3 Self-similarity for the fWp

In this subsection we will show the self-similarity of

the fWp.

Theorem 1. The fWp is self-similar

Proof Combining Eq. 3.3 and Eq. 3.6, we can reach Eq. 3.12:

g4
′(F(λk), m) � ( − log[exp{ − (λk − a

b
)c} − exp{ − (m − a

b
)c}]) 1

c

� g4
′(F( k

λH
), m) � −log exp −( k

λH
− a

b
)c}{[(

−exp{ − (m − a

b
)c}) 1

c − exp{ − (m − a

b
)c}] (3.12)

Eq. 3.12 can be simplified to be Eq. 3.13 by removing the

minus sign and the power.

log[exp{ − (λk − a

b
)c} − exp{ − (m − a

b
)c}]

� log exp −( k
λH

− a

b
)c

−exp{ − (m − a

b
)c}]}{[ (3.13)

By considering the self-similarity condition (3.6) and Eq.

3.11, we have to show that the following Eq. 3.14 and Eq. 3.15 are

equal to prove the self-similarity of the fWp.

gp
4(F(λk), m) � ( − log[(1 − δ){exp{ − (λk − a

b
)c}

−exp{ − (m − a

b
)c}}]) 1

c (3.14)
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gp
4(F( k

λH
), m) � −log (1 − δ) exp −

k
λH

− a

b
)c

−exp{ − (m − a

b
)c}}}({{[(
(3.15)

In fact (3.14) and (3.15) can be transformed into (3.16) and

(3.17), respectively, as follows.

log[(1 − δ){exp{ − (λk − a

b
)c} − exp{ − (m − a

b
)c}}]

� log(1 − δ) + log{exp{ − (λk − a

b
)c} − exp{ − (m − a

b
)c}}
(3.16)

log (1 − δ) exp −
k
λH

− a

b
)c

−exp{ − (m − a

b
)c}}}({{[ (3.17)

Therefore, the equality of (3.16) and 3.17 can be transformed

into the equality of (3.18) and 3.19:

log{exp{ − (λk − a

b
)c} − exp{ − (m − a

b
)c}} (3.18)

log exp −( k
λH

− a

b
)c

−exp{ − (m − a

b
)c}}}{{ (3.19)

According to Eq. 3.13, the two functions (3.18) and (3.19) are

equal if we select the same self-similar parameter with the

Weibull distribution. Therefore, the self-similarity of the fWp

is proven because there exists a self-similar parameter to make

Eq. 3.1 to hold, which is within the interval of (0.5,1).

4 The second moments and LRD
property

4.1 The second moments of the fWp exists

For simplicity we give here only one kind of second moment,

since the derivation of other moments are similar. The second

moment about zero of the fWp can be easily obtained by a direct

computation as follows:

E(fWb(t)2) � ∫∞
0

x2fp
X(x |0, 1, c)dx � (1 − δ)∫∞

0

x2fX(x | |0, 1, c)dx

!!!!!!!!→u� xc

(1 − δ)∫∞
0

x2cxc−1 exp{−xc}dx

� (1 − δ)∫∞
0

u
2
c e−udu � (1 − δ)Γ(2

c
+ 1) (4.1)

Therefore, we have proven that the second moments of the

fWp exists.

4.2 The LRD of the fWp

The LRD means the slow decay of the auto-correlation

functionρ(k), which also means that the auto-correlation in

the process remains strong as the time lag goes to infinity. The

strong auto-correlation means that the value of the process is

influenced by other values of the process. With the slow decay

of the auto-correlation function, it cannot be integrated in the

infinite range.

ρ(k) ~ βk−α as k → ∞, (4.2)
where

ρ(k) � E(X(k)X(k − τ)) (4.3)

0< α< 1 and β is a given non-zero constant.

Eq. 4.2 summarizes the physical meaning of the LRD. The

slow decaying rate of the auto-correlation function does not

specify the exact decaying rate. By changing the values of constants

αandβ, the decaying rate of the auto-correlation changes accordingly.

The slower the decaying is, the stronger is the LRD. Therefore, the

proof of the LRD focuses on the existence of the slow decaying auto-

correlation.

LetX(k)be the fWp, then its incremental processY(k)fulfills:⎧⎪⎨⎪⎩ Y(k) � X(k) −X(k − 1) , k � 1, ..., n

Y(0) !!→def 0 , X(0) � 0
(4.4)

Based on the theorem in [22], we can show the incremental

process Y(k)is of LRD, which means the auto-correlation

function ofY(k) decays as a power function. In the following,

we can show the fWp is of LRD.

Theorem 2. The fWp is of LRD

Proof:According to the definition (4-4), we can expressX(k)
by the linear combinations ofY(k),k � 0, 1, ..., n. Moreover, the

auto-correlation function of X(k) can be expressed as the linear

combination of auto-correlation functions ofY(k), k � 0, 1, ..., n.

X(k) � Y(k) + Y(k − 1) + ... + Y(1) + Y(0) (4.5)

ρ(X(k)) � E(X(k)X(k − τ)) � E⎛⎝⎛⎝∑k
i�0
Y(k)⎞⎠⎛⎝∑k−τ

j�0
Y(j)⎞⎠⎞⎠

� ∑k
i�0

∑k−τ
j�0

E(Y(i)Y(j)) � ∑ ρ(Y(k))

(4.6)
From Eq. 4.6 and the law of infinitesimal substitution, there

follows that the auto-correlation function of X(k)decays in a

multinomial power law way. It also means that the auto-

correlation function of X(k) decays at the same speed as the

slowest decaying rate among auto-correlation functions ofY(k),
k � 0, 1, ..., n. The auto-correlation function of Y(k)that
processes the slowest decaying rate is the biggest one, in other

words, the one with the smallest power.

ρ(X(k)) � ∑ ρ(Y(k)) ~∑ βik
αi ~ max(βikαi) � βpk

−min(αi) (4.7)

Therefore, we have proven that the auto-correlation function

ofX(k) is decaying as the power function, which proves the LRD
of the fWp.
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5 Simulation on the fWp

5.1 Time series fitted with the fWd

In this paper, the power load data from the European

Network on Intelligent.

Technologies prediction contest is used in the validation of

the proposed process. In Figure 5, the actual power load

frequency distribution is plotted and the corresponding

probability density function is provided numerically

The power load data cannot be negative values, therefore

the Gaussian fit is not appropriate. Select fWd to fit the actual

power load distribution and can achieve a better fitting result

than the Weibull distribution because of the fractal

parameter. The location parameter a is set to be zero for

the power load are positive and the scale fractal parameter is

determined later through experiment. The scale parameter

and shape parameter are estimated by the maximum

similarity estimation.

The maximum likelihood function of the fWd:

L(x|b, c) � ∏n
i�1

fX(xi|b, c)

� ∏n
i�1

[(1 − δ)(c
b
)(xi

b
)c−1

exp{ − (xi

b
)c}]

� (1 − δ)n(cn
bn

)(1
b
)n(c−1)∏n

i�1
xc−1
i exp

⎧⎨⎩ − (1
b
)c∑n

i�1
xc
i

⎫⎬⎭
(5.1)

The logarithmic maximum likelihood function of the fWd:

ln L(x|b, c) � ln[(c
b
)n(1

b
)n(c−1)∏n

i�1
(xi)c−1 exp⎧⎨⎩ − (1

b
)c∑n

i�1
xc
i

⎫⎬⎭]
� n ln(1 − δ) + n ln(c

b
) + n(c − 1) ln(1

b
) + (c − 1)∑n

i�1
lnxi − (1

b
)c∑n

i�1
xc
i

(5.2)

FIGURE 5
The actual power load frequency distribution and density function.

FIGURE 6
The fitting results of fWd with different fractal parameters.
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Take the partial derivative of the logarithmic maximum

likelihood function with respect to the scale parameter b and

then make it equal to zero.

z lnL(x|b, c)
zb

� (−n
b

) − n(c − 1)(1
b
) + c∑n

i�1
xc
i(1b)c+1

� 0 (5.3)

Separate the scale parameter b and the shape parameter c:

b̂ �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑n
i�1
xc
i

nc

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
1
c

(5.4)

Take the partial derivative of the logarithmic maximum

likelihood function with respect to the shape parameter c and

then make it equal to zero.

z ln L(x|b, c)
zc

� n(1
c
) + n ln(1

b
) +∑n

i�1
ln xi − ⎡⎣(1

b
)c∑n

i�1

zxc
i

zc
⎤⎦

−⎡⎣∑n
i�1
xc
i(1b)c

ln(1
b
)⎤⎦

� n(1
c
) + n ln(1

b
) +∑n

i�1
ln xi − ⎡⎣(1

b
)c∑n

i�1
xc
i ln xi

⎤⎦
−⎡⎣∑n

i�1
xc
i(1b)c

ln(1
b
)⎤⎦ � 0 (5.5)

After performing some algebraic calculation, the equivalent

equation can be derived

ln(1
b
) + 1

n
∑n
i�1
ln xi + c

n2
− (1

b
)c∑n

i�1
xc
i ln(xib)
n

� 0 (5.6)

Substituting Eq. 5.4 to Eq. 5.6:

n
1
c c
(1

c+n)⎡⎣∑n
i�1
xc
i
⎤⎦(n−1

c)⎡⎣∏n
i�1

xi
⎤⎦−c − e

1
n3

n[∏n
i�1
xi] 1

n2

� 0 (5.7)

Therefore, the estimation of the scale parameter b and the

shape parameter c is reached. The scale parameter b is estimated

to be 748.4289 and the shape parameter c is estimated to be

15.7742.

The fractal parameter needs to be evaluated chosen by

the fitting results. The density function of the fWd with

different fractal parameters are depicted in Figure 6 as well as

the actual power load density function. The criterions of

goodness of fitting (GoF) are the sum of squared error (SSE)

and the root mean square error (RMSE) [23]. The formulas

are listed below. For both criterions, the smaller value means

better fitting results.

RMSE �
))))))))))))
1
n
∑n
i�1

(pi − fi)2
√

(5.8)

SSE � ∑n
i�1

(pi − fi)2 (5.9)

The calculations of the SSE and RMSE are listed in Table 1.

The density function of fWd with zero fractal parameter is

Weibull distribution. As we can see from Table 1, the delta

value of 0.05 is chosen in the end because both the values of SSE

and RMSE are the smallest.

After the parameter estimation and the experiment, the

power load is fitted with the fractional Weibull distribution in

Figure 7.

5.2 The construction of the fWp

On the purpose of generating the fWp conveying the

stochasticity of the stochastic time series, the other parameters

in the fWp need to be calculated.

The step length Δof the modeling can set to be 1 kWh

because the power load data are all positive integers. The

maximum value of the power load concerned in the research

is 900 kWh. Therefore, the maximum value of the argument i,

which is i*, can be calculated:

ip � max i � [max x

Δ ] � 900 (5.10)

where xis the value of the power load series for research

and the square bracket represents the integer valued

function.

Therefore, the fWp with the stochasticity of the time series is

depicted in Figure 8.

5.3 The simulated path for the random
walk of the fWp

After the construction of the fWp, the corresponding random

walk path can be simulated. As depicted in Figure 9, the particle

in the random walk starts from the origin. At each of the

iteration, the jump direction is random and the jump length

follows the fWd with parameters estimated from the actual data.

The simulation path of the random walk expands the dimension

of the fWp to a planar space with the same stochasticity coming

from the actual data.

TABLE 1 The evaluation of fitness for different fractal parameters.

delta = 0 delta = 0.05 delta = 0.1 delta = 0.15

SSE 0.3812E-0.4 0.3309E-0.4 0.3455E-0.4 0.4250E-0.4

RMSE 0.6174E-03 0.5753E-03 0.5878E-03 0.6520E-03
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FIGURE 8
The fWp based on the power load series.

FIGURE 9
The random walk characteristics of the fWp.

FIGURE 7
The fractional Weibull fit of the data.
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6 The potential engineering
applications of the fWp

Wind power generation is very unreliable because it relies

solely on the wind speed. The historical wind speed data can

be used to construct the fWp for representing its stochasticity

and the statistical wind speed prediction model can be

constructed. Once the wind speed variation tendency is

predicted in advance, the wind power generation can be

predicted with accuracy and the power system reliability

can be improved [24].

The power load prediction is very important for the

reliability of the power system. If there is surplus

electricity according to the power load prediction results,

the maintenance of the power facilities can be scheduled. If

the power consumption is difficult to guarantee, the

dispatching of electricity need to be carried out [25].

With the fWp conveying the stochasticity of the power

load, the power load statistical prediction model can be

established and the blackouts caused by the high

temperature can be reduced.

7 Conclusion

The fWd can be considered to be the generalization of the

Weibull distribution with a non-zero fractal parameter. In this

paper, the definition of the fWp is provided and the algorithm

of realization is derived. In order to facilitate the future

research, the self-similarity and LRD are proven. The actual

time series is employed for the simulation of the fWp. The

random walk characteristics for the fWp is analyzed in the

planar space. The future research can focus on the prediction

model for the potential engineering application areas of

the fWp.
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