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Stern-Gerlach and/or matter-wave interferometry has garnered significant interest
amongst members of the scientific community over the past few decades. Early
theoretical results by Schwinger et al. demonstrate the fantastic precision capabilities
required to realize a full-loop Stern-Gerlach interferometer, i.e., a Stern-Gerlach setup that
houses the capability of recombining the split wave-packets in both, position and
momentum space over a certain characteristic interferometric time. Over the years,
several proposals have been put forward that seek to use Stern-Gerlach and/or
matter-wave interferometry as a tool for a myriad of applications of general interest,
some of which include tests for fundamental physics (viz., quantum wave-function
collapse, stringent tests for the Einstein equivalence principle at the quantum scale,
breaking the Standard Quantum Limit (SQL) barrier, and so forth), precision sensing,
quantummetrology, gravitational wave detection and inertial navigation. In addition, a large
volume of work in the existing literature has been dedicated to the possibility of using
matter-wave interferometry for tests of quantum gravity. Inspired by the developments in
this timely research field, this Perspective attempts to provide a general overview of the
theory involved, the challenges that are yet to be addressed and a brief outlook on what
lays ahead.
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1 INTRODUCTION

Stern-Gerlach interferometry is considered to be by some, an ideal candidate for possibly testing
theories of quantum gravity in simple table-top experiments. The realization of a so-called “full-loop”
Stern-Gerlach interferometer almost arises as a general theme in this context. Unlike a conventional
Stern-Gerlach apparatus that enables the splitting of particle wave functions into two spatially-
separated wave-packets, each with a different spin projection following which the detector at the exit
port of the SG apparatus records two distinct peaks that correspond to the two different spin
eigenstates of the entrant particle beam, a full-loop Stern-Gerlach interferometer allows for the
recombination of wave-packets following their splitting in both, position and momentum space.
Recent proposals that seek to test theories of quantum gravity and fundamental physics using Stern-
Gerlach interferometry regard this aspect of the interferometric procedure to be their starting point.
A number of interesting ideas have emerged over the recent years that aim at exploiting the exciting
prospects that Stern-Gerlach interferometry has to offer. For instance, one can make use of such an
interferometric procedure to establish gravitationally-induced macroscopic spatial superpositions
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between heavy neutral test masses over relatively long time scales
[1] and for realizing novel microgravity experiments [2]. In
particular, microgravity environments enable long
interferometric times with enhanced interferometric
sensitivities. Such conditions are ideal for realizing
fundamental tests of physics [2]. Of key importance is the
realization of an interferometric setup that enables long
observation and/or interrogation times and enhanced
sensitivities. Amit et al. recently reported the first
experimental realization of a T3 Stern-Gerlach interferometer
[3], with T here being the total interferometric time or
equivalently, the total time-of-flight of atoms in the
interferometer. This in itself is a significant advance in this
line of research, since it serves as an improvement over
conventional T2-SG matter-wave interferometers, i.e., it has
been shown that it is possible within the purview of currently
existing technologies and experimental constraints to realize
experimental schemes that enable longer interrogation times in
Stern-Gerlach interferometers. Certain ideas seeking to provide
tests for quantum gravity using matter-wave interferometry have
emerged over the recent years. The authors in [4, 5] for instance,
propose to do so through the implementation of a robust spin
entanglement witness protocol in two adjacently-placed full-loop
Stern-Gerlach interferometers. Much recently, the successful
experimental realization of a full-loop SG interferometer was
reported by Margalit et al. [6] based on magnetic field gradients
originating from a novel atom-chip configuration. Most
importantly, they demonstrate a high degree of control over
the field gradients in their interferometric setup within
experimental constraints imposed by previously published
theoretical results and/or analyses. Although this topical
review lays greater emphasis on Stern-Gerlach interferometry,
the reader must be reminded that this area of research is vast and
vibrant, with new and previously unexplored ideas emerging
from time to time. Given the large volume of work that is
dedicated exclusively to table-top quantum gravity, it is simply
impossible to explore in depth, the motivations behind various
proposals that have been put forward. Some that deserve a great
deal of attention and careful thought nevertheless, include the
conception of gedanken thought experiments [7] for tests of
relativity (the authors in [7] for instance, demonstrate that any
local experiment that distinguishes a coherent quantum
superposition from a statistical mixture of quantum states
involves a time scale that is proportional to the mass of the
system under investigation), the realization of a novel Stern-
Gerlach interferometer within which one considers the
application of an unconventional magnetic field configuration
[8] to probe magnetic field gradients at high sensitivities (the
authors in [8] demonstrate that employing a butterfly-shaped
configuration for the applied field in the interferometer ensures
that a sufficiently strong interference signal strength be received
towards the end of the interferometric scheme, even when the
setup is subject to misalignments in position and momentum
caused by the resulting field gradient), Mach-Zehnder matter-
wave interferometry using Bose-Einstein condensates [9] and the
measurement of the fundamental constants of nature and other
quantities of interest [10, 11]. Moreover, in addition to gravity

measurements, matter-wave interferometry is expected to find
novel applications in a variety of other fields of interest, for
instance quantum metrology, physics beyond the Standard
Model, precision sensing and even core engineering
disciplines, as we shall see in the subsequent sections. This
Perspective is organized as follows: in Section 2, the basic
theory behind Stern-Gerlach interferometry is laid out. In
Section 3, a detailed discussion of the experimental protocol
proposed by Bose et al. [5] for detecting quantum gravitational
effects is presented. In Section 4, the entanglement dynamics of
the two masses for the entanglement witness protocol in [5] is
analyzed. In Section 5, a detailed discussion pertaining to the
estimation of the interference signal in a general Stern-Gerlach
interferometer based on a simple Stern-Gerlach model is
presented; major drawbacks of such a model have been
highlighted as well. In Section 6, a brief analysis of the
coherent Stern-Gerlach momentum splitting scheme
experimentally realized in [12] is presented. Section 7
discusses certain alternative proposals to test quantum
gravitational effects that have been put forth over the recent
years (a qualitative discussion of space-based approaches has
been presented as well). Section 8 presents certain experimental
considerations that one must account for when setting up table-
top experiments for tests of quantum gravity. Section 9 discusses
certain future directions for reseach in matter-wave
interferometry (not limited to Stern-Gerlach interferometry).
The Perspective comes to a close through Section 10, where
strong emphasis is laid on the recent advances that have been
made in this field and other fields that are closely-knit with
matter-wave interferometry; an outlook of what lays ahead has
been provided and some concluding remarks have been stated.

2 GENERAL THEORY BEHIND
STERN-GERLACH
INTERFEROMETRY—IMPORTANT
ANALYTICAL RESULTS

A typical SG experiment involves the following: a particle beam is
initially prepared in a pure spin state, say in the | + 〉 eigenstate of
Sx and it enters the Stern-Gerlach apparatus. One can regard Sz as
a coherent superposition over the spin eigenstates of Sx. A key
factor that comes into play in certain table-top gravity
experiments involving Stern-Gerlach interferometry is the
measurement of spin coherence or the visibility in the Stern-
Gerlach interferometer. For instance, Bose et al. propose a scheme
for establishing a robust spin-witness protocol for observing and/
or detecting the quantum nature of gravity [5], a key aspect of
which is performing spin correlation measurements at the exit
ports of the Stern-Gerlach apparatus. Spin coherence essentially
provides a measure of the degree to which the initial spin state of
the entrant particle beam can be recovered following the
recombination of the two spatially-separate wave-packets in
both, position and momentum space. Schwinger et al.
pioneered early works in Stern-Gerlach interferometry (see
[13, 14]) and were fairly successful in developing a theoretical
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framework for performing spin correlation measurements by
deriving important closed-form expressions for the
interference signal strength in a general Stern-Gerlach
interferometer. An in-depth analysis of the same calls for
extreme mathematical rigor, hence we simply summarize their
main results and/or conclusions in this Perspective.

To estimate spin coherence, one generally measures the
x-component of the spin state to obtain the expectation value
of the spin operator Sx. Consider a typical Stern-Gerlach
apparatus. A couple of key assumptions that must be made
before we proceed any further are as follows: the magnetic
field gradient exists only along the z-direction and it is
assumed that the applied field gradient is time-dependent. As
a brief introduction to the Stern-Gerlach theory [13], we express
the magnetic moment of the incoming particle beam (assumed to
be spin-1/2 in our case) as �μ � μ �σ, where σ is the familiar set of the
Pauli spin matrices. Given the application of a time-dependent
magnetic field �B(z, t), the force acting on the incoming particle
beam assumes the form

F t( ) � ∇ �μ. �B z, t( )( ). (1)

To proceed any further, we make an additional simplifying
assumption: Maxwell’s equation �∇. �B(z, t) � 0 dictates that if a
finite magnitude of force is to act on the incoming particle beam,
it is necessary to consider the effects of another field gradient
present in the x-y plane, in addition to the field gradient applied
along the z-direction. For now, we take this for granted and
assume that the effects of the field gradient applied along the
z-direction is dominant (the effects of the field gradient present in
the x-y plane are through some means, suppressed). For
simplicity, we consider a linearized expansion of the applied
field [13] as �B(z, t) ≈ �B(t) + zB

zz (t)z. One can compute the
interaction energy inside the SG apparatus as follows

ESG � − �μ. �B t( ) � −μ zBz

zz
t( )σzz − μB t( )σz, (2)

where ESG denotes the SG interaction energy. The Hamiltonian
then assumes the form

H � − p2

2m
− fSG t( )σzz − μB t( )σz, (3)

where we define fSG asfSG(t) ≡ μ zBz
zz (t). To deduce the equations

of motion for z(t) and pz(t), we make use of the Heisenberg
equation of motion (with the Hamiltonian given in Eq. 3). Recall
that for any dynamical observable Â, the Heisenberg equation of
motion assumes the form iZ dÂ

dt � [Â, Ĥ], where Ĥ is the
Hamiltonian. In the following calculations, note that z and pz
denote the position and momentum operators, respectively. A
rigorous calculation [we simply summarize the results here (see
[13])] yields the following for the Pauli spin operators σz and σ+
(note: σ+ ≡ σx + iσy) and the phase-space observables z(t) and pz(t)

z t( ) � z0 + p0
t

m
+ σz 0( ) Δz t( ) + t

m
Δpz t( )( ), (4)

pz t( ) � p0 + σz 0( )Δpz t( ), (5)

σz t( ) � σz 0( ), (6)

and

σ+ t( ) � exp −i 2
Z
∫t
0

μB t′( )dt′ + 2Δpz t( )z0
Z

− 2Δz t( )p0

Z
⎛⎜⎜⎝ ⎞⎟⎟⎠⎛⎜⎜⎝ ⎞⎟⎟⎠

× σ+ 0( ), (7)

where z0 and p0 indicate that the particle beam enters the SG
apparatus at a spatial coordinate z0 with a non-zero momentum
p0. The macroscopic displacements of the wave-packets in phase
space, i.e., Δz(t) and Δpz(t) are given as

Δz t( ) � ∫t
0

fSG t′( )
m

t − t′( )dt′, (8)

and

Δpz t( ) � ∫t
0

fSG t′( )dt′. (9)

Alternatively, from Eqs 8, 9, it is possible to deduce the temporal
evolution of the macroscopic displacements of the wave-packets
in terms of their momentum splitting, as follows

Δ�z t( ) � Δz t( ) − t

m
Δpz t( ). (10)

Following a detailed mathematical analysis, Schwinger et al. were
able to deduce a closed-form expression for the interference
signal strength in a general Stern-Gerlach interferometer,
expressed in terms of the overlap integral between the two
spatially-separated wave-packets, as follows [13].

ϕSG � ∫∞
−∞

ψi z − Δ�z t( )( )ψi z + Δ�z t( )( )exp −2iΔpz t( )
Z

z( )dz,
(11)

where ψi (z′) denotes the wave function of the initially prepared
spatial state and z denotes the eigenvalue of the position
operator z.

3 STERN-GERLACH INTERFEROMETRY AS
A TOOL TO POTENTIALLY DETECT
QUANTUM GRAVITATIONAL EFFECTS
The possibility of detecting quantum gravitational effects using
techniques such as matter-wave interferometry has gained much
traction over the recent years. Consider now the proposal put
forward by Bose et al. (see [5]), that suggests the use of two
mesoscopic test masses initially trapped in two spatially-
separated harmonic potential wells that are later released into
two spatially-separated Stern-Gerlach interferometers, one
corresponding to each harmonic trap. These masses each
contain an embedded spin-1/2 (see [4]) that undergo spatial
and momentum splitting once after entering the SG
interferometers (i.e., in the presence of an applied magnetic
field gradient). Considered here is a relativistic treatment of
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the scheme proposed in [5] (also see [15]). The quantum-split
spins now exist in a quantum superposition of distinct spin states,
denoted for the sake of the present discussion as | + 〉 and | − 〉
and are spatially separated from each other (say, they are located
at positions x1 and x2 in space). We now obtain four
interferometric paths in the two SG interferometers, each of
which we can denote by the states | + + 〉, | − − 〉, | − + 〉 and
| + − 〉, respectively. Further, we define the following tensor
product state |ϕ〉 � |+〉p1+|−〉p1�

2
√ ⊗ |+〉p2+|−〉p2�

2
√ , which simplifies to

|++〉+|+−〉+|−+〉+|−−〉
2 (note: p1 and p2 denote test mass 1 and test

mass 2, respectively). The twomasses are allowed to propagate for
a time t inside the SG interferometers (t is measured with respect
to the laboratory frame), following which the evolved
wavefunctions of the two masses are combined in both,
position and momentum space. Note that since the relative
positions of the masses differ in the interferometric paths set
up inside the SG interferometer, they give rise to different
spacetime geometries [15]. One can then regard the spacetime
geometry to be in a quantum superposition of four possible
spacetimes, each of which can be associated with a classical
metric.

To avoid complications, we assume that the two masses are
spatially separated by a distance l in the interferometric path
| − − 〉 (as has been considered by the authors in [15]).
Additionally, we assume that the gravitational time dilation
in the other interferometric paths is negligible, given which the
phase picked up by these interferometric paths can be
effectively ignored in the analysis that follows. As the test
masses propagate inside the SG interferometer, their quantum
states pick up a time-dependent phase (we consider both
masses to be of mass m), of the form exp(imc2τ

Z ), τ being the
proper time [15]. In the context of general relativity (see [16]),
note that the gravitational time dilation is given as δτ � Gm

lc2 t
[15]. For the | − − 〉 interferometric path then, we see that after
a time t, it picks up a phase difference that assumes the
form [16].

δβ � Gm2t

lZ
. (12)

For the tensor product state of the two masses, we are left with

ϕ
∣∣∣∣ 〉 � ++| 〉 + +−| 〉 + −+| 〉 + eiδβ −−| 〉

2
, (13)

where the | − − 〉 interferometric path picks up the phase given in
Eq. 12. We arrive at Eq. 12 by noting that the phase is related to
the gravitational time dilation as δβ � mc2

Z δτ [15] (this also
explains why neglecting the gravitational phase picked up by
interferometric paths other than | − − 〉 is justified, since δβ is
proportional to δτ; for a negligible δτ, δβ is irrelevant from a
practical standpoint). To estimate the entanglement entropy of |
ϕ〉, we compute the density matrix operator ρ̂, which by
definition is given as ρ̂ � Trp2(|ϕ〉〈ϕ|). Note that the trace is
being taken over the spin states of test mass 2. The measure of
entanglement entropy is given as

S � Tr ρ̂ lnρ̂( ), (14)

where Tr denotes the trace. Upon diagonalizing ρ̂ (note that the
matrix form of ρ̂ is Hermitian with unit trace), we find that the
eigenvalues are given as [15].

ρ± �
1
2
±

����������
1 + cos δβ( )√

2
�
2

√ . (15)

For different values of δβ, one obtains different measures of the
entanglement entropy S. From Eqs 14, 15, we have for S

S � − 1
2
+

����������
1 + cos δβ( )√

2
�
2

√⎛⎜⎜⎝ ⎞⎟⎟⎠ln
1
2
+

����������
1 + cos δβ( )√

2
�
2

√⎛⎜⎜⎝ ⎞⎟⎟⎠

− 1
2
−

����������
1 + cos δβ( )√

2
�
2

√⎛⎜⎜⎝ ⎞⎟⎟⎠

× ln
1
2
−

����������
1 + cos δβ( )√

2
�
2

√⎛⎜⎜⎝ ⎞⎟⎟⎠. (16)

Repeated spin correlation measurements can thus be made to
deduce the behavior of the accumulated phase δβ with S. One
approach suggested in [15] is as follows: for a given time in the
laboratory frame t and hence for a given phase difference δβ, one
can discard the quantum state of one of the test masses and
perform a quantum state tomography on the other test mass. A
simple way to understand quantum state tomography is as
follows: one performs repeated measurements on quantum
systems that are characterised by the same density matrix.
Frequency counts are then used to estimate probabilities,
which when combined with Born’s probability rule can be
used to ascertain a new density matrix that most appropriately
conforms with the measurement observations. In this case, the
new density matrix thus constructed can be diagonalized and
used to obtain a new measure of the entanglement entropy S′
(using Eq. 14). It is assumed that all sources of error such as
observational errors, apparatus imperfections, external noise
sources, and so forth are accounted for. The behavior of S′
with δβ can be studied and consequently, compared to that
predicted in Eq. 16 [15]. Differences between the behaviors of
S and S′ could potentially point to a quantum gravitational effect
at play.

To summarize then, the scheme proposed in [5] (using two
adjacently-placed SG interferometric setups) entails the following
steps: we take two test masses containing embedded spin-1/2
particles and split them spatially by exploiting the Stern-Gerlach
effect (through the application of magnetic field gradients in the
adjacently-placed SG interferometric setups). Consequently, we
arrange one pair of interferometric paths such that the test masses
in question interact via gravity (a phase shift thus arises for a
certain combination of interferometric paths). This
“gravitationally-induced phase gate” is then linked to the
entanglement generated between the test masses (this again, is
gravitationally-induced), which we then hope to test in some
operational procedure (one such procedure being a quantum
state tomographic-based approach, as outlined above; also see [5,
15] for more details).
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Recent theoretical works have shown that given the current
state-of-the-art, witnessing quantum features of the gravitational
field is indeed a viable possibility. There is however a catch here.
For instance, the authors in [17] employ a quantum information
theoretic approach to show that it is in theory, possible to witness
the quantum nature of the gravitational field by probing it with
two test masses. Note however that for the quantum state of any
one test mass, the fact that a gravitational phase is induced on it
over the course of an experimental run does not necessarily imply
that we witness quantum features of gravity. Instead, the salient
feature of a table-top gravity experiment would be its capability to
witness two non-commuting observables of the gravitational field
(only then can its quantum nature be certified) [17]. To show
conclusively that the gravitational field can exist in a quantum
superposition of different values is of key importance here [17].
The scheme proposed in [5] in essence attempts to realize the idea
that if two quantum systems (in our case, we have test masses
whose spatial degrees of freedom exist in a quantum
superposition) get entangled through the interaction with a
third mediator (in our case, this is the gravitational field) [17],
the third mediator thenmust be quantum in nature, for which the
authors in [17] provide an explicit information theoretic proof.

4 ENTANGLEMENT DYNAMICS IN THE
DENSITY MATRIX FORMALISM

From an experimental point of view, it is essential to study the
decoherence dynamics of the setup proposed in [5], when in contact
with the environment. For this, we consider the two test masses
(initially trapped in harmonic potential wells) to be spatially
separated by a distance l. Upon release, the two masses split into
a superposition of position states that are spatially separated by a
distance D. Note here that we follow the arguments made by the
authors in [1]; in essence, the authors in [1] consider the spatial
splitting between the spin states to be in a direction orthogonal to the
initial separation of the twomasses. This is in slight contrast with the
proposal put forward by Bose et al., where the spatial splitting
between the spin states takes place in a direction that is parallel to
their initial separation. One expects that the system will decohere
primarily due to its interactionwith the environment. The authors in
[1] argue that given decoherence, the system in question collapses
into a mixed state of positions, in which case it is compelling to
consider the coupling of the environment with the position operator
of the two test masses (σz in our case). The Hamiltonian thus
assumes the form [1].

H � kσz ⊗ Ê, (17)

where k is a constant and Ê is some operator that acts on the
environment. As in [18], we consider an exponential decay of the
off-diagonal terms of the Hamiltonian H. Further, we assume no
interactions between the test masses, given which the
decoherence dynamics of the quantum states of the two test
masses can be treated independently from each other [1]. Under
this assumption, the time-evolved density matrix of the whole
system can be decomposed into a tensor product of the time-

evolved reduced density matrices of the states of test mass 1 and
test mass 2 (labeled as p and q for simplicity, respectively). We
thus have ρ̂system � p ⊗ q. The density matrices p and q each
assume a similar form, as follows

p t( ) � p11 p12e
−t

p21e
−t p22

[ ], (18)

and

q t( ) � q11 q12e
−t

q21e
−t q22

[ ]. (19)

Note here that for dimensional consistency, the parameter t
appearing in Eqs 18, 19 denotes the ratio of the physical time
(measured in the laboratory frame) to the decoherence time of
the system (t is hence dimensionless). For ρ̂system, its most
general form assumes a structure in which its off-diagonal
terms undergo an exponential decay. Note that the
Hamiltonian (see Eq. 17) commutes with the environment,
given which the system is exactly solvable, independent of the
nature of Ê. In particular, by going to the interaction picture
(via the unitary transformation Û(t) � exp(−iHt)), one sees
that the density matrix in the interaction picture follows
closely, the dynamics of two de-coupled masses solely
interacting with the environment. Taking the initial state of
the system as | + 〉〈 + |⊗| + 〉〈 + |, the authors in [1] arrive at the
following expression for the time-evolved density matrix in the
interaction picture

ρ̂int �
1
4

1 eist−t eist−t e−2t

e−ist−t 1 e−2t e−ist−t

e−ist−t e−2t 1 e−ist−t

e−2t eist−t eist−t 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (20)

where s is the dimensionless coupling strength between the two
masses. To determine the entanglement dynamics of the system
in question, one can compute the positive partial transposition of
ρ̂int, which yields the smallest eigenvalue of ρ̂int. A quick
computation reveals the following expression for this
eigenvalue, as [1].

λ � 1
2
e−t sinh t( ) − | sin st( )|( ). (21)

One can use Eq. 21 to analyze the system’s entanglement
dynamics for a range of cases, depending on the positivity of
the eigenvalue λ for different s. Of key importance is the fact that
for λ < 0, the quantum states of the two masses will be entangled
[19]. Eq. 21 thus conclusively shows that the two masses can be
entangled over a suitable time scale if the coupling strength s
between them is sufficiently large (for which we have λ < 0)
(Figure 1).

Utilizing a full state tomographic approach to witness
quantum features of gravity is a viable approach, although
difficult to implement in practice [20]. In essence, the
experimental proposal in [5] is expected to yield a final
quantum state consisting of entangled spin qubit states, so as

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 10 | Article 7851255

Lokare SG Interferometry: Theory and Applications

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


long as the quantum nature of gravity manifests itself in the
proposed experiment. The authors in [20] present two
alternatives for measuring the entanglement entropy in the
proposed QGEM (Quantum Gravity via Entanglement of
Masses) experiment [5]: constructing an entanglement witness
or employing an approach that involves measuring the
concurrence of a general two qubit state [21] (which could
either be pure qubit states (i.e., low entropic states) or mixed
qubit states (i.e., high entropic states)).

In terms of spin states, the concurrence for a general two
qubit state (herein denoted as C) can be measured as C(ρ) =
max{0, λ1 − ∑j=2,3,4λj}, where the λ’s denote the square root of
the eigenvalues of the matrix operator ρρ′, with ρ′ being given
as ρ′ = (σy ⊗ σy)ρ*(σy ⊗ σy), σ being the usual Pauli spin
operator, and * denoting complex conjugation [18]. Here, ρ
can be constructed as a tensor product of the quantum states
of each qubit state. The measure of the concurrence will
attain its maximum value, i.e., 1, if one starts out in a
maximally mixed state, such as a state associated with the
reduced density matrix operator of a Bell state [20]. This
approach however comes with the caveat that the density
matrix operator of the full state must be known, making it
practically hard to implement. To circumvent this, one could
instead construct an entanglement witness. Owing to the
trivial nature of the output state in the experimental
proposal in [5], it is possible to construct such an
entanglement witness that assumes the form [5, 20]

W � |〈σ 1( )
x ⊗ σ 2( )

z 〉〈σ 1( )
y ⊗ σ 2( )

y 〉|, (22)

with (1) and (2) denoting test masses 1 and 2, respectively. The
benefits of constructing an entanglement witness are two-fold: 1)
only two measurements per test mass are required and 2) since spin
correlation measurements involve only the two test masses, any
entanglement generated will necessarily be between the two test
masses, and not the environment [20]. The entanglement witness
satisfies the unique property thatW(ρ̂)> 1, provided ρ̂ corresponds
to an entangled state [20]. Here, ρ̂ denotes the reduced density
matrix obtained by tracing over one of the test masses.

5 ESTIMATION OF THE INTERFERENCE
SIGNAL STRENGTH IN A STERN-GERLACH
INTERFEROMETER USING A SIMPLE
STERN-GERLACH MODEL

In principle, it is possible to realize full-loop Stern-Gerlach
interferometers using pure Bose-Einstein condensates (BECs).
A possible arrangement is to have a BEC initially confined
within a harmonic trap, which is then released and probed in a
Stern-Gerlach interferometric setup. To this end, we consider
one such case, as proposed and/or analyzed in Ref. [22]. We
work under the crude assumption that interactions between
atoms in the BEC are effectively negligible, in light of which the
analysis will simply reduce to the singleparticle limit. Note
here that a rapid free expansion of the BEC post-release is
being assumed. The wave-packet of a BEC satisfies the Gross-
Pitaevskii equation, as follows

FIGURE 1 | (Color outline) Plot for the eigenvalue λ vs. time (dimensionless). Note that as the coupling strength s increases, λ assumes negative values over a certain
time scale, indicating that the quantum states of the test masses are entangled over this time scale. For small values of s, the entanglement is hardly visible and/or evident
[98 and 99].
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iZ
zψ t( )
zt

� HMF t( )ψ t( ), (23)

where the Hamiltonian HMF(t) in the mean-field
approximation assumes the form HMF(t) � − Z2

2m∇
2+

U(r, t) + g|ψ|2. Here, note that U(r, t) denotes the time-
dependent potential that arises from external effects such
as gravity, etc. (g here denotes the mean-field coupling
parameter which is characterized in terms of the s-wave
scattering length (denoted as a) of the BEC in question, as
g = 4π-2a/m). Given Eq. 23, it is possible to derive a closed-
form expression for the evolution of a BEC wave-packet in the
center-of-mass frame [22]. This can be done so as long as the
time-dependent potential U(r, t) assumes a quadratic profile
around the BEC center-of-mass. The scaling ansatz (see Ref.
[22]) is shown to be exact if one approximates the wave
function at the time of release by a Gaussian wave-packet
that evolves in this quadratic potential (interatomic
interactions have been ignored). Thus, we consider the
form of the wave function before release from the
harmonic trap (approximated by a Gaussian and assumed
to be stationary initially) as follows

ψi z, t � 0( ) � 2π( )−1/4 δz( )−1/2 exp − z2

4 δz( )2( ), (24)

where δz denotes the width of the initially prepared Gaussian
wave-packet. The one-dimensional scaling factor assumes the
form γ ≡

�������
1 + ω2t2

√
and the scaled spatial and momentum

splitting between the wave-packets is given as [22]

Δ�z t( ) � Δz t( )/γ, (25)

and

Δ�pz t( ) � γΔpz t( ) −m
dγ

dt
Δz t( ), (26)

where m is the mass of the atoms in the BEC, Δ�z(t) is the
macroscopic splitting between the wave-packets in position
space, and Δ�pz(t) denotes the macroscopic splitting between
the wave-packets in momentum space. From Eq. 11 and Eq. 24,
we get for the interference signal strength ϕBEC [computed over
the total time-of-flight τ]

ϕBEC � 1���
2π

√ 1
δz

∫∞
−∞

exp − z − Δ�z t( )
2δz

( )2

− z + Δ�z t( )
2δz

( )2( )
× exp −2iΔ�pz t( )

Z
z( )dz.

(27)

The integral in Eq. 27 is a standard Gaussian integral,
simplifying which we get

ϕBEC � exp −1
2

Δ�z τ( )
δz

( )2

+ Δ�pz τ( )
δpz

( )2( )( ), (28)

where δpz denotes the initial momentum uncertainty in the
initially prepared BEC wave-packet (note: the Gaussian wave-

packet is a minimum uncertainty state that saturates the
uncertainty principle, for which δz δpz = -/2). From Eq. 25,
Eq. 26 and Eq. 28, one can deduce an approximate closed-form
expression for ϕBEC.

To maximize the Stern-Gerlach interference signal strength,
Eq. 28 suggests that the following conditions must hold1

Δ�z τ( )≪ δz, (29)

and

Δ�pz τ( )≪ δpz. (30)

A more robust analysis is however in order, for the following
reasons. In an experimental setup, it is quite possible that the
initial BEC wave-packet might not assume a Gaussian profile, in
light of which Eqs. 27, 28 would not be sufficient to quantify the
interference signal strength. Moreover, analyzing the model in the
single-particle limit yields only approximate results1. It is in fact,
necessary to consider a full quantum many-body treatment of a
trapped impure BEC (i.e., by incorporating finite-temperature
effects), which from an experimental point of view, seems more
reasonable. Experimental realizations of the kind described here
have already been reported in the literature. Ref. [23] for instance,
reports the realization of a high stability Stern-Gerlach spatial
fringe interferometer with pure BECs.

Using heavy neutral test masses instead of atomic clouds is
another viable, yet formidable approach1. It is worth bearing in
mind however that such an experiment would demand a delicate
balance between several experimental parameters. A more realistic
implementation of such a setup (more specifically, the quantification
of the Stern-Gerlach interference signal strength) will have to take
into account the effects of the field gradient present in the x − y plane
(per Maxwell’s equations), in addition to the one applied along z1.
This warrants a 2D analysis of such a setup [14]. In recent years,
there have been attempts to address some of these issues. Marshman
et al. not long ago analyzed a numerical model of a slightly modified
version of an SG interferometric setup [24] by including the effects of
the field gradient in the x − y plane (in addition to the one already
existing along the z direction). Furthermore, they consider field
gradients of intermediate strengths and the effect of the diamagnetic
properties of the testmass in their analysis. Their results demonstrate
that the introduction of a gradient-free region (see Ref. [24] for more
details) along the wave-packet trajectories can facilitate the
acceleration of micron-sized test masses in the interferometric
setup, which in turn can help one realize more efficient splitting
between the individual wave-packets.

6 EXPERIMENTAL SCHEMES FOR
REALIZING WAVE-PACKET SPLITTING IN
ATOM INTERFEROMETERS
Novel experimental schemes to achieve coherent momentum
splitting of wave-packets in SG interferometers have been
realized in certain experiments over the recent years. See for

1Bose S, Mazumdar A. Private Communication. (2021).
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instance [23], wherein the authors provide a detailed analysis of a
high-stability spatial fringe interferometer. The maximum spatial
splitting between wave-packets thus achieved in such an
interferometer exceeds their minimal spatial widths by at least
an order of magnitude. This is enabled by the application of
accurately-timed magnetic gradient pulses that are generated by a
novel atom-chip configuration.

Machluf et al. demonstrated the experimental realization of a
general splitting scheme to produce spatial interference fringes with
measurable phase stabilities some years ago [12]. The authors in [12]
demonstrate an operational procedure to achieve coherent
momentum splitting between wave-packets in an SG
interferometer on an atom-chip configuration. Their scheme
makes use of two internal atomic states (we denote these as |1a〉
and |1b〉 for the purpose of discussion) between which it is possible
to drive coherent atomic transitions. One must also keep in mind
that these internal states undergo state-dependent interactions with
the applied field gradient (in the presence of an external potential
[12]). Initially, the atoms are present in internal state |1b〉, which are
subsequently released from a trap. Note also that the atomic cloud
initially exists in an external state |p0, x0〉 that represents a wave-
packet, characterized by a central momentum p0 and a central
position x0. Upon releasing the atomic cloud from the trap, a π/2
rotation pulse is applied that splits the wave-function of the atomic
cloud into an equally weighted-superposition of the internal states |
1a〉 and |1b〉. Given the presence of a time-dependent external
potential Uk(x, t), a state-selective force (note that the internal states
so chosen undergo state-dependent interactions with the applied
field gradient) of the form F = − ∇Uk(x, t) is applied for a time τ
which is typically shorter than the time the atoms spend moving in
the applied force field [12]. Each internal state in question thus picks
up a phase of the form − ∇(Uk(x, t)τ/Z), yielding Fk(x, t)τ/Z. The
quantum state of the atoms is now 1�

2
√ (|1a〉eiFkτ/Z +

|1b〉eiFkτ/Z)|p0, x0〉 [12]. Clearly, this corresponds to a
momentum transfer by an amount Fkτ. A second π/2 rotation
pulse is then applied, yielding the following quantum state for
the atoms [12].

ϕ
∣∣∣∣ 〉 � 1�

2
√ 1a| 〉 p+

∣∣∣∣ 〉 + 1b| 〉 p−
∣∣∣∣ 〉( ), (31)

where the momentum states |p±〉 are themselves a superposition
over momentum states |p1〉 and |p2〉, each corresponding to a
different wave-packet. From Eq. 31, we see that the internal states
|1a〉 and |1b〉 get entangled with the wave-packet momenta states
|p1〉 and |p2〉. With this, the momentum splitting operation
concludes. The authors in [12] propose two more
interferometry schemes to realize internal state interference in
atom interferometers, both being interferometric techniques
primarily based on the internal state population of atoms.

An alternative interferometry scheme that instead makes use
of two magnetically insensitive atomic states for coherent SG
momentum splitting of wave-packets is discussed in [12].
Precision interferometers based on internal state interference
in the present day widely employ this approach. Typically, the
two first-order magnetically insensitive substates |1a, 0〉 and |1b,
0〉 of two hyperfine states are chosen for this purpose [12]. As in
the above scheme, the application of the first microwave π/2

rotation pulse generates an equally-weighted superposition of the
two chosen magnetically insensitive states, following which one
can split these into two distinct momentum states by the
application of a magnetic gradient at a sufficiently strong
magnetic field. The non-linear Zeeman shift of the transition
energy between the two substates that occurs as a result is of the
form ΔEZ = αB2, where B is the applied magnetic field strength.
Given that the interferometric scheme is carried out in an atom-
chip configuration, the atoms are exposed to a magnetic gradient
zB
zz and the force thus imparted is given as F � ΔEZ

zB
zz. This now

corresponds to a momentum kick of a finite value. One need not
apply a second π/2 pulse since the states so chosen are
magnetically insensitive. For recombining the two output
beams, a magnetic gradient and a π/2 pulse can be applied,
following which measurements of the internal state population of
atoms can be made [12].

7 ALTERNATIVE PROPOSALS

Some works in the existing literature seek to study the
quantum nature of gravity via alternate means. For
instance, the authors in [15] propose a scheme for the
experimental realization of the discreteness of time (this
closely follows the proposal in [5]; an additional
assumption here is that time itself assumes discrete values
at the Planck scale). Using simple arguments, the authors in
[15] demonstrate that the phase picked up by an
interferometric path in the proposal by Bose et al. can be
shown to assume only quantized values. Note here that one
imposes no constraints on the observation time in the
laboratory frame; it varies continuously over the course of
the experiment. This has the effect that the behavior of S [see
Eq. 16] with δβ is no longer of a continuous nature, but rather
can be shown to be step-like. The authors however point out
that the key assumption, i.e., the discretization of time at the
Planck scale, might not hold true. Neither are the implications
clear at the moment. That interference effects at the quantum
scale depend on time scales on the order of the Planck time is
nevertheless an idea that deserves greater scrutiny.

The weak equivalence principle, in its most general sense,
establishes an equivalence between inertial and gravitational mass
[25]. Over the years, there have been attempts to test the weak
form of the equivalence principle in regimes wherein quantum
effects become important. One of these experimental realizations
employs the use of a Bragg-atom interferometer in a gravity-
gradiometer configuration to test the equivalence principle at the
quantum scale; in this case, for 87Rb atoms in a coherent
superposition of internal (hyperfine) energy states [25].
Providing a detailed description of said experiment is not
within the scope of this Perspective; nevertheless the key
takeaway is that tests of the quantum aspects of the
equivalence principle are in principle realizable and the use of
quantum superpositions essentially allows one to probe the
quantum aspects of fundamental laws and/or principles (which
for many years have been thought to be purely classical, with
possibly no quantum analogue) over suitably long time scales.
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The proposal in [5] can in effect, be extended beyond what it
intends to achieve and/or demonstrate. The authors in [26] for
instance, propose a novel thought experiment based on present-
day quantum cryptographic concepts to potentially detect low-
energy perturbative quantum gravity fluctuations in a setup that
closely resembles the setup proposed in [5] (also see [27]) by
experimentally revealing the notorious gravitational T3 phase
term, which they then argue would allow one to test the
Einstein equivalence principle. The hope is to detect
gravitational field fluctuations from a rigorous analysis of the
stochastic noise associated with an otherwise ideal output (one
with a very high state-readout fidelity) of a measurement process
of a quantum system (for more details regarding the operational
principle of the proposed setup, see [26]). Future experimental
works in this direction can turn out to be a promising venture,
primarily because currently existing quantum technologies can in
principle, as the authors in [26] point out, detect quantum
gravitational effects through the direct measure of the
gravitational T3 phase term.

Space-based experiments for tests of fundamental physics:
Space-based approaches offer a unique opportunity to push
our current understanding of the quantum nature of gravity
and possibly numerous other areas to the very extreme. The very
fundamentals of quantum mechanics, i.e., the superposition
principle and wavefunction collapse models (see for instance,
Chap. 15 in [28]; also see [29, 30]; for more recent experimental
proposals and/or results that employ both interferometric and
noninterferometric-based approaches, see [31–34] and the
references listed therein) can be potentially tested and/or
investigated using atom interferometry experiments in space
environments. On this front [35], serves as an excellent
current Perspective on the status of space-based approaches
for quantum gravity measurements. In essence, space-based
experiments (we primarily focus on the interferometric type
here) offer certain advantages over their terrestrial
counterparts, the most important of which is the possibility of
achieving much longer coherence and/or interrogation times
(more precisely, free-fall times of heavy neutral test masses),
owing to low gravity. The authors in [35] lay great emphasis on
the use of nano-particles for interferometry-based experiments in
space environments and provide certain experimental constraints
and/or estimates for the same. A detailed analysis of such
approaches is certainly beyond the scope of this Perspective;
rather, an attempt has been made to present and/or summarize
the key ideas (the reader is encouraged to look beyond what this
Perspective summarizes).

Long interferometric times, as has been emphasized in Section
1, are essential for matter-wave interferometry experiments.
There are a few arguments that one can present in support of
this claim: at first, atom and/or matter-wave interferometry
experiments demand extreme experimental sensitivity. A long
free-fall time, that one can potentially achieve in a space
environment is crucial in this regard. Secondly, standard
calculations reveal that the dependence of the wavefunction
spread of masses prepared in a quantum superposition scales
inversely with the magnitude of the masses, i.e., 1/m if we
consider the two masses in question to be equal [35]. It is

hence evident that one can facilitate longer interrogation times
in these interferometric setups since the wavefunction spread for
sufficiently large test masses will be low, thus effectively
eliminating undesired dissipative effects. Another advantage
that space-based approaches offer over ground-based
interferometry experiments is the elimination of the need to
vibrationally isolate the experimental setup from its immediate
surroundings. Ground-based approaches must take into account
all noise sources that can potentially render an experiment
impossible to realize. Space-based approaches on the other
hand, do not particularly suffer from such setbacks, especially
in the low-frequency regime [35]. Additionally, concerning
microgravity experiments on the ground, the possibility of
running several trial runs within a dedicated span of time is
virtually non-existent. The reason for this is simple to
understand: each time an experimental run is scheduled, the
test mass must be prepared through optomechanical means,
following which it is released into the drop tower (this
constitutes a single experimental run). The problem here is
that test masses must be released into the drop towers one at
a time. Moreover, preparing the test mass for an experimental run
itself consumes a considerable amount of time, to the point that
only say, 3–4 experimental trials can be practically run on a single
day. Space-based approaches can easily circumvent this issue–the
need to depressurize the experimental setup (this is essential, for
reasons discussed in Section 8) is minimal, thus allowing for
several more experimental runs to be realized within a particular
span of time. This greatly aids in faster and more efficient data
acquisition and subsequent analysis (see [35] for more details).
The authors in [35] additionally discuss a number of
experimental constraints that must be kept in mind to set up
and run say, near-field interferometry-based experiments with
heavy neutral masses (nano-particles for instance, serve as a
viable candidate), which the reader is encouraged to look up.
As to how near-field interferometry experiments are realized and
how the experimental constraints can be optimized to achieve
novel and useful results, the reader is yet once again directed to
the arguments and/or approaches elucidated in [35] (also see
[36]). To summarize, what is hoped eventually is that through the
generation of gravitationally-induced macroscopic quantum
superpositions of heavy neutral test masses, it would be
possible to not only probe quantum gravitational effects, but
also physics beyond the Standard Model, for instance. By this, we
mean testing candidates for dark matter, investigating the regime
of low-energy perturbative quantum gravity, and so forth [35].
Space-based approaches for the reasons discussed above, offer
certain distinctive advantages in this regard, and all efforts in this
direction deserve serious attention.

8 EXPERIMENTAL CONSIDERATIONS
(WITH REGARDS TO GROUND-BASED
INTERFEROMETRY EXPERIMENTS)
The design of the Stern-Gerlach apparatus, particularly with
regards to the ambient pressure that one must maintain inside
the Stern-Gerlach interferometer must be given due attention.
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Collisions with gas and/or air molecules can lead to rapid and
excessive decoherence effects [37]. To this end, the condition that
the average collision time be much greater than the duration of an
experiment must necessarily be satisfied. Preparing highly
squeezed harmonic oscillator coherent states also poses a
formidable challenge. For instance, the proposal conceived by
Krisnanda et al. [38] involves using optomechanical oscillators to
probe quantum gravitational effects (via entanglement of masses)
over relatively long time scales. Achieving a high amount of
squeezing in the initial position quadrature plays a crucial role in
their scheme. Their calculations reveal that enabling this would
lead to higher entanglement gain over time. In recent years, there
have been proposals to address this aspect using efficient schemes
[39–41] and significant progress has been made in this regard.
Not only are table-top experiments susceptible to internal
decoherence effects (i.e., collisions with air molecules or
thermal effects) but also to external “noise,” such as seismic/
tectonic vibrations or perhaps even vibrations caused in the
ground due to a vehicle passing by. It is essential that these
experiments be shielded from their immediate surroundings, as
to minimize decoherence losses of all kinds, failing which the
chances of probing any quantum effects are greatly diminished.
In this regard, the design of an efficient vibration isolation system
for atom and/or matter-wave interferometry experiments (at least
for ground-based approaches) is currently the need of the hour.
Stochastic fluctuations in the parameters used for setting up an
experiment ought to be given due attention (see [1] for more
details). Another important point that factors into the present
discussion is the type of interferometer that one could use for the
experimental realization of the proposals existing in the literature.
In essence, one sees that the experimental protocol envisioned by
Bose et al. could be successfully realized (whilst keeping in mind
the experimental constraints) by using a transversal Stern-
Gerlach interferometer, whereas the experimental realizations
that [3, 42] report rely on the use of a longitudinal setup.
Paraniak et al. recently analyzed a numerical model of a
transversal Stern-Gerlach interferometry experiment without
the usual simplifying assumptions [43]. The conclusions of
their study suggest that a substantial loss of spin coherence is
to be expected for interferometric path separations that are about
30–40 times larger than the initial wave-packet width. The
proposal put forward by Bose et al. involves interferometric
path separations that are about 200 times larger than the
initial wave-packet width, thus hinting at the infeasibility of
the same, at least in its present form.

9 FUTURE DIRECTIONS IN MATTER-WAVE
INTERFEROMETRY

Having summarized some of the recent trends in matter-wave
interferometry (specifically, Stern-Gerlach interferometry) and
beyond, we now look towards the future. Of particular interest
is the realization of three-dimensional matter-wave interferometers
for heavy neutral test masses. Thus far, the experimental realization
of a three-dimensional matter-wave interferometer for trapped
ions has been reported [44]. It’d however be interesting to see if the

same could be achieved for much larger masses (say, mesoscopic
masses of the order of 10–14–10–15 kg that the proposal in [5] hopes
to employ). The possibility of using degenerate Fermi gases for
atom interferometry experiments also deserves some attention.
Owing to their non-interacting nature, atoms present in the same
internal state cannot undergo interactions (as per the Pauli
exclusion principle), thereby effectively eliminating the
possibility of any self-interactions. This in turn implies that the
noise from uncontrolled phases in the system will be greatly
suppressed [45]. The use of waveguides also forms an attractive
choice for atom and/or matter-wave interferometry experiments.
In particular, it can be argued that minimal dispersion in a
direction transverse to the propagation axis can be achieved in
waveguide structures. This can potentially lead to an enhanced
performance for atom interferometers (see for instance [46]). Of
particular importance is the ability to achieve much longer
interferometric times in such structures. The transverse
confinement allows for much less dispersion, given which the
interference signal strength can be enhanced for much longer
durations. One worry that however needs to be addressed in this
regard is the thermal expansion of the atomic cloud within the
waveguide, which can potentially lead to certain unwanted effects.
A recent work by Pandey et al. attempts to address this issue (see
[47]) by manipulating the spread in the momentum and density
distributions of BECs and thermal atomic clouds in time-averaged
adiabatic potential (TAAP) waveguides, to which end they
demonstrate focusing and collimation of matter waves by using
a series of gravito-magnetic matter-wave lenses (time-dependent).
A fairly high suppression in the expansion energies of BECs and
thermal atomic clouds can be achieved using this technique,
thereby minimizing the dispersion of matter waves within the
waveguide structure; nevertheless this open new avenues to
research along these directions, i.e., the possibility of using
atomtronic matter-wave lensing in conjunction with other novel
techniques and/or schemes to further suppress the expansion
energies of atomic clouds within waveguides is something that
deserves greater scrutiny. Atomtronic matter-wave lensing can
potentially in the future, find novel applications in the study of
low-energy atomic collisions and precision measurements on
ultracold thermal atomic ensembles (see [48] for further details
on howmatter-wave guides facilitating enhanced sensitivity can be
implemented for say, gravity gradiometry and global navigation).
Ring traps can be used for the purpose of countering noise effects in
atom interferometers. An explanation for this can be found in [45],
wherein the author argues that the phase noise arising in the two
interferometric paths can be effectively canceled out if the
interfering wave-packets are split such that they propagate in
opposite directions around the ring structure with an integer
number of rotations. Besides, there has been considerable
interest in the implementation of different variants of time-
orbiting potential and time-averaged adiabatic potential traps
for atom interferometry experiments. These traps are capable of
supporting atomic clouds against gravity whilst also providing
weak axial symmetric confinement, as to minimize interatomic
interaction effects [49], thus paving the way for high precision
measurements on ultracold atomic systems and interferometry-
enabled measurements on Bose-Einstein condensates (see [50–54]
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and the references listed therein). The geometric setup itself can
play a key role in the realization of longer interferometric times in
atom interferometers. Gochnauer et al. for instance, recently
demonstrated the realization of a novel atom interferometer
with ultracold Ytterbium BECs in a vertical geometry [55]. Not
only does this setup provide an enhancement of interferometric
times over horizontal interferometric setups, but also addresses
certain experimental challenges associated with the realization of
atom interferometers with heavy, non-magnetic atoms (in this
case, Yb). Most importantly, the authors in [55] demonstrate the
realization of a one-of-a-kind vertical atom interferometer in a
double Mack-Zehnder configuration, which they argue is not only
suited for precision sensing but also for gravity gradiometry
measurements, owing to a stiff resistance to vibrational noise
and/or perturbations. Future works could thus be aligned along
these directions, namely the experimental realization of either atom
interferometers with non-magnetic atomic species or atomic
systems prepared in magnetically insensitive sublevels (in
contrast to this, see [56] for the experimental realization of a
multi-Zeeman state atom interferometer that exploits the
coherence properties of Bose-Einstein condensates to facilitate
enhanced sensitivities and generate interferometric signals with
very sharp spatial interference fringes).

The determination of the precise value of Newton’s gravitational
constant has been the subject of several works, ever since Cavendish
first attempted to tackle this through his famous torsion pendulum
and torsion balance experiment in 1798 [57]. More recently, there
have been attempts to measure G using cold atoms and quantum
interferometric techniques (see for instance [58, 59]), and these
experiments have greatly aided in revealing the systematic errors
that prevent one from discerning the value of G precisely. A more
recent work by Asenbaum et al. demonstrates a very interesting
realization of a long-time drift large momentum transfer atom
interferometer with ultracold 87Rb atoms which can essentially be
used as a gradiometer [60]. This gradiometric configuration can
reach resolutions of down to 10–9 s−2 and the macroscopic
separation realizable between the interfering atomic wavepackets
allows the authors to probe the coupling between atomic recoil
effects and the spacetime curvature induced by the presence of a Pb
source mass [60]. Namely, the conclusions of their study indicate a
1 rad phase shift in the interference pattern of the interfering atomic
wavepackets, caused by the gravitational influence of the nearby Pb
source mass itself. Future experiments in the same spirit could in
principle be tuned and/or tailored to perform more precise
measurements of Newton’s gravitational constant.

Surpassing the measurement accuracy at quantum scales has
been a subject of wide interest for several decades now. For an
ensemble of ultracold atoms for instance, the noise that arises as a
result of random outcomes (that are sampled from a certain
probability distribution) of discrete measurements of the
quantum states of individual atoms in the ensemble sets a limit
on the accuracy achievable in the measurement of quantities that
couple to the internal states of atoms [61]. To this end, Anders et al.
report the first experimental realization of an entangled source of
atoms that are compatible with current state-of-the-art atom
interferometers [61]. Namely, they demonstrate the transfer of
entanglement from the spin degree of freedom of a BEC

(consisting of 87Rb atoms) to its momentum modes. In essence,
it is possible to achieve complete control over the quantum state at
the level of the ensemble itself, thereby minimizing the noise effects
that wouldmanifest as a result of discrete measurements beingmade
on uncorrelated quantum states of atoms. Such studies can in
principle, as the authors in [61] point out, serve as an excellent
tool to realize entanglement-enhanced atom interferometry formore
stringent tests of the equivalence principle at the quantum scale.

Inertial force-sensing and measurements of the fundamental
constants of Nature: With the advent of light-pulse atom
interferometry in recent years, there has been a considerable
advance in the realization of precision interferometry-based
approaches. It has become possible to design and/or construct
quantum sensors and nanosphere matter-wave interferometers
that enable inertial force-sensing at incredibly small length scales
(for recent developments in this field, see [62–64]). An additional
advantage that these sensors offer is the precise determination of the
fundamental constants of Nature (see for instance [65]). The key
experimental factors, as always, include long interferometric times
and the implementation of large momentum transfer techniques
[66]. As to what constitutes the current state-of-the-art, the figure of
merit for these quantum sensing devices, the tools and techniques
available to implement these devices in real time and certain
experimental challenges that are yet to be addressed, the reader is
encouraged to consult [66]. Of particular interest to the scientific
community has been gravity measurements using cold-atom
sensors. The possible applications span a major portion of
geophysics and civil engineering; for instance, measuring changes
in gravity at a particular location due to seismic effects, air pressure
variations, melting polar ice-caps, and so forth [67]. The
construction of navigation instruments based on cold-atom
sensing technologies has also spurred up considerable interest
amongst members of the engineering fraternity. There has been a
continuous effort to realize more efficient devices of this kind by
enhancing the currently achievable accuracy and sensitivity limits
and the prospects as a whole look extremely promising. For a more
recent Perspective on the real-world applications of atom
interferometric quantum sensors (encompassing a wide range of
fields such as oil and natural gas exploration, quantum metrology,
space exploration, and so forth), see [68, 69].

10 OUTLOOK AND CONCLUSION

Despite several challenges, there is a lot to look forward to.
Significant progress has been made in the area of optomechanical
cavity cooling in recent years, thus making such sensitive
experiments feasible [70–72] (for an extensive review of cavity
optomechanics and its potential applications, see [73]). The
construction of ultra-vacuum drop towers/tubes for microgravity
experiments has proven to be a fruitful venture [74] and more
recently, there have been successful attempts to implement matter-
wave interferometry experiments using BECs in space [75, 76], ever
since the realization of Bose-Einstein condensates aboard near-Earth
orbit laboratories [77]. Of particular interest to the scientific
community could be the realization of matter-wave
interferometers with atoms in high Rydberg states [78, 79]. As
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the authors in [78] point out, experimental realizations of this kind
could serve as a promising tool to study the acceleration of Rydberg
atoms in the Earth’s gravitational field. Moreover, studies involving
Rydberg atoms could aid in the better understanding of the
atmospheric dynamics of relatively cold stars [80]. A few other
applications of general interest include the study of molecular
interactions at low temperatures and the possibility of using
Rydberg atoms as “quantum sensors” for stray static RF electric
fields (see for instance [81, 82]). The idea that Stern-Gerlach and/or
matter-wave interferometry could be used as a tool for the detection
of gravitational waves has seen much development over the recent
years (for a brief introduction to the theoretical framework, see
[83–86]). The key constraining factor in the realization of such
detectors is their sensitivity to shot noise. A recent proposal by
Marshman et al. seeks to develop a gravitational-wave detector that
is much smaller than the ones currently in operation, the working
principle of which is primarily based on Stern-Gerlach
interferometry [87]. A further advantage that the detector
proposed in [87] offers is that when compared to currently
existing GW detectors, it is several times more sensitive and
resilient to noise effects, which is typically the limiting factor in
the realization of novel, state-of-the-art gravitational wave detectors.
In a nutshell, the proposed GW detector will make use of N-doped
diamonds containing an embedded spin-1/2 (the embedded spin-1/
2 for instance, could be placed in Nitrogen-vacancy centers available
in N-doped nanodiamonds) between which the hope is to generate
quantum macroscopic spatial superpositions using a Stern-Gerlach
interferometric setup. The authors in [87] find that a wide range of
frequencies of gravitational waves is in theory, accessible to their
proposed detector, which would otherwise not be accessible to
current state-of-the-art laser interferometric setups, like the one
at LIGO. A few experimental proposals, for instance the Matter-
Wave Interferometric Gravitation Antenna (MIGA) experiment
[88] and the Atomic Experiment for Dark Matter and Gravity
Exploration in Space (AEDGE) [89] are already in place, and
rapid developments in this area continue to take place (see [90]
for more details). As to what dark matter and dark energy really are
some of the most pressing mysteries of modern physics. Over the
recent years, atom interferometric-based approaches have found
novel applications in the probing of dark matter and dark energy.
These experimental realizations are especially crucial, as they set
tight bounds and/or constraints on a large class of dark energy
theories [91]. While its true nature has eluded thus far, there are
claims that dark energy consists of a light scalar field, in which case it
is possible that it might couple to normal-matter objects and hence
be detectable in the laboratory as a fifth force that is not currently
known to us. A class of dark energy theories with so-called
“screening” mechanisms have features within their framework
that suppress their effects and/or influence in relatively high-
density environments, facilitating in theory this coupling to
normal-matter particles. Of particular interest is the theory of the
chameleon field [91], which has the rather unique property of being
able to mediate a long-range force in low-density environments,
which in high-density environments assumes a short-range nature.
This is precisely whatmakes its detection nearly impossible in Earth-
based environments. Atom interferometric-enabled measurements
find utility in this regard, in that it is possible to realize and/or

simulate the low-density conditions of the cosmos using atoms
contained in a UHV vacuum chamber [91]. This in turn has the
effect that the long-range nature of the chameleon field will
manifest itself, making its detection in theory, possible (see
[91–93] for more details). The superposition principle is a
powerful concept in fundamental physics and forms the
backbone of quantum mechanics. Atom interferometric-
based approaches have opened new avenues into realizing
macroscopic spatial superpositions between quantum
systems, thus making it possible to test the superposition
principle in the macroscopic regime. Achieving macroscopic
spatial superpositions between heavy test masses in
interferometric setups is also crucial for realizing tests of
quantum gravity, as has been discussed at length in the
earlier sections (see [94–96] for an overview of some of the
exciting developments in this line of research over the recent
years). Interestingly enough, matter-wave interferometry can
also find novel applications in quantum-assisted measurements
on large biomolecules and biomolecular clusters [97]. Typical
techniques seek to exploit the high sensitivity of matter-wave
spatial interference fringes to circumvent the issues of
dephasing and decoherence in such sensitive experiments (in
the presence of external perturbative effects) [98] to measure
and investigate the molecular properties of a large class of
biomolecules.

These have been on the forefront of atom and/or matter-wave
interferometry over the past few years and if successful, there is no
denying that these will open new doors and avenues to previously
unexplored regimes of cold-atom physics and quantum gravity.
With growing interest amongst members of the scientific
community, rapid developments in matter-wave interferometry
and other areas such as optical levitodynamics and quantum
optics are bound to occur. It is genuinely hoped that this
Perspective will inspire and spearhead research along these
directions in the coming years.
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