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Weobserve the failure process of a fiber bundlemodel with a variable stress release range, γ,
and higher the value of γ, lower the stress release range. By tuning γ from low to high, it is
possible to go from the mean-field (MF) limit of the model to the local load-sharing (LLS) limit
where local stress concentration plays a crucial role. In the MF limit, individual avalanches
(number of fibers breaking in going from one stable state to the next, s) and the
corresponding energies E emitted during those avalanches have one-to-one linear
correlation. This results in the same size distributions for both avalanches (P(s)) and
energy bursts (Q(E)): a scale-free distribution with a universal exponent value of −5/2.
With increasing γ, the model enters the LLS limit beyond some γc. In this limit, due to the
presence of local stress concentrations around a damaged region, such correlation C(γ)
between s and E decreases, i.e., a smaller avalanche can emit a large amount of energy or a
large avalanche may emit a small amount of energy. The nature of the decrease in the
correlation between s and E depends highly on the dimension of the bundle. In this work, we
study the decrease in the correlation between avalanche size and the corresponding energy
bursts with an increase in the load redistribution localization in the fiber bundle model in one
and two dimensions. Additionally, we note that the energy size distribution remains scale-
free for all values of γ, whereas the avalanche size distribution becomes exponential for γ > γc.
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1 INTRODUCTION

Disordered materials, when subjected to external stress, go through local damages that eventually
emerge as a catastrophic fracture when the load exceeds a critical value. These breaking events, called
avalanches, are usually detected as acoustic emissions [1]. Systematic statistical analysis of the time
series of these events has led to a considerable insight into the failure dynamics of disordered samples
across scales. In particular, the scale-free nature of the size distribution of these avalanches has
motivated a “critical phenomenal” description of fracture processes. From laboratory-scale
experiments to earthquake statistics, the Guttenberg–Richter-like law is widely and accurately
verified [2, 3]. The statistics of damage avalanches and the corresponding emitted energies are
studied also in other systems such as dislocation dynamics and magnetic systems. both theoretically
and experimentally [4–7].

The advantage of having a critical phenomenal description is that the dynamics are expected to be
independent of the microscopic details of the individual systems studied and will depend on a few
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parameters such as the dimensionality of the system, the
interaction range, and order parameter definition (see, for e.g.,
[8]). This means simplified models with very few parameters
should be able to reproduce the “critical description” of these
avalanching phenomena. Indeed, there have been many such
attempts. Some well-explored models in this regard include the
fiber bundle model [9], the random fuse model [10], and
Burridge–Knopoff model for earthquakes [11]. There are also
multiple efforts in molecular dynamics simulations to obtain
scale-free avalanche statistics (see, for e.g., [12] for a review).

The two quantities, avalanche size and the corresponding
energy bursts, are generally distinct. While the former gives a
measure of the area opened up during a fracture event (or the
number of spins changing orientation in a disordered magnetic
system under an external field), the latter gives a measure of the
(strain) energy released due to such events. Depending on how
the avalanche size is defined in a system, a generally nonlinear
relationship can be obtained between avalanche size and energy
burst. This relationship has been studied analytically using mean-
field models, numerically using lattice models or discrete
elements models, and also experimentally in rupture cascades
in laboratories and earthquakes for crackling noise in magnetic
domains [7]. While the average values of energy bursts (〈E〉) and
avalanche sizes or damage (〈s〉) are known in those systems, in
this work, we focus on how does the individual correspondence
between the avalanche size and energy of a particular event vary
with localization of load redistribution in the context of the fiber
bundle model in one and two dimensions. It was noted earlier
[13] that in the extreme limit of the nearest neighbor load sharing,
those avalanches of large sizes can have small energy release and
vice versa. In terms of the size distribution functions, the
avalanche size distribution is exponential, but the energy
distribution is a power law. It was also shown recently in a
rock deformation experiment through a combination of acoustic
energy measurement and an in situ x-ray imaging of the
microstructure that local strain and the corresponding acoustic
emission amplitudes can be uncorrelated [14]. This can be
attributed to changes in the local stiffness in a damaged region
in the experiment. As for the theoretical modeling is concerned,
tuning the range of load redistribution in the fiber bundle model
can shed light on this phenomenon. Therefore, in this work, we
systematically explore the intermediate ranges between the
nearest neighbor and the equal load-sharing limits and study
the correspondence of avalanche size and energy bursts and their
size distributions.

In the fiber bundle model, the mode of failure depends mainly
on two factors: the strength of disorder in the individual failure
threshold of the fibers and the range of stress release [15–18]
when one such fiber is broken. Such interplay between disorder
and damage nucleation not only affects the failure mode but also
influences the spatial correlation during the failure process
[17–20]. The range of stress release has two extreme limits,
viz. the equal and nearest neighborhood load sharing.
However, in most disordered materials, the effective
mechanisms are in between these two extreme cases.
Therefore, it is crucial to know to what extent one can infer
the magnitude of one of these quantities when the other quantity

is known. In this work, we study the fiber bundle model in one
and two dimensions with variable ranges of load sharing.We look
at the distributions of the avalanche size and energy. We also look
at the correlation measures for the time series of avalanche sizes
and the corresponding energy bursts as a function of the range of
stress release. We show that as soon as localization in the load
redistribution is introduced, the one-to-one linear
correspondence between the avalanche size and the
corresponding energy bursts decreases. The nature of
decreases and the size distribution of the two quantities
depend strongly on the dimensionality of the model.

2 DESCRIPTION OF THE FIBER BUNDLE
MODEL

The fiber bundle model has been proven to be a very useful yet
very simple model to study failure processes in disordered
systems. It has gained a lot of attention among engineers,
material scientists, and physicists after its introduction by
Pierce in 1926 [9]. A conventional fiber bundle model of size
L consists of L parallel Hookean fibers for 1d and L × L fibers in
2d, placed vertically between two supporting clamps (1d) or
plates (2d). The clamps/plates are pulled apart by a force F,
creating stress f = F/N per fiber. Here, N is the total number of
fibers. For 1d, N = L, and for 2d, N = L2. The disorder is
introduced within the model as fluctuation of failure strength
values in the individual fibers. In the present work, such strength
values (h) are chosen from a uniform distribution between (0, 1).
A certain fiber i will break irreversibly if the applied stress σ(i) on
that fiber crosses its threshold value h(i). The load carried by the
broken fibers is then redistributed to the other surviving fibers. As
mentioned earlier, the two extreme limits of such redistribution
schemes are the global or equal load sharing (all surviving fibers
get an equal fraction of the redistributed load [9, 21]) and the
nearest neighbor load sharing (only the nearest neighbors share
the redistributed load) [22–28].

Here, we have adopted an intermediate load-sharing scheme
that interpolates continuously between these two extreme limits
[17, 29]. If σi is the stress of the ith broken fiber, then for a certain
fiber j, the local stress profile after redistribution will obey the
following rule:

σj → σj +
r−γij
Z
σ i (1)

where rij is the distance between the fibers i and j. Z is the
normalization factor given by

Z � ∑
k

r−γik (2)

where k runs over all surviving fibers. With the present rule, a
high γ stands for a low-stress release range and hence closer to the
LLS scheme. On the other hand, for low γ, the model enters the
ELS or mean-field limit. Earlier studies pointed out a critical γc for
both one- [17] and two-dimensional [29] fiber bundle model
around which this transition from LLS to ELS limit takes place.
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The values of γc for one and two dimensions are 4/3 and 2.15 ±
0.05, respectively [17]. After such redistribution, other fibers can
break due to the elevated local stress profile, and the stress is again
redistributed. This starts an avalanche at the same external stress.
The size s of an avalanche is the number of fibers broken until the
system reaches the next stable configuration (loads on all
surviving fibers are lower than their respective failure
thresholds). The energy emitted during an avalanche of size s
is represented as follows:

E s( ) � ∑s
1

1
2
h2i (3)

where hi’s are the threshold values of the s broken fibers during
the avalanche. An average energy 〈E〉 can be calculated then by
averaging overall E values corresponding to a certain avalanche
size s. The total bundle might break through a single avalanche, or
it can come to a stable state after an avalanche. In the latter case,
we increase the applied stress just to break the next weakest fiber
and start a new avalanche. This process goes on until all fibers are
broken.

3 NUMERICAL RESULTS

Numerically, we have studied both one- and two-dimensional
fiber bundle models with a variable stress release range,

characterized by γ (Eq. 1). The system sizes vary from 103 to
105 for one dimension and from 50 × 50 to 300 × 300 for two
dimensions. The failure threshold distribution for the fibers is
kept uniform in (0, 1). The value of γ was increased from 0 to 8,
which allows us to explore the whole region between ELS to LLS,
during the failure process.

We start by observing the relation between s and 〈E〉 with
variation in γ. This will give us an idea about the correlation that
the avalanche size and the energy has in between. Such
correlation is then explored explicitly through a correlation
function C(γ) and compared with s vs. 〈E〉 behavior. Finally,
the distribution of avalanches and emitted energies are shown,
and a connection between them is established through the
correlation function.

3.1 Relation Between s and E
As mentioned earlier, in experiments and theory, the relationship
between s and E are well studied (see, for e.g., [4, 7]). Here, we
study this relation and also the correlations between an avalanche
and the corresponding energy in the fiber bundle models.

Figure 1 shows the scatter plot of the avalanche size s and the
corresponding energy emission E for each avalanche event. The
emitted energy for a certain avalanche is defined by Eq. 3. We
have explored this s vs. E behavior for the low-stress (γ = 4 for 1d
and γ = 8 for 2d) as well as high-stress release range (γ = 0.1 for
both 1d and 2d). For the lower value of γ, the model is in the
mean-field limit while for the higher γ value, the model is close to

FIGURE 1 | Variation of avalanche size swith corresponding emitted energy E for (A) γ = 0.1 and (B) 4.0 in case of a 1d bundle and for (C) γ = 0.1 and (D) 8.0 in case
of a 2d bundle. There is a high correlation between s and E for low γ (ELS limit). The plot is rather scattered with a relatively low correlation when γ is high (LLS limit).
Though this trend is same for both dimensions, the scatter seems less as we go to the higher dimension.
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the LLS scheme. The upper panel of Figure 1 shows the results for
one dimension and the lower one for the two dimensions.

We observe that when γ is low, E increases with s linearly. A
recent article [13] has already discussed such correlation between
avalanche size and emitted energy in the mean-field limit of the
model, which we obtain here by keeping a high range (hence low
γ) of load redistribution. On the other hand, when γ is high, the
plot of s vs. E shows a scatter with a relatively lower correlation
between the two quantities. Such a decrease in the correlation
with γ is observed for both one and two dimensions of the model.
This is in line with recent experimental observations in rock
deformation, where local strain and acoustic emissions were
measured contemporaneously [14] and found to be
uncorrelated i.e., larger avalanches can emit low energies and

vice versa. A more quantitative analysis of the correlation
measures observed here is discussed later on.

Figure 2 shows the distributionsQs(E) of E for a given value of
s for two values of γ (0 and 4) in the one dimension. The
distributions are skewed (can be fitted with the Weibull form
in some cases), but the averages are well defined. The skewness is
high for high γ, where the local stress concentration is prominent.
In this limit, Qs(E) fits well with a Weibull distribution. At low γ,
on the other hand, Qs(E) is fitted with both the Gaussian and
Weibull distribution for high s, while the distribution is more like
a Weibull when s is low.

Figure 3 shows the variation of the avalanche size s with an
average energy 〈E〉 corresponding to s. 〈E〉 is calculated by
averaging overall energy values that are associated with a certain

FIGURE 2 | Distributions of the energies emitted for a given avalanche size for two values of γ (0 and 4) are shown for the simulations in one dimension. The
distributions are fitted with both the Gaussian (Qs(E) � 1���

2πσ2
√ e−1

2 (E−μσ )2 ) as well as Weibull (Qs(E) � (k/λ)(E/λ)k−1e−(E/λ)k ) distribution. The fitting is better with Weibull
distribution, unless the value of s is very high where Qs(E) can be fitted with both distributions. While the distributions are skewed, the averages (〈E〉) are well defined,
which is what we used for the subsequent results.

FIGURE 3 | Variation of ln swith ln 〈E〉 for the (A) 1d and (B) 2d FBMwith different values of γ as indicated. For low values of γ, a linear relation is observed. For γ >
γc, there is a nonlinear relationship, viz. 〈E〉~ sβ, with an exponent, which is dependent on γ, β ≡ β(γ). For high values of γ, β ≈ 2.5, as also seen in Ref. [13].
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avalanche size s. The difference between this figure and Figure 1
is that in the former all energy values for a particular avalanche
are shown, while here only the average of those values is shown.
When the γ value is low, we observe 〈E〉~ s for large values of 〈E〉,
and a nonlinear part corresponding to low 〈E〉. The linearity for
low γ exists because the model is in the mean-field limit where s
and E are highly correlated (as can be seen qualitatively in
Figure 1). On the other hand, for high γ, the bundle breaks
long before we observe any linear behavior between s and 〈E〉.
Only the initial nonlinear part is observed in this case. The fact
that 〈E〉 is not linear with s for high γ is also reflected by the
scattered behavior of E with s. For this nonlinear part, the
variation of s and 〈E〉 is 〈E〉~ sβ, with an exponent, which is
dependent on γ, β ≡ β(γ). For large values of γ, β = 2.5, which was
also seen in [13] for the LLS scheme, i.e., γ → ∞. We will again
come back to this linear and nonlinear relationship between s and
〈E〉 while discussing the distributions of avalanche sizes and
emitted energies.

3.2 Study of the Distributions P(s) and Q(E)
In this section, we will discuss how the distribution of avalanche
sizes and energies behaves as the stress release range γ is varied.
The upper panel of Figure 4 shows the results for one dimension
while the results in the lower panel correspond to two
dimensions. We denote distribution of avalanche sizes by P(s)
and distribution of energies by Q(E).

We observe the following behavior for P(s) and Q(E) with a
variation in γ in the model:

• For low γ (ELS limit), both P(s) and Q(E) are scale-free
distributions with a universal exponent of −5/2, as predicted
in the mean-field calculations. This is shown in Figures
4A,B for 1d and in Figures 4C,D for 2d. This is due to the
fact that in this limit, 〈E〉~ s, and the distribution of E
should be exactly similar to the distribution of s which is a
scale-free distribution with an exponent −5/2 in the ELS
limit [30].

• When γ is very high, Q(E) is a scale-free distribution in
spite of the fact that the distribution P(s) is an
exponential [31] here. This is due to the lack of
correlation between s and E which is presented in
Figures 1, 3.

• Throughout the entire range of γ, the energy distribution is a
power law (Q(E)~E−τE ), while the avalanche size
distribution is a power law (P(s)~s−τs ) for γ < γc and
exponential for γ > γc.

• It is possible to show that τE = β(γ) + 1 [13], assuming the
aforementioned nonlinear relation between s and 〈E〉 and
P(s) to be an exponential distribution. We see here that this
scaling form is in fact generally valid for γ > γc (see
Figure 5). β is a continuously varying function of γ
which makes τE also vary with γ.

3.3 Correlation Function
Finally, we reach a point where we can discuss the correlation
between the individual avalanches s and the corresponding
energy emitted E, quantitatively. For this, we have calculated

FIGURE 4 | Distribution of the avalanche sizes P(s) and energiesQ(E) with s and E, respectively, when γ is varied between 0.1 and 8.0. (A,B) show the distributions
P(s) andQ(E) in 1d, respectively. The same for 2d is shown in (C,D). L = 105 for 1d, and a bundle of size 300 × 300 is used for 2d. For both 1d and 2d, P(s) is a power-law
distribution below γc and an exponential distribution above γc. Q(E), on the other hand, remains scale-free for both dimensions irrespective of the value of γ, though the
value of the exponent changes with γ when γ > γc.
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the Pearson correlation function and defined a correlation
coefficient C(γ) as

C γ( ) � n ∑sn.En( ) − ∑sn( ) ∑En( )����������������������������
n∑s2n − ∑sn( )2[ ] n∑E2

n − ∑En( )2[ ]√ (4)

where n is total number of avalanches excluding the final one
during the failure of the bundle. s1, s2, . . . , sn are burst sizes of 1st,
2nd, . . . , nth avalanche and the corresponding emitted energies
are given as E1, E2, . . . , En, respectively.

Figure 6 shows how the correlation function C(γ) behaves as γ
increases. The left and the right figures show the results for one-
and two-dimensional FBM, respectively. When γ is low, C(γ) has
a value closer to 1.0. This supports our earlier claim that s and E
have a high correlation at low γ, which corresponds to the ELS or
mean-field limit of the model. Similarly, at high γ, where the
model is in the LLS limit, a relatively smaller value of C(γ)
suggests a lesser correlation between s and E. This decrease of
C(γ) takes place around the critical value of γc around which the
ELS to LLS transition is observed. When the size of the bundle is
increased, C(γ) shifts to a higher value at low γ and a lower value
at high γ, suggesting a sharper decay ofC(γ) around γc. Such effect
of the system size is more visible in the one-dimensional case due
to the higher range of sizes accessible here. Doing the same for

two dimensions will computationally be much more costly. Also,
notice that the value of C(γ) in the LLS limit is higher for two
dimensions as the increase in the dimension brings the model
closer to the mean-field limit.

4 DISCUSSION AND CONCLUSION

In driven disordered systems in general and fracture propagation
in particular, an avalanche of size s corresponds to the opening up
of a fractured surface (or reorientation of magnetic spins in a
disordered magnetic system), while the corresponding energy
burst E is the strain energy released, usually in the form of
acoustic emission. In experiments and theory, the usually
nonlinear relationship between these two quantities has been
extensively studied (see, for e.g., [4, 7]). In this work, we have
studied the changes in this relationship with the variation in the
range of stress release following a local failure, using the fiber
bundle model as a prototypical example. In particular, we assess
the correlation between the individual avalanches and the
corresponding energy bursts, as a function of this stress
release range (parameterized by γ in Eq. 1). We show that the
correlation decreases from a value close to 1.0 (fully correlated) in
the mean-field limit (γ → 0) to a significantly lower value in the

FIGURE 5 | Plot of τE and β(γ) + 1 showing a numerical validation of the scaling form τE = β(γ) + 1 for γ > γc. This is a more general form of the particular case seen in
Ref. [13], where β(γ → ∞) = 2.5. γc = 4/3 for 1d [18] and 2.15 for 2d [18].

FIGURE 6 | Variation of the correlation function C(γ) is shown with γ for the (A) 1d and (B) 2d fiber bundle model. For γ < γc, s and E have high correlation among
themselves which is visible in Figure 1 as well. For γ > γc,C(γ) falls to a lower value suggesting low s − E correlation. γc = 4/3 for 1d [18] and 2.15 for 2d [18]. The results for
1d is shown for L = 103, 104, and 105 while the results for 2d are shown for L = 100, 200, and 300.
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nearest neighbor load-sharing limit, for both one and two
dimensions. This is in line with recent experimental
observations [14] in rock deformations, where an in situ
measurement of a large change in the local strains (through
x-ray imaging) did not always correspond with a large acoustic
emission and vice versa.

In the fiber bundle model, the failure mode depends on the
range of stress release, once the disorder distribution is fixed in a
moderate range (uniform in (0, 1) here). The reason for the
different modes of failure is the competition of damage
progression due to stress localization near an already damaged
region and vulnerable spots at some distance from the damaged
region. While the first mechanism promotes a nucleation-driven
failure, the latter leads toward percolative damage. The critical
range that separates these two limits has been studied elsewhere
[17, 18]. The underlying mechanism is not only valid for the fiber
bundle model [17–20] but also seen in the random fuse model
[32, 33] and in molecular dynamics simulations [34]. The present
study is a manifestation of these two competing effects. Indeed,
for a wide range of stress release, load increases on almost all
elements, and hence the weaker among those elements break first.
Given that there is no spatial correlation between the failure
thresholds of the fibers, the damage is percolative. When the load
redistribution range is more localized (for higher γ values), the
correspondence between an avalanche size and the corresponding
energy burst decreases. Indeed, we see that beyond a critical value
γc, which depends on the dimension of the model, the correlation
between avalanche and energy drops drastically. Incidentally, this
is also where the size distribution of avalanches becomes
exponential from the power-law behavior for γ < γc.

Specifically, we have plotted s vs. E in Figure 1, where a clear
linearity is observed for a wide range of stress redistribution. But
for localized ranges, the linearity is not present. The correlation
between the two quantities drops from one as the stress release is
localized. However, a positive correlation always remains, which
is anyway expected. But, there could be individual events that are
of larger sizes which still can emit relatively less energy. In the
distribution functions, the differences are more apparent. For
very high values of γ, the avalanche size distribution always
remains exponential, but the energy distribution always shows

a power-law behavior with a higher value of the exponent (see
Figure 4) in both one and two dimensions. This highlights the
fact that in the localized load sharing, one can see power-law
distributions in energy, which is what is usually measured in the
experiments, while the size distributions can already shift to
exponential.

In conclusion, the interchangeability of the avalanche size and
energy in the fiber bundle model is only valid when the stress
release range is very wide. Specifically, this equivalence is not
valid in the nucleation failure mode. However, not only that the
correlations between the two quantities are less, but also the size
distribution of the energy still shows a scale-free behavior where
the avalanche size distribution may not, in both one and
dimensions. Given that in real materials that the stress release
range is always somewhat local, the observations here can explain
the simultaneous existence of damage localization and scale-free
distributions of emitted energies.
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