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This article focuses on the detailed network structure of the co-movement for asset returns.
Based on the Chinese sector indices and Fama-French five factors, we conducted return
decomposition and constructed aminimumspanning tree (MST) in terms of the rank correlation
among raw return, idiosyncratic return, and factor premium. With the adoption of a rolling
window analysis, we examined the static and time-varying characteristics associated with the
MST(s). We obtained the following findings: 1) A star-like structure is presented for the whole
sample period, in which market factor MKT acts as the hub node; 2) the star-like structure
changes during the periods for major market cycles. The idiosyncratic returns for some sector
indices would be disjointed fromMKT and connected with their counterparts and other pricing
factors; and 3) the effectiveness of pricing factors are time-varying, and investment factorCMA
seems redundant in the Chinesemarket. Our work provides a new perspective for the research
of asset co-movement, and the test of the effectiveness of empirical pricing factors.
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1 INTRODUCTION

Co-movement refers to the correlated or similar movement of two or more entities. In finance, the
co-movement of asset returns is crucial to the cross-sectional diversification and management of
systematic risk. It also affects the way shocks are transmitted and thus the level of systemic risk [1].
Understanding the co-movement for asset returns is essential and beneficial in the academic field and
practical investment. According to the seminal work by Ref. [2], asset co-movement could be
decomposed into two parts. One part is “reasonable” co-movement, which is related to the
fundamentals of assets. And the other part is “excess” co-movement, or “friction-based” co-
movement, which is linked to investor sentiment and is beyond the explanation of fundamental
change with respect to the assets. Motivated by Ref. [2], a strand of ensuing studies have been carried
out in the literature, with the adoption of the indicators in terms of R2 or its variants derived from the
regression on the market performance [1, 3–5].

However, most literature has concentrated more on the co-movement between individual assets
and market performance rather than that among the assets themselves. In practice, people may be
more concerned with the co-dependency or cross-correlation for various assets. It was virtually
realized via the indirect evaluation of the co-movement between each asset and market performance
[6], because of computational complexity in early years. The overall market performance serves as
the “intermediary” during the process.

Along with the sharp drop in computing costs, an increasing number of researchers have turned
their attention to more direct and accurate metrics of the co-movement among the assets. In
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particular, based upon the network theory, a surge of literature is
coming out to unveil the co-movement structures within or
across asset classes. The network-based approach typically
consists of the following two steps: 1) constructing the matrix
in terms of cross-correlation coefficients for given assets, and
thereby 2) mapping it to a graph, in which the nodes refer to the
assets with links or edges connecting them.1 Therefore, the
topological properties associated with the graph or network
can be further obtained to describe the structure of the co-
movement.

For the first step, Pearson correlation is one of the most
popular methods, especially in the early literature, in which it
is simple to capture the linear correlations between the assets.
Some similar alternatives include partial correlation [7], co-
integration [8], and lead–lag relation [9–11]. Although these
approaches function well in featuring the linear correlation
among assets, they fail to capture the non-linear correlation
that is more prevalent in financial markets. In response, more
approaches have been employed, such as copula [12], mutual
information [13], and rank correlation [14]. For the second step,
it is easy to build a complete graph or network based on the raw
correlation matrix, containing rich and even redundant
information. An information filter is necessary, and a number
of network-based methods have been developed to this end. For
instance, minimum spanning tree (MST, hereafter) is one of the
most popular methods [15–17]. Assuming that there are a total of
N nodes in the original network, N − 1 most important edges
would be retained in the MST. Planar maximally filtered graph
(PMFG, hereafter) has also been frequently adopted in the
literature [18]. The PMFG retains more information and
exhibits more robustness than the MST. It is mainly realized
by the fact that the nodes have no cross-linkage on the planar. In
comparison, the most intuitive way is to conduct the threshold
method [19, 20], which is able to filter out all the nodes with
linkage weights greater than a specific critical value.

In this work, we concentrate on the detailed co-movement of
the assets proxied by industrial sector indices in China. China has
witnessed rapid development in its financial market in recent
decades, while some phenomena still characterize the Chinese
market, including the less transparent information environment
at the market and firm levels, and amore significant proportion of
irrational individual investors [21]. These result in remarkably
distinct performance in the stock market from other mature
markets [22], which necessitates further study. Furthermore,
despite rich research on the co-movement for the assets in
China, insufficient attention has been paid to a more detailed
co-movement structure, which plays an increasingly important
role in portfolio selection and risk management. On the other
hand, with the rapid development of “factor zoo” [23], the
performance of assets can be attributed to the compensation
for various kinds of risks or the premium for investing styles. In

this vein, it pays to perform an anatomy of the co-movement
structure for the asset, which is the focus of our work.

Given that the network-based approach is more informative
about detailed co-movement structures than those traditional
methods with respect to the linear regression model (i.e., R2 and
its variants), we constructed the MST with layered structures in
terms of correlations among systematic, idiosyncratic, and raw
returns of assets. Based on the network theory, topological
properties associated with the MST can be derived to describe
the co-movement structure. For the whole sample period, we
found that the MST presented a star-like connection, with the
hub node being market factor MKT, and all sector nodes were
connected to market factor MKT. Size factor SMB was directly
linked to the sector composite (Cps), while the other three factors
were connected through SMB. Our plot of the MST also implied
the effectiveness of Fama-French pricing factors in China: market
factor MKT played an important role, while investment factor
CMA seemed redundant. These findings are consistent with the
prior literature [24, 25].

With the adoption of the rolling window analysis, we observed
that the topological properties associated with the network
structure are time-varying. In particular, in major market
cycles, the star-like structure would be accordingly changing.
This is featured by the fact that a few idiosyncratic returns for
sector indices would be disjointed from market factor MKT and
then connected to their counterparts, which is consistent with the
findings from Ref. [14]. Meanwhile, pricing factors would
generally exhibit more favorable pricing efficacy.

The contributions of our work are as follows:
Our first contribution is to probe into the detailed co-

movement structures of asset returns in China, to which
scarce attention has been paid. In fact, to the best of our
knowledge, our work is the first which is aimed for this
purpose. A mounting of the literature has focused on the
individual stock co-movement in China as well as the driving
factors of change in the co-movement structure [11, 26], while
another strand of the literature has examined the co-movement
structure across the asset classes, such as that for the individual
stocks in the Chinese market and other mature markets [27], and
that between global oil prices and China’s commodity sectors
[28]. In comparison, our focus on detailed co-movement
structures of asset returns differentiates our work from the
literature mentioned previously. Specifically, we conduct the
return decomposition based on the Fama-French five-factor
model for China and further construct the MST with layered
structures. Based on this, we probe into the inter-structure for the
co-movement between asset raw return and price premium, and
the intra-structures for the factor premiums and idiosyncratic
returns.

Our second contribution is to extend Ref. [14] by considering
the weighted schemes for the co-movement structure in asset
returns. The authors of Ref. [14] adopt the network-based
approach to examine the asset returns’ co-movement in the
US market. Based on the Fama-French three-factor model,
they decompose the returns of industrial sector indices into
systematic and idiosyncratic parts. They further examine the
properties associated with time-varying MSTs with unweighted

1The edge exists between the nodes for assets if they have a higher pairwise
correlation, which will be detailed in the following sections. Note that “edge” and
“link” are interchangeable in our work.
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edges between the returns. Their results suggest that unexpected
industries connect idiosyncratically through the dot-com bust.
Different from their work, we focus on unweighted as well as
weighted schemes in our work. Our results based on weighted
schemes reveal more explicit and remarkable fluctuations in the
measures for the co-movement structure for the period of major
cycles in China than the results based on unweighted schemes,
including the period around 2007, 2015, and 2018, corresponding
to three major bursts of stock bubbles in China. In comparison,
the results based on unweighted schemes convey less information,
especially highlighted by our results for the intra-structure of
returns’ co-movement.2

Last but more importantly, our work adds to the literature on
empirical asset pricing by providing evidence of the time-varying
effectiveness of pricing factors in the Chinese stock market. By
conducting the rolling window analysis, our work lends support
to the importance of market factor MKT but the redundancy of
the investment factor CMA, which is also consistent with
empirical findings in previous literature. In fact, the majority
of research works focusing on asset co-movement are conducted
based on cross-sectional and time-series regressions. In contrast,
we employ the network-based approaches to fulfill the goal. In
this regard, our research also provides a new perspective on the
effectiveness evaluation of empirical pricing factors.

The article proceeds as follows: Section 2 and Section 3
introduce the method and data employed in the study; Section
4 presents empirical findings; Section 5 introduces the results of
robustness check; and Section 6 concludes.

2 METHODOLOGY

2.1 Decomposition of Asset Return
Our interest is on the detailed co-movement structures for asset
prices. We examine it by focusing on the inter- and intra-
structures of the co-movement among raw, systematic, and
idiosyncratic asset returns. Therefore, our first step is to
conduct the decomposition of raw asset returns. According to
the theoretical backgrounds of the macro-economy and empirical
asset pricing, asset return can be explained by several common
risk factors regarding fundamentals, plus the compensation for
the idiosyncratic shocks whose expected value is zero [29]. In
light of this, we can base on a specific popular pricing model to do
the return decomposition [21, 30]. We resort to one of the most
popular pricing models, that is, Fama-French five-factor model
(FF5, hereafter) for the Chinese stock market [31]. More
importantly, five factors from FF5 can function more
favorably to describe the systematic risks and deliver better
explanation power to the performance regarding individual
assets and asset portfolios than Fama-French three-factor [32]

and CAPM models [33–35] for China [24, 25]. Specifically, we
regress the return time-series for each of the 28 sector indices
against the Fama-French five factors. In this way, the
idiosyncratic return for each sector indices can be captured by
the residuals plus the intercept.3 The process mentioned
previously can be described as follows:

ERi � αi + βMKT,iRMKT + βSMB,iRSMB + βHML,iRHML + βRMW,iRRMW

+ βCMA,iRCMA + εi, εi ~ N 0, σ2
ε( ),

(1)
where ERt denotes daily log return for stock index i, and RMKT

denotes value-weighted market portfolio returns, both in excess
of the risk-free rate; RSMB, RHML, RRMW, and RCMA constructed
following Refs. [31, 36, 37] represent size, value, profitability, and
investment factors, respectively. εi denotes the idiosyncratic
return of asset i. Accordingly, the raw asset return can be split
into systematic component that is captured by βMKT,iRMKT +
βSMB,iRSMB + βHML,iRHML + βRMW,iRRMW + βCMA,iRCMA, and the
idiosyncratic return that is captured by αi + εi.

2.2 Measurement of Co-Movement
As alternatives, we gauge the co-movement between each pair of
return series with rank correlation, namely, Spearman’s ρ and
Kendall’s τ, which are able to describe the non-linear relationship
among various components based on return decomposition.4

Spearman’s ρ is equivalent to Pearson’s linear correlation
applied to the rankings of each return series. Assume two
return series A � {Ai}n1 and B � {Bi}n1, if all the ranks are
distinct; then the equation could be simplified to

ρSpearman
A,B � 1 − 6∑d2

i

n n2 − 1( ), (2)

where di = rg (Ai) − rg (Bi) is the difference between the two ranks
of each observation in A and B, and n is the length of each
series [38].

Kendall’s τ coefficient can be defined as

τA,B � 2K
n n − 1( ), (3)

where K � ∑n−1
i�1 ∑n

j�i+1f(Ai, Aj, Bi, Bj), and

f Ai, Aj, Bi, Bj( ) � 1, if Ai − Aj( ) Bi − Bj( )> 0
0, if Ai − Aj( ) Bi − Bj( ) � 0 ,

−1, if Ai − Aj( ) Bi − Bj( )< 0
⎧⎪⎪⎨⎪⎪⎩ (4)

According to Eq. 4, the Kendall correlation between two variables
will be high when observations have similar ranks and low when
observations have dissimilar ranks. Specifically, the value of τ

2Similarly, results from Ref. [14] suggest that large fluctuations of measures of co-
movement structures coincide with the burst of the dot-com bubble, while they
remain relatively stable for other periods with major risk events (from Figure 4
through Figure 5 in Ref. [14]). We argue that this may be, to a large extent, due to
the unweighted scheme adopted by the authors.

3The efficacy of the Fama-French five-factor models for the Chinese stock market is
not our focus in this work. We consider pricing factors possibly regarding
fundamentals in the study to serve more favorably for our purpose of return
decomposition.
4It is noted that although we report main results based on rank correlation, our
findings still hold and are even more significant when Pearson’s ρ is adopted.
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ranges from −1 to +1. A value of −1 indicates that one’s ranking is
the reverse of the other, while a value of +1 indicates that the two
rankings are the same. A value of 0 indicates no relationship
between them [39].

Both of the aforementioned correlation coefficients measure
monotonicity relationships. Strictly speaking, the Kendall
correlation is preferred over the Spearman correlation because
of a smaller gross error sensitivity and a smaller asymptotic
variance [40], which nevertheless makes no difference in our
study. Unless noted otherwise, Spearman’s ρ is adopted as the
measurement of correlation, and we leave out the superscript
Spearman in the left hand of Eq. 2 in the remainder of the article.

In light of Ref. [14], we introduce a special correlation
structure for the purpose of this work. In particular, we set the
correlation coefficient between raw and idiosyncratic returns as
one. In other words, raw return Y and its idiosyncratic
component I is perfectly correlated, and together, they can be
further viewed as a new type of node labeled as Z. The correlation
coefficient of special nodes pair Z ~ Z is, in fact, the correlation
coefficient of their idiosyncratic components I ~ I, and the
correlation coefficient of special node and factor premium Z ~
F equals that of its raw return and factor premium Y ~ F.
Assuming there are a total of N assets and M risk factors, that
is, the size of the network isN +M, we thus obtain the correlation
matrix C as follows:

C �

ρI1 ,I1 / ρI1 ,IN ρY1 ,F1
/ ρY1 ,FM

/ 1 / / / /
ρIN,I1

/ ρIN,IN
ρYN,F1

/ ρYN,FM
ρF1 ,Y1

/ ρF1 ,YN
ρF1 ,F1

/ ρF1 ,FM
/ / / / 1 /

ρFM,Y1
/ ρFM,YN

ρFM,F1
/ ρFM,FM

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (5)

2.3 Construction of the Network
We can construct an undirected network as follows: First,
correlation matrix C formed according to Eq. 5 needs to be
transformed to a distance matrix before constructing the network.
We follow Ref. [41] to construct the distance measurement for
nodes pair (A, B) in the network:

DA,B �
��������
1 − |ρA,B|

√
, (6)

which is also proven to satisfy the properties of distance norm: 1)

D(.)
A,B � 0 if and only if A = B, 2) D(.)

A,B � D(.)
B,A, and

3) D(.)
A,B < � D(.)

A,K +D(.)
K,B.

5

Second, distance matrixD constructed previously still contains
rich information regarding co-movement structures. It can map
to a complete graph, in which each pair of vertices is connected by
an edge. However, our purpose is to conduct the study based on a

more concise structure containing the most important links or
edges. Accordingly, the MST is employed to filter the original
network. We follow the process similar to that under Kruskal’s
algorithm [42]. Specifically, the lower-diagonal elements of C are
sorted in order. We then rely on the sorted values to screen out
the most significant links, so as to construct an MST. The links
with lower values are preferred, and all nodes are connected
sequentially through the shortest distance. As a result, N +M − 1
links are retained, through which all of the N + M nodes are
connected in the network, compared to a total of (N+M)(N+M−1)

2
edges in its complete graph.

2.4 Topological Properties of the Network
We investigate both static and dynamic co-movement structures
by examining the network’s topological properties. In order to
capture the detailed structure of the co-movement, the properties
are required to characterize the tightness as well as the shape of
the network structure. It is stressed that the results of all metrics
based on both unweighted and distance-weighted (see Eq. 6)
networks are presented in our work, and the comparison of the
results would be conducive to detecting the effectiveness of
pricing factors.

For the tightness of the entire network, we consider node
distance as a proxy, disA,B, for node pair (A, B) [43–45], which acts
as an intuitive but favorable measurement for the level of co-
movement.6 The unweighted distance between A and B is defined
as the shortest path length between them. According to Eq. 6, the
weighted distance betweenA and B can be defined as the length of
the shortest D-weighted path between them. It is noted that the
weighted node distance functions better in capturing the
dynamics of network tightness, given that the unweighted
node distance may remain unchanged over time. To gauge the
tightness of the networkmore accurately, we employ the indicator
in terms of nodes’ distance, which is similar with network
efficiency [46]:

NT � ∑A≠B
1

disA,B

N +M( ) N +M − 1( ), (7)

where disA,B represents the unweighted or weighted distance
between A and B, and N + M denotes the network size.
Specifically, the network structure is tight (loose), when NT is
larger (smaller), thus indicating the higher (lower) level of co-
movement.

In addition, we attempt to devote more attention to the sub-
networks, or detailed structures of co-movement, including the
inter-structure of co-movement across raw return and factor
premium, and the intra-structures for idiosyncratic returns
and factor premiums. As for the sub-network based on given
node types, NT fails to measure the network tightness, since the
nodes may be connected by other nodes outside the sub-network

5It is noted that conventional method of mapping the correlation to the distance
relies on DA,B �

���������
2(1 − ρA,B)

√
[15, 16]. In this vein, positive (negative) correlation

gives rise to the short (long) distance. However, this is not what is required in our
work. High magnitudes of pairwise correlations, irrespective of their directions,
would imply the close relationship between the assets, on which the high level of
co-movement is based. Thus, Eq. 6 serves the purposes of our work better.

6Thanks for the comment offered by one of the anonymous reviewers, and we
notice that tightness of the network in our study is similar to the conception of
network robustness [46]. Despite this, our work concentrates on evaluating
network connectivity for assets and pricing factors. Therefore, we adopt
“tightness” rather than “robustness” to highlight this focus.
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of our interest. We thus consider the average link size of a given
sub-network as an alternative. It is defined by the following:

�lS � ∑e∈Sle∑e∈Gle
. (8)

where le represents the length of link e in the network. S refers to
the sub-network of our interest, while the entire network is
denoted as G. It is noted that the change of link size for the
entire network is controlled for in Eq. 8. By doing so, we can
obtain more accurate results for the co-movement structure.7 In
the case of an unweighted network, the length of link e equals one,
if it exists in network S, and zero otherwise. In this regard,∑e∈Sle is
given by the total link size for all the links of network S, and∑e∈Gle
equalsN +M − 1. In this vein, a larger (smaller) value of�lS implies
the higher (lower) level of tightness, and thereby the lower
(higher) level of co-movement for a given network S. In the
case of a weighted network, le refers to distance measurement d
depicted by Eq. 6. Thus, ∑e∈Sle and ∑e∈Gle equal the sum of d in
the network S and G, respectively. When the absolute link size is
fixed, a larger (smaller) value of �lS implies the lower (higher) level
of the co-movement across the returns in given network S.

As for the shape of the network structure, we consider the
node degree, node strength, and their variants as the major
measurements. Node degree is defined as the number of links
connecting a given node to the rest of the network. Its weighted
version, or node strength, is defined as the sum of weights (or
distances) of links connected to the node. Here we focus on the
maximum and the standard deviation of the node degree
(strength). The maximum degree of the network is defined as
the degree of the node with the greatest number of edges incident
to it. We define the maximum strength of the network as the
strength of the node with the greatest weight of edges incident to
it. Intuitively, the evolution of maximum degree (strength)
indicates a time-varying network shape. The standard
deviation of node degree (strength) measures the amount of
dispersion of nodes’ degree (strength), which plays a more
critical role in characterizing the shape of the network.
Specifically, a larger (smaller) standard deviation of degree
(strength) implies that the shape of the network is more
inclined to be the star-like (chain-like) connection.

3 DATA

Obviously, individual stocks within the same industry or sector,
or more broadly, some style of “portfolio,” share the co-
movement to a large extent [2]. Therefore, we adopt the sector
indices as our data sample, instead of individual stocks. By doing
this, the industry effects are controlled for in our work so that a

more precise co-movement structure can be further evaluated.
Specifically, our work is conducted based on 28 sector indices,
issued by Shenyin and Wanguo Securities Co., Ltd (http://www.
swsresearch.com), and the period spans from 5 January, 2000 to
29March, 2019.With the closing price of sector indices on a daily
basis, we can further obtain their daily log returns, that is, rt = log
(pt) − log (pt−1). Summary statistics associated with daily log
returns for different indices are reported in Panel A of Table 1. It
is noted that price limit trading rules implemented currently in
China became effective since December 1996, requiring that the
maximum daily price fluctuation in terms of the last closing price
is ±10% for risk stocks, as highlighted by the results in the
columns of Max and Min. It is also evident that each sector
produces a time-series average positive profit, and the most
outperformed is F&D with the return of 0.05% per day, or
around 12.6% (≈ 0.05% × 252) per year. The standard
deviation (std) of daily returns ranges from 1.7% to 2.3%;
thus, the annualized standard deviation ranges from about
27% to 37%, which is remarkably higher than those of major
assets around the world.8 In addition to these, we can observe that
a majority of sector returns are negatively skewed, indicating the
relatively higher possibility of a flash crash. The kurtosis is
beyond five for all sector indices, accompanied with the
evidence of negatively skewed distribution, which suggests that
the sector indices are not normally distributed. Accordingly, this
can be further confirmed by the significant statistics of
Jarbe–Barque tests at the 1% level.

Additionally, for the decomposition of the asset return, we also
retrieve a risk-free interest rate as well as Fama-French five factors for
China on a daily basis from the China StockMarket and Accounting
Research (CSMAR) database, which is the comprehensive database
for Chinese business research, covering data on the Chinese stock
market.9 Specifically, the risk-free interest rate is proxied by the
3month fixed deposit benchmark interest rate published by the
China Central Bank. Pricing factors are constructed strictly following
Ref. [31]. Summary statistics associated with Fama-French pricing
factors are also presented in Panel B of Table 1. Apparently, the
market factor, MKT, outperforms other four factors and even 28
sector indices, with an annual return of 15% (≈ 0.06% × 252).MKT
has larger magnitudes of maximum (11%) and minimum (9%), thus
implying the higher volatility, which can also be confirmed by its daily
standard deviation of 1.7%, or around 27% per year, at least twice
than those for other four factors. It is noted that althoughMKT is the
most volatile among the factors, it is still located within the lower
range of the standard deviation for sector indices. Accompanied with
its highest profits,MKT produces the highest Sharpe ratio and acts as

7We argue that it is necessary to consider the weight changes for the edges in the
network. For the inter-structure for raw return and factor premium, we observe a
significant increase in the weighted link size, but a decrease in the unweighted link
size. This is mainly due to the increase in distance measurement for the entire
network. Unsurprisingly, the results are consistent after allowing for weight
changes.

8For the recent decade, global commodities have achieved the highest annualized
standard deviation of about 17%, which is obviously lower than those for sector
indices in China. In the Chinese market, the majority of investors are retail
investors, causing larger irrational and speculative behaviors and thereby higher
volatility [22]. For more information regarding the historical volatility of
worldwide assets, refer to https://advisor.visualcapitalist.com/asset-class-risk-
and-return/.
9As for the detailed construction of Fama-French five factors, we refer interested
readers to Ref. [31] as well as the documents by the CSMAR (https://www.gtadata.
com/), which is not the focus in our study.

Frontiers in Physics | www.frontiersin.org April 2022 | Volume 10 | Article 5934935

Shi and Chen Network Structures for Asset Return Co-Movement

http://www.swsresearch.com
http://www.swsresearch.com
https://advisor.visualcapitalist.com/asset-class-risk-and-return/
https://advisor.visualcapitalist.com/asset-class-risk-and-return/
https://www.gtadata.com/
https://www.gtadata.com/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


the best “asset”within the framework of portfolio theory [47]. Except
forMKT, themaximumandminimummagnitudes for the other four
factors are lower than 5% and 7% per day, respectively. Relatively
speaking, SMB and HML are more profitable than the others, with
the annual return of 10% (≈ 0.04% × 252) and 2.5%
(≈ 0.01% × 252), respectively, while RMW and CMA produce the
profits approaching zero per day. SMB and HML are more volatile,
with the annual standard deviation of 12.7% and 9.5%, respectively,
than 6.3% for CMA. Similarly, five factors are not normally
distributed, as suggested by the results of their skewness, kurtosis,
and the statistics under the Jarbe–Barque test.

4 EMPIRICAL RESULTS

4.1 Network Connectedness Over the
Whole Sample Period
To begin with, we examine the results over the whole sample
period. With a daily log return for 28 stock indices, we first

retrieve their idiosyncratic returns by performing the regression
of their raw returns on Fama-French five-factor premiums, as
described by Eq. 1. Factor premium, raw return, and its
corresponding idiosyncratic return are employed to calculate
the correlation matrix C in terms of Spearman’s ρ. With the
adoption of the distance measurement in Eq. 6, C is transformed
to D, and its MST can further be obtained, as presented in
Figure 1. The network comprises 33 nodes with 32 most
significant linkages connecting them. The white circles in the
figure represent different sector indices, while the gray ones
represent pricing factors. The width of edges between nodes
denotes the reciprocal of the distance between them. The
edges in bold imply that the shorter the distance the closer the
relationship between the connecting nodes.

It is evident that all sector indices are connected to factor
MKT, as shown in the plot of the MST, which suggests that sector
indices exhibit a high degree of co-movement with market factor
MKT compared to other risk factors. Apparently, market factor
MKT has the maximum degree, while the other four factors are

TABLE 1 | Descriptive statistics of log returns for 28 sector indices and the premiums for Fama-French five factors.

Full name Abbr Code Max Min Mean Std Skew Kurt JB-Stats

Panel A: Sector indices
Agriculture and forestry A&F 801010 0.09 −0.10 0.0002 0.019 −0.48 6.25 2,232**
Automobile Auto 801880 0.09 −0.10 0.0003 0.019 −0.45 6.30 2,277**
Bank Bank 801780 0.10 −0.11 0.0002 0.019 0.19 7.21 3,474**
Biotechnology Biotech 801150 0.09 −0.09 0.0004 0.018 −0.46 6.38 2,388**
Building and decoration B&D 801720 0.09 −0.10 0.0001 0.018 −0.33 6.53 2,508**
Building materials BM 801710 0.09 −0.10 0.0003 0.020 −0.48 6.06 1998**
Chemical Chem 801030 0.09 −0.09 0.0002 0.018 −0.52 6.36 2,405**
Commercial trade ComT 801200 0.09 −0.10 0.0002 0.018 −0.55 6.49 2,604**
Communications Comm 801770 0.10 −0.10 0.0001 0.020 −0.23 6.03 1826**
Composite Cps 801230 0.09 −0.10 0.0001 0.019 −0.66 6.04 2,134**
Computer Cpt 801750 0.10 −0.10 0.0003 0.021 −0.34 5.28 1,098**
Electrical equipment ElecE 801730 0.09 −0.09 0.0003 0.019 −0.43 5.96 1844**
Electronic Elec 801080 0.09 −0.10 0.0001 0.021 −0.53 5.43 1,373**
Food and drink F&D 801120 0.09 −0.09 0.0005 0.017 −0.15 6.24 2058**
Household appliances Happ 801110 0.09 −0.09 0.0003 0.019 −0.23 5.91 1,687**
Leisure and services L&S 801210 0.09 −0.10 0.0003 0.020 −0.43 6.12 2041**
Light manufacturing LMF 801140 0.09 −0.10 0.0001 0.018 −0.68 6.94 3,389**
Mechanical equipment MechE 801890 0.09 −0.09 0.0003 0.019 −0.53 6.34 2,388**
Media Media 801760 0.10 −0.11 0.0002 0.021 −0.36 5.35 1,177**
Mining Mining 801020 0.10 −0.10 0.0002 0.021 −0.13 5.90 1,651**
National defense ND 801740 0.10 −0.10 0.0002 0.022 −0.34 5.89 1718**
Non-bank financial NBF 801790 0.10 −0.10 0.0003 0.023 0.05 5.59 1,310**
Non-ferrous metals NFMet 801050 0.09 −0.10 0.0002 0.022 −0.33 5.64 1,443**
Real estate Rest 801180 0.09 −0.10 0.0003 0.020 −0.37 5.90 1744**
Steel Steel 801040 0.09 −0.10 0.0001 0.019 −0.30 6.35 2,249**
Textile and apparel T&A 801130 0.09 −0.10 0.0001 0.019 −0.70 7.02 3,532**
Transportation Trans 801170 0.10 −0.10 0.0001 0.017 −0.48 7.34 3,846**
Utilities Util 801160 0.09 −0.10 0.0001 0.017 −0.53 7.30 3,804**
Panel B: Fama-French factors
Market factor MKT 0.11 -0.09 0.0006 0.017 -0.19 8.01 4,912**
Size factor SMB 0.05 -0.07 0.0004 0.008 -1.01 9.89 10,009**
Value factor HML 0.05 -0.04 0.0001 0.006 0.67 9.54 8,659**
Profitability factor RMW 0.05 -0.03 0.0000 0.006 0.80 9.00 7,495**
Investment factor CMA 0.03 -0.03 0.0000 0.004 -0.27 6.23 2081**

This table presents the full name, the abbreviation of the name (Abbr.), as well as the code (only for sector index), maximum (Max), minimum (Min), mean (Mean), standard deviation (Std),
skewness (Skew), kurtosis (Kurt), and Jarque–Bera test statistic (JB-stats) of daily log return for each index (Panel A) and pricing factor (Panel B). The superscripts * and ** denote the
statistical significance at 5% and 1%, respectively.
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connected with other sector nodes through sector Cps.
Specifically, size factor SMB is directly linked to sector Cps,
while the other three factors are connected through SMB. In
comparison, investment factor CMA lies in the most periphery of
the MST structure.

We also notice that it is more distant between pricing factors
than that between MKT and sector indices. That is, the links
connecting MKT with sector indices are more preferred during
the construction of the MST. In some sense, the results
aforementioned also unveil the relative strength of the pricing
effectiveness of risk factors in the Chinese stockmarket, which are
in accordance with empirical findings from the literature on asset
pricing. As documented in previous research works, Fama-
French five factors in emerging markets behave differently
from other mature markets. It is widely acknowledged that
market factor MKT is not enough to capture the common
risks associated with assets, and thus, “factor zoo” has been
developed to fulfill this end [23]. Furthermore, new pricing
factors that have been proven in mature markets are applied
to emerging markets, including China. As for the Chinese market,
size factor SMB and profitability factor RMW are found to
function well [24], while investment factor CMA seems
redundant [24, 25], and the results regarding value factor
HML are mixed [24, 48, 49], which is consistent with our
findings in Figure 1.

4.2 Dynamics of Network Connectedness
In order to probe into the dynamics for the co-movement among
raw returns, factor premiums, and their idiosyncratic returns,
rolling or moving window analysis is conducted [50–53]. It is
noted that the rolling window analysis has been frequently
adopted in the literature. Researchers record the behavior
regarding the variable of interest in each moving window,
thereby obtaining its dynamics over time. In the fields of
finance, the authors of Ref. [54] put forward the famous
Fama-MacBeth regression to process the panel data by
evaluating the time-series estimates of slopes based on cross-
sectional regression in each moving window, which has been
widely employed in financial studies; recent research works
include Refs. [55–58] among others. The authors of Ref. [59]
propose variance decomposition based on the VAR model to
detect the spillover effect of variables of interest, whose dynamics
are also obtained by re-estimating the model for each moving
window [60, 61]. There is a body of literature proposing the
econophysics-based methods to process financial data, with the
adoption of the rolling window analysis as well [62]. It is noted
that the rolling window analysis has also been applied to other
fields, including particle-in-cell simulation [63], recurrence plot-
based complexity measurement [64], mutual information
estimation [65], and the study of the dynamical response of a
population [66].

FIGURE 1 | MST for the whole sample period from 1 July 2000 to 29 March 2019. White circles denote 28 sector indices, while gray circles denote five pricing
factors.
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As for our work, the most intuitive and efficient way is to
evaluate the properties associated with the MST in each
moving window and further examine their dynamic
behaviors. The observations in each time window should be
sufficient to guarantee a precise estimation. Following Ref.
[14], the sizes of the rolling window and the step are set as 120
trading days and 1 day, respectively. As such, we follow the
process similar to what is illustrated in the previous
subsection, except that at each trading day t during the
sample period, we construct the MST based on the data
derived from the decomposition of the index return over
the past period from t − 1 to t − 120. To capture the
changing structure of co-movement, we examine the
evolution of the topological properties of the MSTs.

We also wonder whether the topological characteristics of the
network are related to market performance. To this end, we
perform a rough division in terms of market performance proxied
by the Shanghai Component Index (SHCI, hereafter). As shown
in Figure 2, market trends over the period from January 2000 to
March 2019 are roughly divided into five market cycles, which are
typically composed of the phases of accumulation, mark-up,
distribution, and mark-down. In the figure, the red curve
represents the rising phase of the market, while the black
curve represents the downward or adjusting phase. We focus
on the network structures over three time periods corresponding
to the three most important market cycles, namely, the periods
around 2007, 2015, and 2018.

The results are presented in Figures 3, 4. On the whole, our
results unveil the strong correlation between the evolution of
topological properties of the network structure and market cycles,
regardless of which topological properties are considered.

According to Eq. 7, NT plays an important role in characterizing
the level of network tightness. In the top panel of Figure 3, we can
readily observe that both unweighted and weighted results vary over
time and are closely related to themajormarket cycles, represented by
the shaded parts in the plot. NT experiences a sharp decrease during
all three major periods, thus indicating the lower level of co-

movement. It is more pronounced in the unweighted case, since
NT remains relatively stable with slight fluctuations most of the time,
except for the three periods of our interest. It is also worth noting that
the evolution of the average distance is not exactly coherent with the
market trend. The Chinese market has witnessed the most significant
bubble formation and bursting during the period around 2007, while
the market cycle around 2018 is relatively insignificant. However,
Figure 3 presents a seemingly more pronounced increase of the
average distance realized for the period around 2018, rather than
2007. This finding can also be observed in the following results with
respect to other properties. In addition, we also measure the network
tightness by the link size for the entire network, as described by∑e∈Gle
according toEq. 8. Here we focus on the results for the weighted case,
as shown in the bottom panel of Figure 3. It is noted that the
unweighted link size for the entire network remains the value of 32 all
the time, while the result for the weighted case is obviously time-
varying. Also, consistent with findings based upon the results of NT,FIGURE 2 | (Color line) Rough partition of market cycles in terms of the

daily closing price of the SHCI.

FIGURE 3 | (Color line) Evolution of network tightness indicator NT and
weighted link size for the entire network, presented in the top and bottom
panels, respectively. The sample period is from 1 July 2001 to 29 March 2019.
The shaded parts in each plot correspond to the three major market
cycles.

Frontiers in Physics | www.frontiersin.org April 2022 | Volume 10 | Article 5934938

Shi and Chen Network Structures for Asset Return Co-Movement

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


link size exhibits a significant increase during three major periods,
indicating the lower level of co-movement.

On the other hand, the node degree (strength) of the network
can be employed to depict the shape of the network. The results
for maximum and standard deviation of the node degree
(strength) are presented in the top and bottom panels of
Figure 4, respectively. The maximum degree (strength) shows
the importance of the most connected node in the network, while
the standard deviation of the node degree (strength) denotes the
dispersion of node degree (strength) across the network. As
shown in the figure, node strength is more volatile over time,
while node degree remains stable, with the value being around 28
at most times.10 This implies that the degree of the remaining

nodes fluctuates within a small range; accompanied with the
results in the previous section, market factorMKT is supposed to
be the hub node over the rolling time windows, which needs
further validation. In addition, we can observe that maximum
degree experiences a sharp decrease in all three market cycles,
which indicates that some edges of the hub node are disjointed.
Meanwhile, a pronounced increase in node strength suggests that
the level of co-movement between the hub node and its connected
nodes is weakening. As for the standard deviation of degree
(strength), the results are basically the same as that for the
maximum degree (strength). The results above imply a star-
like connection in the network structure, which is also time-
varying, especially over the period corresponding to major
market cycles.

In order to provide more evidence about the existence of star-
like connection, we further resort to the assortativity coefficient
[14], and the results are shown in Figure 5. Obviously, the
assortativity coefficient is changing over time and exhibits
more significant fluctuations in three major cycles. It is noted
that all results over the rolling windows are negative, which
confirms that nodes with an extremely high degree tend to
connect with nodes with very low degrees. This is also
consistent with our previous findings as well as those from the
prior literature [14].

It is noted that our results are similar to those from Ref. [14]
that adopts a network-based approach to examine the asset
returns’ co-movement in the US market. Based on the Fama-
French three-factor model, the authors decompose the returns of
industrial sector indices into systematic and idiosyncratic parts.
Their results also suggest the time-varying co-movement
structures over the period from 1970 to 2015 (see Figures 2, 3
from Ref. [14]). However, they observe large fluctuations of
measures for co-movement structures over the period around
the dot-com bubble only. It is somewhat out of surprise that no
large fluctuations are observed for the period around 2008,
corresponding to the Global Financial Crisis (GFC). This is

FIGURE 4 | (Color line) Evolution of maximum and standard deviation of
node degree (strength), presented in the top and bottom panels, respectively.
The sample period is from 1 July 2001 to 29 March 2019. The shaded parts in
each plot correspond to the three major market cycles.

FIGURE 5 | Evolution of assortativity coefficient in terms of node
strength. The sample period is from 1 July 2001 to 29 March 2019. The
shaded parts in each plot correspond to the three major market cycles.

10It is noted that the theoretical maximum is 32, which is the number of edges in the
network.
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partly due to their adoption of unweighted schemes, which may
be insensitive to small changes in co-movement structures. Our
results in the following text would further highlight this.

In addition, to further understand theMST structures in the three
market cycles of our interest, we plot the MSTs for three moments
that are randomly chosen out in each of the periods for three market
cycles. The results are shown in Supplementary Figure S1 through
Supplementary Figure S3. It is evident that compared with the
results for the whole sample period in Figure 1, Supplementary
Figure S1 presents a perfect star-like network, though some sector
indices are disjointed frommarket factorMKT, and instead, they are
connected to their counterparts. A similar finding is obtained by Ref.
[14]. The authors also observe that MKT acts as a hub node that
connects the majority of idiosyncratic returns most of the time,
implying the critical role in pricing the assets, while some of the
industrial sectors would be disjointed from MKT and connect with
themselves through the risky periods (see Figure 6 from Ref. [14]).

The structure for pricing factors is also slightly different. Among
them, value factorHML is connectedwith sector Steel, throughwhich
it is connected with market factor MKT. The other three factors are
connected in sequence and connected with market factor MKT
through sector Bank. In comparison, in the plots for 2015 and
2018, as shown in Supplementary Figures S2,3, respectively, the
MST structures are remarkably different from what is suggested in
Figure 1, and the nodes of sector indices aremore inclined to connect
with their counterparts and also with other pricing factors.
Additionally, we observe that value factor HML and profitability
factor RMW take up more important positions in the MST, and size
factor SMB acts as the bridge for other factors. However, investment
factor CMA seems less important than the other factors in the plots.

4.3 Detailed Structure of Co-Movement
With the rolling window analysis, we further attempt to acquiremore
information regarding the detailed structure for different node pairs.

In doing so, we divide the entire network structure into three parts,
that is, intra-structures for both factor premiums and idiosyncratic
returns, and the inter-structure for raw return and factor premium.
We will evaluate the characteristics with respect to each sub-network.
Here, we employ the average link size as the main measurement of
the network structure, as described in Eq. 8, instead of average
distance that only captures the characteristics associated with the
entire network structure.

4.3.1 Inter-Structure for Raw Return and Factor
Premium
Figure 6 presents the results with respect to the inter-structure of
co-movement between raw return and factor premium. Similar to
previous results, the unweighted result of the link size is less
volatile. Specifically, in the result of the unweighted case, its
fluctuation is around 0.95 over most periods, which suggests that
about 95% of connected edges in the network exist between the
sector indices and pricing factors. In comparison, the weighted
results fluctuate more frequently and range between 0.7 and 0.96.
As to the results for the three market cycles, we can observe much
more pronounced fluctuations in both cases, indicating a sudden
change in the MST structure.

It is noted that the results for three major market cycles are
mixed. For the periods around 2007 and 2018, both unweighted
and weighted values exhibited a sharp decline with wild
fluctuation, implying a loose network structure. In
comparison, the results over the period around 2015 were
different. The unweighted value remains stable, while the
weighted value peaks instead of slumping down, suggesting
the lower level of co-movement.

4.3.2 Intra-Structure for Idiosyncratic Returns
The results in Figure 7 reveal important changes in the
network structures for major market cycles. The average

FIGURE 6 | (Color line) Evolution of the average link size of intra-structure
for idiosyncratic returns of sector indices. The sample period is from 1 July
2001 to 29 March 2019. The shaded parts in each plot correspond to the
three major market cycles.

FIGURE 7 | (Color line) Evolution of the average link size of intra-structure
for the idiosyncratic returns of sector indices. The sample period is from 1 July
2001 to 29 March 2019. The shaded parts in each plot correspond to the
three major market cycles.
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link size in the figure remains zero most of the time, which
indicates no connection exists between idiosyncratic returns
in the network. We have already obtained the results for the
whole sample period in Figure 1 that sector indices are all
connected through market factor MKT. However, in some
time windows, such as three major cycles, the connectivity for
idiosyncratic returns is significantly enhanced, regardless of
whether it is in the weighted or unweighted case. This may be
caused by the characteristics embedded in the MST. As the
correlation between sector nodes and common risk factors is
weakened, they have to connect to other nodes instead. On the
other hand, this also implies the possibility of potential
pricing factors hiding in idiosyncratic returns, which
requires further investigation.

4.3.3 Intra-Structure for Factor Premiums
Finally, we move to the results for intra-structures of co-
movement for factor premiums. The results are presented in
Figure 8. Unweighted results fluctuate slightly, ranging from 0%
to 10%, while weighted results fluctuate frequently, but they are
all within a range from 0% to 20%, and weighted average link size
has a downward trend in fluctuations over time. For three major
market cycles, both the weighted and unweighted results exhibit
different decrease degrees. In fact, the link size for pricing factors
is expected to be as small as possible. This is in line with the
intention of asset pricing theory, which is to explore irrelevant but
economically meaningful risk factors. As such, the co-movement
between factors and assets is expected to be as strong as possible,
demonstrating factor pricing effectiveness. Our results provide
evidence that Fama-French five factors are not suitable for the
Chinese stock market on the ground that some risk factors play
their roles only in major market cycles, which is consistent with
our previous finding.

We attempt to explore further how Fama-French five factors
are connected. We examine the evolution of node degree
(strength) for each factor. Here, we report the results on the
market factorMKT only, whose degree remains at a high level for
most time windows. As shown in the bottom panel of Figure 8,
node degree ofMKT only fluctuates slightly, with the value being
around 28 in the plot. This also provides evidence of a close
relationship between the MKT and other sector indices. The
dynamic changes of node strength over time seem to be irregular.
However, for major market cycles, node strength of MKT factor
would be increasing, which implies the weakening of the
relationship with its connected nodes. In comparison, node
degree (strength) for the other four factors fluctuates more
frequently and exhibited a significant upward trend only in
the major cycle around 2018, as shown in Supplementary
Figure S4 through Supplementary Figure S7.

5 ROBUSTNESS CHECK

We employ alternative correlation metrics to conduct the
robustness check, including Pearson’s ρ and Kendall’s τ. It is
noted that similar results are obtained based on different
measurements, and our main findings still hold. In addition,
we also examine the sensitivity of the results when the size of the
rolling step and window varies. The results also indicate that our
findings are not sensitive to the settings associated with the rolling
window analysis.11

6 DISCUSSION AND SUMMARY

In this work, we probe into the detailed structure of co-movement
for the asset price. Specifically, using the data of Chinese sector
indices and Fama-French five factors, we perform the return
decomposition and construct a minimum spanning tree (MST) in

FIGURE 8 | (Color line) Evolution of the average link size of intra-structure
for factor premiums and the node degree (strength) of market factor MKT,
presented in top and bottom plots, respectively. The sample period is from 1
July 2001 to 29 March 2019. The shaded parts in each plot correspond
to the three major market cycles.

11The results mentioned previously could be provided upon the requests.
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terms of the rank correlation coefficients among raw return,
idiosyncratic return, and factor premium.

For the whole sample period, the MST presents a star-like
connection with the hub node being market factor MKT, and all
sector nodes are connected to market factor MKT. We find that
the topological properties associated with the network structure
are time-varying in the rolling window analysis. In particular, in
major market cycles, the star-like structure would be changing.
This is featured by the fact that a few idiosyncratic returns for
sector indices would be disjointed from market factor MKT and
then connected to their counterparts. Also, pricing factors will
generally exhibit more favorable effectiveness of pricing assets.

Our results imply the importance of monitoring assets’ co-
movement in practice. Regulators should be alert to the structural
changes in assets’ co-movement and take measures to avoid
further risk spillovers. Specifically, given that strengthened co-
movement of idiosyncratic returns may lead to continued
amplification of risk, much more attention should be paid to
industrial sectors that are disjointed from crucial risk factors. In
addition, our work also provides a new perspective for the
research on the co-movement structure for the asset price. The
effectiveness of new pricing factors can also be evaluated within
this framework. It is also noted that this work’s focus is to describe
characteristics associated with the time-varying co-movement
structure, whose driving forces will be left in our future work.
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