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In this paper, the Mohand transform-based homotopy perturbation method is
proposed to solve two-dimensional linear and non-linear shallow water wave
equations. This approach has been proved suitable for a broad variety of non-
linear differential equations in science and engineering. The variation trend of the
water surface elevation at different time levels and depths are given by some graphs.
Moreover, the obtained solutions are comparedwith the existing results, which show
higher efficiency and fewer computations than other approaches studied in the
literature.
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1 Introduction

Water waves that have a horizontal scale much larger than the depth of the fluid are
considered shallow water waves (SWWs). SWWs describe the evolution of incompressible flow,
neglecting density change along the depth, which are widely used to simulate the propagation of
tsunami waves, tidal currents, storm floods, and shock waves [1–5]. Karunakar and Chakraverty
applied the homotopy perturbation method (HPM) to solve linear and non-linear one-
dimensional shallow water wave equations (SWWEs) [1], while the two-dimensional
equations were solved in [6]. Sahoo and Chakraverty [7] used the Sawi transform-based
homotopy perturbation method to solve the one-dimensional SWWEs. The application of the
variational iteration method and homotopy perturbation method (HPM) was given in [8] for
solving one-dimensional shallow water equations with crisp and fuzzy uncertain initial
conditions. Noeiaghdam and Sidorov [9] used the homotopy analysis method to solve the
non-linear shallow water wave equation. Safari [10] gave solutions to two extended model
equations for shallow water waves by He’s variational iteration method. In [11], the Adomian
decomposition method was used to solve two extended model equations for SWWEs. In
addition, Bekir and Aksoy [12] applied the Exp-function method to construct exact solutions to
non-linear wave equations.

Mohand transform (MT) [13] is an integral transformation, which is obtained from the
classical Fourier integral, and it was initiated by Mohand Mahgoub to solve some integral and
differential equations (14–16). Khandelwal [17] combined the Adomian decomposition
method and Mohand transform for solving a differential equation of mixing layers that
arise in a viscous incompressible form. The comparison of two integral transforms between
Mohand and Laplace is given in [18]; the results show that the two transforms are closely
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related. Aggarwal, Sharma, and Chauhan [19] gave the duality
relations of Kamal transform with Laplace, Laplace−Carson,
Aboodh, Sumudu, Elzaki, Mohand, and Sawi transforms [20]. They
used an effective scheme based on Mohand transform and the
homotopy perturbation method to find numerical solutions to non-
linear fractional shock wave equations. Althobaiti, Dubey, and Prasad
[21] presented the local fractional Mohand transform with the
Adomian decomposition method to solve the local fractional
generalized Fokker–Planck equation. Shah, Khan, and Farooq et al.
[22] employed the Mohand transform to provide the analytical
solution to the one-dimensional time fractional system of PDEs.

The homotopy perturbation method (HPM) [23] has been widely
used for solving differential and integral equations, which was first
proposed and developed by the Chinese mathematician Ji-Huan He
[24–28]. Laplace transformation coupled with the homotopy
perturbation method is called the He−Laplace method. Madani and
Mishra [29, 30] adopted this method to solve non-linear ordinary and
partial differential equations. It is proved that this method needs fewer
computations and is much easier than other methods. He, Moatimid,
and Zekry [31] used the two-scale transforms and He−Laplace method
to get an analytic approximate solution to a fractal−differential model
[32]. They presented the combination of the enhanced perturbation
method and the parameter expansion technology based on Li−He’s
approach, aiming to find an approximate solution to the given second-
order non-linear ordinary differential equation [33]. They applied the
basic idea of the perturbation method to construct a homotopy
equation with a higher order; the results show a highly effective
obtained solution. The approximation of the damped non-linear
Klein–Gordon equation was given [34] by the coupling of the
exponential decay parameter with the homotopy perturbation
method, which overcomes the shortcomings of the classical method
[35]. They used the reducing rank method with the homotopy
perturbation method to solve the third-order Duffing equation.

The main purpose of the present work is to solve two-dimensional
linear and non-linear shallow water wave equations by coupling
Mohand transform with the homotopy perturbation method. The
remainder of the paper is organized as follows: in Section 2, we present
some preliminaries about shallow water wave equations (SWWEs),
Mohand transform (MT), and the homotopy perturbation method
(HPM). In Section 3, the Mohand transform (MT)-based homotopy
perturbation method (HPM) is applied to solve coupled linear and
non-linear SWWEs in two dimensions. In Section 4, the variations in
the water surface elevation have been demonstrated at different time
levels and depths. Finally, conclusions have been drawn in Section 5.

2 Preliminaries

2.1 Shallow water wave equations (SWWEs)

The linear SWWEs in two dimensions [2, 3] may be given as
follows:

zη

zt
+ zR

zx
+ zQ

zy
� 0

zR

zt
+ gh

zη

zx
� 0

zQ

zt
+ gh

zη

zy
� 0

(1)

As such, the non-linear SWWEs [2, 3] may be written as

zη

zt
+ zR

zx
+ zQ

zy
� 0

zR

zt
+ g h + η( ) zη

zx
� 0

zQ

zt
+ g h + η( ) zη

zy
� 0

(2)

where η is the water surface elevation, t is the time, R and Q
are the depth-averaged volume flux in x and y directions, g
is the acceleration due to gravity (g � 9.8), and h is the water
depth.

2.2 Mohand transform (MT) and some of its
properties

The Mohand transform of the function w(t), t≥ 0 is given
by [13]

M w t( ){ } � u2∫∞

0
w t( )e−utdt � T u( ) (3)

Mohand transform of some useful fundamental functions is given
in Table 1.

The linearity property of MT is given as follows [15]: if
M w1(t){ } � T1(u), M w2(t){ } � T2(u), then M lw1(t)+{
mw2(t)} � lM w1(t){ } +mM w2(t){ } � lT1(u) +mT2(u), where l
and m are the arbitrary constants.

LetM w(x, t){ } � T(x, u); to obtain MT of a partial derivative, we
use integration by parts, and then we derive the following [15]:

M
zw x, t( )

zt
{ } � uT x, u( ) − u2w x, 0( ),

M
z2w x, t( )

zt2
{ } � u2T x, u( ) − u3w x, 0( ) − u2zw x, 0( )

zt

M
znw x, t( )

ztn
{ } � unT x, u( ) −∑n−1

k�0
un−k+1z

kw x, 0( )
ztk

.

(4)

The function w(t) is called the inverse Mohand transform of the
function T(u) if it has the following property:M−1[T(u)] � w(t). The
inverse Mohand transform of some useful fundamental functions [15]
is given in Table2.

TABLE 1 MT of frequently encountered functions.

w(t) M w(t){ } � T(u)
1 1 u

2 t 1

3 t2 2/u

4 t3 6/u2

5 tn , n ∈ N n!/un−1
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2.3 Homotopy perturbation method (HPM)

To illustrate the basic ideas of the HPM [19], we consider the
following non-linear differential equation:

A u( ) − f r( ) � 0, r ∈ Ω (5)
with the following boundary conditions:

B u, zu/zn( ) � 0, r ∈ Γ (6)
Here, A is a general differential operator, B is a boundary operator,
f(r) is a known analytic function, and Γ is the boundary of the domain
Ω.

The operator A can be divided into two parts L andN, where L is
linear and N is non-linear; Eq. 5 can be rewritten as follows:

L u( ) +N u( ) − f r( ) � 0 (7)
Using the homotopy technique, one may construct a homotopy

v(r, p): Ω × [0, 1] → R, which satisfies the following:

H v, p( ) � 1 − p( ) L u( ) − L u0( )[ ] + p A v( ) − f r( )[ ] � 0, p ∈ 0, 1[ ]
(8)

or

H v, p( ) � L v( ) − L u0( ) + pL u0( ) + p N v( ) − f r( )[ ] � 0 (9)
where p ∈ [0, 1] is an embedding parameter and u0 is an initial
approximation of Eq. 5, which satisfies the boundary conditions.
Evidently, from Eqs 8, 9, we obtain the following:

H v, 0( ) � L v( ) − L u0( ) � 0
H v, 1( ) � A v( ) − f r( ) � 0

(10)

The changing process of p from zero to unity is same as that of v(r, p)
from u0(r) to u(r). In topology, this is called deformation, and L(v) −
L(u0) and A(v) − f(r) are called homotopic functions.

We consider the solution to Eq. 8 as a power series in p ∈ [0, 1],
given as follows:

v � v0 + pv1 + p2v2 +/ (11)
The approximate solution to Eq. 5 will be obtained by substituting

p � 1 in Eq. 11.

u � lim
p→1

v � v0 + v1 + v2 +/ (12)

3 Approximate solutions to shallow
water wave equations using the Mohand
transform-based homotopy
perturbation method (MHPM)

3.1 Linear shallow water wave equations

In this section, we obtain the series solution to linear two-
dimensional shallow water Eq. 1 by the MHPM.

Let us consider the Gaussian initial conditions for η, R and Q,
given as follows:

η x, y, 0( ) � 0.5e−
x−20( )2
10 − y−20( )2

20

R x, y, 0( ) � 50e−
x−20( )2
10 − y−20( )2

20

Q x, y, 0( ) � 50e−
x−20( )2
10 − y−20( )2

20

(13)

Applying Mohand transform in Eq. 1, we obtain

M
zη

zt
{ } +M

zR

zx
{ } +M

zQ

zy
{ } � 0 (14)

M
zR

zt
{ } +M gh

zη

zx
{ } � 0 (15)

M
zQ

zt
{ } +M gh

zη

zy
{ } � 0 (16)

Using the derivative characteristics of Mohand transform, Eq. 14
may be written as

M η x, y, t( ){ } � 0.5ue−
x−20( )2
10 − y−20( )2

20 − 1
u
M

zR x, y, t( )
zx

{ }
− 1
u
M

zQ x, y, t( )
zy

{ } (17)

Taking the inverse of Mohand transform on both sides of Eq. 17,
we may obtain the following:

η x, y, t( ) � 0.5e−
x−20( )2
10 − y−20( )2

20 −M−1 1
u
M

zR x, y, t( )
zx

{ }[ ]
−M−1 1

u
M

zQ x, y, t( )
zy

{ }[ ] (18)

Similarly, on solving Eqs 15, 16 by applying the same
aforementioned procedure, we may obtain

R x, y, t( ) � 50e−
x−20( )2
10 − y−20( )2

20 −M−1 1
u
M gh

zη x, y, t( )
zx

{ }[ ] (19)

Q x, y, t( ) � 50e−
x−20( )2
10 − y−20( )2

20 −M−1 1
u
M gh

zη x, y, t( )
zy

{ }[ ] (20)

Now using the HPM technique, we may construct a homotopy for
Eqs 18, 19, 20 in the following form:

1 − p( ) η − η0[ ] + p η − η0 +M−1 1
u
M

zR

zx
{ }[ ] +M−1 1

u
M

zQ

zy
{ }[ ][ ] � 0

1 − p( ) R − R0[ ] + p R − R0 +M−1 1
u
M

zη

zx
{ }[ ][ ] � 0

1 − p( ) Q − Q0[ ] + p Q − Q0 +M−1 1
u
M

zη

zy
{ }[ ][ ] � 0

(21)

By simplifying the aforementioned formulas, we may obtain

TABLE 2 Inverse MT of frequently encountered functions.

S. No. T(u) M−1 T(u){ } � w(t)
1 u 1

2 1 t

3 1/u t2/2

4 1/u2 t3/6

5 1/un−1 , n ∈ N tn/n!
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η � η0 − pM−1 1
u
M

zR

zx
{ }[ ] − pM−1 1

u
M

zQ

zy
{ }[ ]

R � R0 − pM−1 1
u
M gh

zη

zx
{ }[ ]

Q � Q0 − pM−1 1
u
M gh

zη

zy
{ }[ ]

(22)

Let us consider the solution to Eq. 1 in the power series
form as:

η � η0 + pη1 + p2η2 +/
R � R0 + pR1 + p2R2 +/
Q � Q0 + pQ1 + p2Q2 +/

(23)

we may get the following results by applying Eq. 23 in Eq. 22 and
comparing the coefficients of p0:

η0 � 0.5e−
x−20( )2
10 − y−20( )2

20

R0 � 50e−
x−20( )2
10 − y−20( )2

20

Q0 � 50e−
x−20( )2
10 − y−20( )2

20

(24)

Comparing the coefficients of p1 , we get

η1 � −M−1 1
u
M

zR0

zx
{ }[ ] −M−1 1

u
M

zQ0

zy
{ }[ ]

R1 � −M−1 1
u
M gh

zη0
zx

{ }[ ]

Q1 � −M−1 1
u
M gh

zη0
zy

{ }[ ]

(25)

Similarly, comparing the coefficients of p2 and p3, we get

η2 � −M−1 1
u
M

zR1

zx
{ }[ ] −M−1 1

u
M

zQ1

zy
{ }[ ]

R2 � −M−1 1
u
M gh

zη1
zx

{ }[ ]

Q2 � −M−1 1
u
M gh

zη1
zy

{ }[ ]

(26)

η3 � −M−1 1
u
M

zR2

zx
{ }[ ] −M−1 1

u
M

zQ2

zy
{ }[ ]

R3 � −M−1 1
u
M gh

zη2
zx

{ }[ ]

Q3 � −M−1 1
u
M gh

zη2
zy

{ }[ ]

(27)

In the same way, by correlating the coefficients of pn+1, we obtain
the following generic pattern:

ηn+1 � −M−1 1
u
M

zRn

zx
{ }[ ] −M−1 1

u
M

zQn

zy
{ }[ ]

Rn+1 � −M−1 1
u
M gh

zηn
zx

{ }[ ]

Qn+1 � −M−1 1
u
M gh

zηn
zy

{ }[ ]

(28)

Finally, by performing MT on the right hand side of Eq. 25 and then
taking inverse MT, at a constant depth h � .1, we obtain

FIGURE 1
Term-wise solutions to linear SWWEs obtained by the MHPM.
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η1 � 50
1
5
x − 4( ) + 50

1
10

y − 2( )[ ]e− x−20( )2
10 − y−20( )2

20 t

R1 � 0.49
1
5
x − 4( )e− x−20( )2

10 − y−20( )2
20 t

Q1 � 0.49
1
10

y − 2( )e− x−20( )2
10 − y−20( )2

20 t

(29)

We can also get η2, η3,/ by Eq. 28; the solution of Eq. 1 may be
found in the following form:

η � η0 + η1 + η2 + η3 +/ (30)

3.2 Non-linear shallow water wave equations

In this section, we obtain the series solution to the non-linear
shallow water wave equation in two-dimensional Eq. 2 using the
MHPM with the same initial conditions in Eq. 24.

Applying the MT and HPM in Eq. 2, we may obtain

η � η0 − pM−1 1
u
M

zR

zx
{ }[ ] − pM−1 1

u
M

zQ

zy
{ }[ ]

R � R0 − pM−1 1
u
M g h + η( ) zη

zx
{ }[ ]

Q � Q0 − pM−1 1
u
M g h + η( ) zη

zy
{ }[ ]

(31)

Here, we again consider the power series solution to Eq. 2 as in
(Eq. 23). We may get the following results by substituting Eq. 23 in Eq.
31 and comparing the coefficients of p0:

η0 � 0.5e−
x−20( )2
10 − y−20( )2

20

R0 � 50e−
x−20( )2
10 − y−20( )2

20

Q0 � 50e−
x−20( )2
10 − y−20( )2

20

(32)

Comparing the coefficients of p1, we get

η1 � −M−1 1
u
M

zR0

zx
{ }[ ] −M−1 1

u
M

zQ0

zy
{ }[ ]

R1 � −M−1 1
u
M g h + η0( ) + zη0

zx
{ }[ ]

Q1 � −M−1 1
u
M g h + η0( ) zη0

zy
{ }[ ]

(33)

Similarly, comparing the coefficients of p2, we get

η2 � −M−1 1
u
M

zR1

zx
{ }[ ] −M−1 1

u
M

zQ1

zy
{ }[ ]

R2 � −M−1 1
u
M g h + η0( ) zη1

zx
+ η1

zη0
zx

( ){ }[ ]

Q2 � −M−1 1
u
M g h + η0( ) zη1

zy
+ η1

zη0
zy

( ){ }[ ]

(34)

By continuing to compare the coefficients of p3, we get

η3 � −M−1 1
u
M

zR2

zx
{ }[ ] −M−1 1

u
M

zQ2

zy
{ }[ ]

R3 � −M−1 1
u
M g h + η0( ) zη2

zx
+ η1

zη1
zx

+ η2
zη0
zx

( ){ }[ ]

Q3 � −M−1 1
u
M g h + η0( ) zη2

zy
+ η1

zη1
zy

+ η2
zη0
zy

( ){ }[ ]

(35)

FIGURE 2
WSE of linear SWWEs at h � .1 at different time levels.

TABLE 3 MHPM at x � 22 , y � 22, and t � 2 s , h � .1.

Number of terms considered Water surface elevation (η)

3-term solution 23.83

4-term solution 23.82

5-term solution 24.97

6-term solution 24.97

7-term solution 24.98

8-term solution 24.98
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FIGURE 3
WSE of linear SWWEs at h � .1 and h � .2 at different time levels.

FIGURE 4
WSE of non-linear SWWEs at h � .1 at different time levels.

FIGURE 5
WSE of non-linear SWWEs at h � .1 and h � .5 at different time levels.
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By this way, comparing the coefficients of pn+1, we get

ηn+1 � −M−1 1
u
M

zRn

zx
{ }[ ] −M−1 1

u
M

zQn

zy
{ }[ ]

Rn+1 � −M−1 1
u
M g h + η0( ) zηn

zx
+ η1

zηn−1
zx

+ η2
zηn−2
zx

+/ + ηn−1
zη1
zx

+ ηn
zη0
zx

( ){ }[ ]
Qn+1 � −M−1 1

u
M g h + η0( ) zηn

zy
+ η1

zηn−1
zy

+ η2
zηn−2
zy

+/ + ηn−1
zη1
zy

+ ηn
zη0
zy

( ){ }[ ]
(36)

where n � 1, 2, 3,/; calculating Eqs 33–36 with respect to t, we get
η1, η2, η3,/. The solution to Eq. 2 may be obtained in the series form
by combining η0, η1, η2,/, ηn+1, given as follows:

η � η0 + η1 + η2 +/ηn+1 +/ (37)

4 Numerical results and discussion

In this section, the results obtained for both linear and non-
linear SWWEs have been presented, and the graphs of solutions
obtained by the MHPM for various time levels (t), water depths

TABLE 4 WSE of linear SWWEs at 5 s and 10 s with different h values.

x t � 5s t � 10s

h � .1 h � .2 h � .1 h � .2

23.0 26.8973 186.4153 3.2798 × 103 2.4953 × 104

23.2 32.2187 242.9376 4.5436 × 103 3.7379 × 104

23.4 35.5048 276.6909 5.3663 × 103 4.5951 × 104

23.6 36.8368 288.2283 5.7489 × 103 5.0608 × 104

23.8 36.4372 279.7550 5.7251 × 103 5.1581 × 104

24.0 34.6307 254.7271 5.3546 × 103 4.9340 × 104

24.2 31.8003 217.3891 4.7140 × 103 4.4520 × 104

24.4 28.3449 172.3047 3.8886 × 103 3.7848 × 104

24.6 24.6413 123.9262 2.9639 × 103 3.0068 × 104

24.8 21.0149 76.2404 2.0189 × 103 2.1883 × 104

25.0 17.7191 32.5119 1.1204 × 103 1.3901 × 104

FIGURE 7
WSE of non-linear SWWEs by the MHPM and HPM at t � 2 s and t � 5 s.

FIGURE 6
WSE of linear SWWEs by the MHPM and HPM at t � 2 s and t � 5 s.
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(h), and distances (x) are investigated. Figure 1 represents the
term-wise solutions to linear SWWEs in Eq. 1, which are
obtained by the MHPM at the fixed basin depth of h � .1 and
time � 2 s.

The term-wise solutions in x � 22 and y � 22 at the same time
and depth are presented in Table 3. One may observe that the
convergent solution is obtained as the number of terms
increasing. It can also be seen from Figure 1 that the images
possess a symmetrical property, and the images of non-linear
SWWEs in Eq. 2 also have this property. Figures 2–7 show the
plane images for the variation in the water surface elevation
(WSE) (η) with respect to x, when y is fixed at y � 20.
Depending on the symmetry of the images, the same results
will be obtained when x has a fixed value.

The water surface elevation (WSE) (η) of linear SWWEs are
depicted at various time levels in Figure 2, at the fixed water depth
of h � .1. Figure 2A shows the WSE vs. the global coordinate x at three
distinct time levels (t � .5 s, 1 s, and 2 s), whereas Figures 2B, C
represent time levels t � 5 s, 6 s, and 7 s and t � 10 s, 11 s, and 12 s,
respectively.

Diagrams in Figure 3 depict changes in the amplitude of linear
SWWEs as the basin depth varies from h � .1 to h � .2 at two
different time levels t � 5 s and 10 s. It can be seen in Table 4
that the WSE increases when the water depth (h) increases from
.1 to .2 at a fixed time t � 5 s. Similar observations can be found for
t � 10 s. Additionally, when time is increased from t � 5 s to t � 10 s,
the WSE increases at a fixed water depth h � .1. Similarly, we get
comparable results for h � .2.

Figure 4 represents the results of WSE of non-linear SWWEs
at various time levels with h � .1. Also in Figure 4A, the WSE is
plotted against the spatial coordinate x at three different time
levels t � .5 s, 1 s, and 2 s, while Figures 4B, C include results at
time levels t � 5 s, 6 s, and 7 s and t � 10 s, 11 s, and 12 s,
respectively.

Figure 5 demonstrates changes in non-linear SWWEs as the
water depth changes from h � .1 to h � .5 over two distinct time

periods t � 5 s and 10 s, respectively. Table 5 shows that at a fixed
time t � 5 s, the WSE increases when the water depth (h) increases
from .1 to 0.5. Similar results can be found for t � 10 s.
Additionally, at a fixed water depth h � .1, the WSE increases
when time is increased from t � 5 s to t � 10 s. We obtain same
results when h � 0.5.

Figure 6 shows a comparison graph between the MHPM and
HPM for the water surface elevation of the linear SWWEs at the
fixed water depth of h � .1 at various time levels (t � 2 s , 5 s). The
comparison for the WSE of non-linear SWWEs at fixed t � 2 s , 5 s
and h � .1 by the MHPM and HPM is given in Figure 7,
respectively.

From Figures 2, 4, we may conclude that as time increases, the
water surface elevations also increase both in linear and non-linear
cases. It can be seen in Figures 3, 5 that the amplitudes of the linear and
non-linear shallow water waves increase when the water depth (h)
increases at a fixed time. The results obtained are consistent with the
characteristics of shallow water waves. By comparing Figures 6, 7, the
solutions to both linear and non-linear SWWEs obtained by the
MHPM are found to be in excellent agreement with the results
obtained by the HPM in [6].

5 Conclusion

The main goal of this work is to solve shallow water wave
equations using the Mohand transform-based homotopy
perturbation method. The variation in the water surface height
at different time levels and depths are given in this paper; the
results are consistent with the characteristics of shallow water
waves. It is proved that this method is a very good tool for
solving SWWEs, which can easily be applied in finding out the
approximate analytic solutions. The main advantage of this method
over the HPM is that it is a powerful and efficient method to
determine the analytical solution of the wave equation. In future
research, we can also explore the effectiveness of this method in

TABLE 5 WSE of nonlinear SWWEs in 5s and 10s with different h.

x t � 5s t � 10s

h �0.1 h �0.5 h �0.1 h �0.5
17.0 0.3977 × 104 0.2515 × 105 0.2576 × 106 1.6124 × 106

17.2 1.1673 × 104 0.3689 × 105 0.7504 × 106 2.3641

17.4 2.0858 × 104 0.4985 × 105 1.3385 × 106 3.1944 × 106

17.6 3.1173 × 104 0.6351 × 105 1.9989 × 106 4.0684 × 106

17.8 4.2052 × 104 0.7709 × 105 2.6953 × 106 4.9382 × 106

18.0 5.2745 × 104 0.8969 × 105 3.3799 × 106 5.7447 × 106

18.2 6.2365 × 104 1.0025 × 105 3.9958 × 106 6.4214 × 106

18.4 6.9961 × 104 1.0772 × 105 4.4821 × 106 6.8999 × 106

18.6 7.4621 × 104 1.1111 × 105 4.7804 × 106 7.1171 × 106

18.8 7.5578 × 104 1.0962 × 105 4.8417 × 106 7.0220 × 106

19.0 7.2314 × 104 1.0277 × 105 4.6328 × 106 6.5834 × 106
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solving other problems, so as to improve the problem-solving
efficiency.
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